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École normale supérieure, PSL Research University, Sorbonne Universités,

UPMC Univ. Paris 06, CNRS, 75005 Paris, France

Abstract: For expansions in one-dimensional conformal blocks, we provide a rigorous

link between the asymptotics of the spectral density of exchanged primaries and the lead-

ing singularity in the crossed channel. Our result has a direct application to systems of

SL(2,R)-invariant correlators (also known as 1d CFTs). It also puts on solid ground a part

of the lightcone bootstrap analysis of the spectrum of operators of high spin and bounded

twist in CFTs in d > 2. In addition, a similar argument controls the spectral density

asymptotics in large N gauge theories.

Keywords: Conformal and W Symmetry, Conformal Field Theory

ArXiv ePrint: 1709.00008

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2017)119

https://arxiv.org/abs/1709.00008
https://doi.org/10.1007/JHEP12(2017)119


J
H
E
P
1
2
(
2
0
1
7
)
1
1
9

Contents

1 Introduction 1

2 Formulation of the problem and the main result 2

3 From conformal blocks to the Bessel function 4

3.1 Large ∆ 4

3.2 Small x 6

4 Reduction to the tauberian theorem 7

5 Proof of the tauberian theorem 8

5.1 Proof that (W2) implies (W1) 9

5.2 Proof that (W1) implies (W2) 11

5.3 Construction of functions W±2 12

6 Comments and extensions 13

6.1 Nonvanishing Fourier transform 13

6.2 Hardy-Littlewood tauberian theorem 14

6.3 Positivity of the spectral density 15

6.4 Generalization to unequal external dimensions 15

6.5 Application to large N gauge theories 17

7 Discussion 19

A CFT in d = 1 20

B Generalized free theories 23

C I ∼ J 24

D Tauberian theorem without exact prefactor 25

E Karamata’s argument 26

F Connection to the lightcone bootstrap for d > 1 28

1 Introduction

In conformal field theory (CFT), channel duality relates the low- and high-dimension parts

of the operator spectrum. The best-known example is Cardy’s formula for the asymptotic

density of states in 2d CFT [1], which follows from the modular invariance of the torus

partition function. In this paper we will be concerned with another type of channel duality

— the crossing symmetry of the four-point (4pt) function, which is the condition which

forms the basis of the conformal bootstrap [2–6]. The 4pt function allows a convergent
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expansion in one channel, which should agree with the operator product expansion (OPE)

in another channel. This was used in [7, 8] to put bounds on the spectral density of high-

dimension operators, weighted by their OPE coefficients. In [9, 10] and many subsequent

works,1 similar constraints near the Minkowski lightcone were used to study asymptotics

of operators with high spin and fixed twist.

In this paper we will revisit the problem of extracting large dimension asymptotics from

crossing symmetry. Our goal will be to put on more solid ground some intuitive assumptions

made in the previous work. For conceptual clarity, we will focus on an analogous problem

in the context of CFTs in d = 1. We will comment on the relevance of our work to d > 1

in appendix F.

2 Formulation of the problem and the main result

In a 1d unitary CFT,2 consider 4pt function of a hermitean operator φ of scaling dimension

∆φ > 0:

〈φ(0)φ(z)φ(1)φ(∞)〉 = z−2∆φG(z) . (2.1)

The function G(z) has a decomposition in conformal blocks [18–20]:

G(z) =

∫ ∞
0

d∆ p(∆)G∆(z), G∆(z) = z∆
2F1(∆,∆, 2∆; z) . (2.2)

Here p(∆) is a non-negative spectral density. In the discrete spectrum case it’s a sum of

delta-functions with positive coefficients. Our arguments below will apply to both discrete

and continuous spectrum case. A generalization to the case of unequal external dimensions

will be considered in section 6.4.

We will only consider the 4pt function for real 0 < z < 1. Conformal block decom-

position (2.2) converges on this interval [7]. In fact the 4pt function can be analytically

continued to complex z (see e.g. a recent discussion in [21]), but we will not make use of

this fact.

Consider the 4pt function in the limit z → 1. This limit is dominated by the unit

operator in the OPE φ(z)φ(1). We will assume the unit operator is separated by a positive

gap from the rest of the spectrum. In this case we have the asymptotics:3

G(1− x) ∼ x−2∆φ (x→ 0) . (2.3)

What can we say about the spectral density of the conformal block expansion (2.2) from

the fact that it should give rise to such a powerlaw? This was first discussed in [7], where

an upper bound on the spectral density was given, which was then used to control the

rate of convergence of the conformal block expansion. Subsequently, ref. [9] addressed a

1See e.g. [11–17].
2See appendix A for what we mean by this.
3We use A ∼ B to mean that A/B → 1 in the appropriate limit.
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more nuanced question about the asymptotics of the spectral density, as opposed to just

an upper bound.4 They determined the asymptotics via the following argument.

Since the individual conformal blocks only have a mild log(1 − z) singularity, the

powerlaw singularity can appear only as a cumulative effect from the tail of the distribution

at ∆� 1. In this region, and for z → 1, one can approximate conformal blocks as

G∆(1− x) ≈ C(∆)K0(2
√
x∆), C(∆) = 4∆

√
∆/π . (2.4)

This approximation is valid for ∆� 1, x� 1, x∆� 1. So one concludes∫ ∞
∆0

d∆C(∆)p(∆)K0(2
√
x∆) ∼ x−2∆φ (x→ 0). (2.5)

The lower limit of the integral is unimportant since it’s large ∆ which dominate the asymp-

totics, so we set it to some fixed ∆0.

Now, a natural way to get the integral in (2.5) to scale as a powerlaw with x is to

assume that C(∆)p(∆) itself scales asymptotically as a powerlaw with ∆. Taking a general

powerlaw parametrization

C(∆)p(∆) ∼ A−1∆γ−1 (∆→∞) , (2.6)

plugging into (2.5), and rescaling the integration variable, one can then fix γ and A [9]:

γ = 4∆φ, A =

∫ ∞
0

dt tγ−1K0(2t) = Γ(γ/2)2/4 . (2.7)

Of course eq. (2.6) cannot be true literally, since we know that p(∆) may contain a

delta-function component. Instead, this is supposed to be true ‘on average’. A mathemati-

cally precise formulation is that the integrals of the two sides of (2.6) should have the same

asymptotics:

Q(Y ) =

∫ Y

0
d∆C(∆)p(∆) ∼ (Aγ)−1Y γ (Y →∞). (2.8)

This assumption leads to the same values of γ and A as the stronger assumption (2.6). To

see this, one rewrites (2.5) in terms of Q(Y ) via integration by parts.

As a simple consistency check, notice that the computation producing (2.7) is domi-

nated by x, ∆ such that x � 1, ∆ � 1 and t =
√
x∆ = O(1). In this region x∆ � 1, as

is needed for the validity of the approximation (2.4).

What we have just reviewed is an appealing intuitive argument. Still, one may worry

that ref. [9] basically had to assume the simple powerlaw asymptotics (2.6), or its math-

ematically precise form (2.8). While this assumption is the simplest one consistent with

powerlaw asymptotics in x, is it the only one? A priori, one can envision different kinds

of behavior. For example, couldn’t Q(Y ) oscillate between two different powerlaws as in

figure 1?

4More precisely, [9, 10] studied the operators of high spin and constant twist in CFTs in d > 1 dimensions,

analyzing the bootstrap equation near the Minkowski lightcone. In doing so they encountered a problem

formally equivalent to the one we are discussing. See appendix F. Ref. [10] did not discuss specifically the

spectral density, so that we will be primarily comparing with [9].
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Y

Q(Y )

Figure 1. Could Q(Y ) oscillate between two different powerlaw asymptotics? We will show that

such a behavior is impossible.

The main purpose of our paper will be to explain that asymptotics (2.8), with γ and

A as in (2.7), can in fact be obtained from (2.2) and (2.3) without any further assump-

tions. The result derived in [9] is thus true. In particular, the behavior shown in figure 1

is impossible.

The proof has the following structure. In the next section we explain why one can

replace conformal blocks by their Bessel function approximations, as in eq. (2.5). We then

proceed to the crux of the problem, which is how (2.5) implies the asymptotics for the

integrated spectral density. This will be shown using results from a branch of mathematics

known as “tauberian theory” [22].5 One well-known result of this kind is the Hardy-

Littlewood tauberian theorem, which was already used in the CFT context in [7]. Here we

need another tauberian theorem, for which we will give a self-contained explanation.

3 From conformal blocks to the Bessel function

In this section we will supply a rigorous argument that (2.2) and (2.3) imply (2.5). The

conformal block asymptotics involves two limits, large ∆ and small x. In the rigorous

argument it’s convenient to separate them. First we simplify things by taking advantage

of large ∆, and then of small x.

3.1 Large ∆

We will need an asymptotics of conformal blocks in the large ∆ limit, which is a slight

refinement of the asymptotics used in [9, 10]. Let us start from the integral representation6

2F1(∆,∆, 2∆, 1− x) =
Γ(2∆)

[Γ(∆)]2

∫ 1

0
dt
t∆−1

1− t

(
1 +

tx

1− t

)−∆

=
Γ(2∆)

[Γ(∆)]2
2I

(1 +
√
x)2∆

, (3.1)

5This theory takes its origin from a theorem about power series proved by an Austrian mathematician

Alfred Tauber in 1897.
6To get to the second line, change variables to u = t/(1− t), rescale u→ u/

√
x, and use the invariance

under u→ u−1 to restrict integration to u > 1.
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where

I =

∫ ∞
1

du

u
(1 + κy)−∆, y = u−1 + u− 2 , κ =

√
x

(1 +
√
x)2

. (3.2)

The prefactor has asymptotics

Γ(2∆)

[Γ(∆)]2
= 1

2C(∆)× [1 +O(1/∆)] (∆→∞). (3.3)

On the other hand, as shown in appendix C, the integral I can be approximated for large

∆ by replacing (1 + κy)−∆ with e−κy∆, which evaluates to a Bessel function:

I = J × [1 +O(1/∆a)] (0 < a < 1 arbitrary) , (3.4)

J =

∫ ∞
1

du

u
e−κy∆ = e2κ∆K0(2κ∆). (3.5)

The basic idea of the proof is to split the integral I into two parts, at small and large

y. For small y we can safely replace 1 + κy by eκy, while the contribution from large y

is subleading.

We thus obtain the following large ∆ asymptotics of conformal blocks:

G∆(1− x)

C(∆)f∆(x)
= 1 +O(1/∆a) (∆→∞), (3.6)

uniformly in x ∈ (0, 1), where

f∆(x) =

(
1−√x
1 +
√
x

)∆

e2κ∆K0(2κ∆). (3.7)

We now use this asymptotics to show that

F(x) =

∫ ∞
∆0

d∆C(∆)p(∆)f∆(x) ∼ x−2∆φ (x→ 0). (3.8)

Here ∆0 > 0 is any fixed number. Intuitively this follows from the fact that both this

integral and (2.2) are dominated by large ∆. Still, let us give a rigorous proof.

We will show that limx→0 G/F = 1. Pick a small ε > 0 and choose ∆∗ such that the

ratio in (3.6) stays close to 1 within ±ε for ∆ > ∆∗. Now split both integrals (2.2) and (3.8)

into two parts, G1, F1 below ∆∗ and G2, F2 above ∆∗. The parts G1, F1 can be bounded

by a constant times | log x| for x close to 0.7 On the other hand G, and hence G2, grow in

this limit as a powerlaw. It follows that the limit of G/F is the same as the limit of G2/F2.

The latter ratio stays close to 1 within ±ε for any x, since the ratio of the integrands does

so (here it’s useful that the asymptotics (3.6) is uniform in x). So we conclude that the

limit of G/F is 1 within ±ε.8 Since ε was arbitrary, the limit is 1.

7This follows from the fact that the individual conformal blocks satisfy such a bound with a uniform

constant if ∆ ∈ [0,∆∗]. The same is true for f∆(x) if ∆ ∈ [∆0,∆∗].
8Strictly speaking we should have phrased this argument in terms of lim sup and lim inf. We will allow

ourselves this imprecision several times in this paper.
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3.2 Small x

Let us rewrite (3.7) as

f∆(x) = e−φ∆K0(2κ∆), φ = − log

(
1−√x
1 +
√
x

)
− 2κ. (3.9)

For small x we have (notice that κ ∼ √x)

φ = 4x+O(x3/2) = 4κ2 +O(κ3). (3.10)

We would like to argue that in the small x limit the prefactor e−φ∆ in (3.9) can be

dropped, so that (3.8) implies∫ ∞
∆0

d∆C(∆)p(∆)K0(2κ∆) ∼ κ−4∆φ (κ→ 0). (3.11)

In the intuitive reasoning of [9, 10] reviewed in section 2, one first drops the prefactor,

then runs the rest of the argument, and then comes back to check whether dropping was

justified. This a posteriori consistency checks works out fine: the relevant values of ∆ are

O(1/
√
x), for which φ∆ = O(κ), and so the prefactor is indeed close to one. This argument

can be made rigorous using an idea outlined in [23] around eq. (F.29).

Here we would like to offer a slightly different rigorous proof that the prefactor can

be dropped, which is completely independent from the rest of the argument. The idea is

straightforward — we compare the integrands of (3.8) and (3.11). One direction is simple.

From (3.10) we know that φ > 0 for small κ, and so

f∆(x) 6 K0(2κ∆). (3.12)

So the integrand of (3.11) is always larger than that of (3.8). So the asymptotics of (3.11)

cannot be smaller than what is shown in the r.h.s.

For the other direction, we would like to prove that an opposite inequality between the

integrands is valid as long as we include a constant arbitrarily close to 1. There is also a

useful freedom to somewhat rescale the argument of the integrand. There are many ways

to implement this strategy. One possibility is as follows. Let us pick a small ε > 0. We

claim that for sufficiently small κ 6 κ∗(ε) there is an inequality

f∆(x) >
1

1 + C1ε
K0

(
2κ∆(1 + C2ε

2)
)

(∆ arbitrary) (3.13)

with some C1, C2 > 0. If so, the asymptotics of (3.11) cannot be larger than what is shown

in the r.h.s., up to a factor of 1 + O(ε). Since ε is arbitrary, the asymptotics has to be

exactly the one given in (3.11).

To prove this last inequality, we will pick κ∗ = ε2. Then for κ 6 κ∗ we have

e−φ∆ = e−O(κ)κ∆ = e−O(ε2)κ∆. (3.14)

We consider two cases:

(a) κ∆ 6 1/ε. Then (3.14) is > 1/(1+C1ε) and we are done. Notice that K0 is monotonic

so the increase of its argument only makes the inequality stronger.

– 6 –



J
H
E
P
1
2
(
2
0
1
7
)
1
1
9

(b) κ∆ > 1/ε. In this case we can use the asymptotics for K0:

K0(z) = (1 +O(z−1))
√
π/(2z)e−z (z →∞). (3.15)

So

e−φ∆K0(2κ∆) = (1 +O(ε))

√
π

2(2κ∆)
e−[2+O(ε2)]κ∆ (3.16)

> (1 +O(ε))K0

(
2κ∆(1 + C2ε

2)
)
, (3.17)

and we are done.

4 Reduction to the tauberian theorem

We would like to show that (3.11) implies (2.8). Let us denote:

Y = κ−1, q(∆) =

{
0, ∆ 6 ∆0

C(∆)p(∆), ∆ > ∆0

(4.1)

and introduce two “weight functions”:

w1(t) = K0(2t), w2(t) = Θ(0 6 t 6 1), (4.2)

where Θ is the indicator function of the shown interval.

Then (3.11) can be rewritten as∫ ∞
0

d∆ q(∆)w1(∆/Y ) ∼ Y γ (Y →∞), (4.3)

while (2.8) with A as in (2.7) takes the form:∫ ∞
0

d∆ q(∆)w2(∆/Y ) ∼ (I2/I1)Y γ (Y →∞), (4.4)

where

Ii =

∫ ∞
0

dt tγ−1wi(t). (4.5)

The integrals in the l.h.s. of (4.3) and (4.4) express scaled weighted averages of the

spectral density q(∆). We need thus to show that we can replace one weight function

with another by preserving the asymptotic behavior of the averages (after an appropriate

rescaling). That this can be done, under certain conditions on the weight functions, is

known in mathematics as a “tauberian theorem”.9

Before we proceed to the proof, let us transform the statement of the theorem to a

simpler form. First of all it will be convenient to transfer the dependence on γ from the

9The crux of this result is in the exact prefactor shown in (4.4). If one is only interested in knowing

that the l.h.s. of (4.4) is asymptotically bounded above and below by some constant times Y γ , then an

elementary proof can be given, see appendix D.
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growth exponent in Y γ to the weight functions. To do this we introduce new spectral

density and the weight functions:

qnew(∆) = q(∆)/∆γ−1, wnew
i (t) = tγ−1wi(t). (4.6)

It’s easy to see that the tauberian theorem in terms of the new quantities takes the same

form as before but with the growth exponent γ = 1. We will also normalize the weight

functions so that they have integral one. This is the theorem we will be proving:

Tauberian theorem: let q(∆) be a non-negative spectral density and w1(t), w2(t) be two

functions with unit integrals: ∫ ∞
0

dtwi(t) = 1. (4.7)

Suppose that

Y −1

∫ ∞
0

d∆ q(∆)w1(∆/Y ) ∼ 1 (Y →∞). (4.8)

Then, under certain extra conditions on wi(t) which will be made clear below,

Y −1

∫ ∞
0

d∆ q(∆)w2(∆/Y ) ∼ 1 (Y →∞). (4.9)

For applications to the conformal bootstrap, we will need this theorem for

w1(t) =
4

Γ(γ/2)2
tγ−1K0(2t), w2(t) = γtγ−1Θ(0 6 t 6 1) . (4.10)

5 Proof of the tauberian theorem

Tauberian theory is a rich branch of mathematics, see [22] for a review. For a non-expert

it may be hard to locate the needed result and to understand its proof. In fact the general

theorem we need goes back to Wiener [24] (see e.g. [22], chapter II, Theorem 15.2). We

found the exposition of Bochner [25, 26] very clear (once we translated it from German).

Our proof is a simplification of Bochner’s (possible since we don’t prove a general result but

only what is needed for CFT applications). Of course we could have just cited mathematics

literature and be done, but we believe that there is added value in seeing how things work.

Since tauberian theorems are destined to continue to play a role in the conformal bootstrap,

our simplified self-contained exposition will hopefully be useful.

The proof will rely on Fourier analysis. The integrals in the formulation of the theorem

can be rewritten as (w stands for any of the two weights)

Y −1

∫ ∞
0

d∆ q(∆)w(∆/Y ) =

∫ ∞
0

d∆

∆
q(∆)w̃(Y/∆), (5.1)

where

w̃(t) = t−1w(t−1). (5.2)

– 8 –
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In this form it is a multiplicative convolution of q and w̃. It will be convenient to go to the

usual additive convolution via change of variables

∆ = ex, Y = ey, ρ(x) = q(ex), W (x) = w̃(ex) = e−xw(e−x). (5.3)

Notice that ∫ ∞
−∞

dxW (x) =

∫ ∞
0

dtw(t) = 1 . (5.4)

In terms of the new variables (5.1) becomes∫ ∞
−∞

dx ρ(x)W (y − x) = (ρ ∗W )(y). (5.5)

So we achieved yet another reformulation of the Tauberian theorem. We are given, on the

whole real line, a non-negative spectral density ρ and two normalized weight functions W1

and W2. We know that

(ρ ∗W1)(y)→ 1 (y →∞) (W1)

and we need to show that

(ρ ∗W2)(y)→ 1 (y →∞). (W2)

For applications to the conformal bootstrap, we will need this result for (see figure 2)

W1(x) =
4

Γ(γ/2)2
e−γxK0(2e−x), W2(x) = γe−γxΘ(x > 0) . (5.6)

We will actually explain the proof of the tauberian theorem only for these two functions.

However, the given arguments will be sufficiently general, so that the reader will be able

to adapt them to other functions of interest. See sections 6.2, 6.4, 6.5 for examples of

such adaptations.

Figure 3 provides an intuitive reason for the validity of this result. The oscillating

dashed curve represents a non-negative spectral density (which in general does not have to

be continuous and may contain a delta-function component). The averages of this spectral

density with W1(y−x) go to a constant as y →∞. Intuitively this implies that the spectral

density itself, roughly, goes to a constant. Then the averages with another weight function

W2(y − x) should also go to a constant.

5.1 Proof that (W2) implies (W1)

While our main goal is to prove that (W1)⇒ (W2), we will start here by proving that (W2)

⇒ (W1). The key idea is to represent W1 as a convolution of W2 and some other function:

W1 = W2 ∗R (5.7)

It’s easy to check that this equation is satisfied for (see note 11 for how to find this R).

R(x) = W1(x) + γ−1W ′1(x). (5.8)

– 9 –
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Figure 2. The weight functions (5.6) (for γ = 1).

Figure 3. An intuitive illustration, see the text. Notice that ρ(x) vanishes for x < log ∆0.

Notice that R has integral one. Now, by the usual properties of convolution, we have

ρ ∗W1 = (ρ ∗W2) ∗R. (5.9)

Interchanges of the order of integration are easy to justify.

Denote u = ρ ∗W2. Notice that while ρ is a spectral density which may have a delta-

function component, u is a piecewise-continuous function. Also, this function is uniformly

bounded, i.e. there exists a constant C so that

0 6 u(x) < C for all x . (5.10)

Indeed, for large x it is uniformly bounded because it approaches A. On the other hand,

for x below some x0, we can bound u(x) by a constant times u(x0). To show this, we use

the inequality:

W2(x− t) 6 const.W2(x0 − t) (t > t0) , (5.11)

where t0 is such that ρ(t) = 0 for t 6 t0.

Given (5.9), we have to prove that if u → A as y → ∞, then u ∗ R → A in the same

limit. We are interested in A = 1, but passing to unew = u − A, ρnew = ρ − A we are

reduced to the case A = 0. The new u is still uniformly bounded, although not necessarily

non-negative.

The rest is easy. Pick any ε > 0. Find an x0 such that |u(x)| < ε for x > x0. We can

split the convolution u ∗R(y) as follows:

u ∗R(y) =

∫ ∞
−∞

dxu(x)R(y − x) =

∫
x<x0

+

∫
x>x0

. (5.12)

In the first integral |u| < C, so it is bounded by

C

∫ +∞

y−x0

dt |R(t)| (5.13)
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and goes to zero as y →∞. In the second integral |u| < ε so it’s bounded by

ε

∫ +∞

−∞
dt |R(t)| = O(ε). (5.14)

We have just shown that limy→∞ u ∗R(y) = O(ε) for any ε, so this limit is zero. QED.

The reader will notice that the non-negativity of ρ was not essential here. It would be

sufficient to assume that the integral defining the convolution (W2) is absolutely convergent

for any y. This is unlike the opposite implication for which ρ > 0 will be crucial.

The used properties of W1 and W2 were: the existence of the convolution representa-

tion (5.7), and the inequality (5.11) needed to argue for the boundedness of u.

5.2 Proof that (W1) implies (W2)

If we try to apply the proof from the previous section to show the opposite implication (W1)

⇒ (W2) we encounter a difficulty: in contrast to (5.7), there is no function S such that

W2 = W1 ∗ S. (5.15)

This is obvious already from the fact that W2 has a discontinuity, while W1 is smooth.

Whatever an integrable function S, the convolution W1 ∗S will be necessarily a continuous

function, and so cannot equal W2.

We can reach the same conclusion using the Fourier transform. In Fourier space

eq. (5.15) becomes

Ŵ2(p) = Ŵ1(p)Ŝ(p). (5.16)

The Fourier transforms are given by:10

Ŵ1(p) = Γ
(

1
2(γ + ip)

)2/
Γ
(

1
2γ
)2
, (5.17)

Ŵ2(p) =
γ

γ + ip
. (5.18)

The Ŵ1(p) decays exponentially fast at large p:

|Ŵ1(p)| ∼ const.|p|2γ−1e−π|p| (p→∞), (5.19)

while Ŵ2(p) decays only as p−1 (which is related to the fact that W2(x) is discontinuous).

So if the function S existed, its Fourier transform would have to grow exponentially at

infinity, a contradiction.11

We will now explain how one can work around this difficulty. The key idea is as follows.

Fix a small ε > 0. We claim that we can find a pair of functions W±2 such that

W−2 (x) 6W2(x) 6W+
2 (x) for any x, (5.20)∣∣∣∣∫ dxW±2 (x)− 1

∣∣∣∣ < ε, (5.21)

10Changing variables back to t = e−x these become Mellin transforms of w1(t), w2(t) given in (4.10).
11On the other hand the function R solving (5.7) must have the Fourier transform R̂(p) = Ŵ1(p)/Ŵ2(p) =

Ŵ1(p)(1 + ip/γ). Inverting this, we get (5.8).

– 11 –
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Figure 4. Approximating the function W2 from above and below by functions W±
2 .

(recall that W2 has integral 1) while the Fourier transforms

Ŵ±2 (p) decay as O(e−const.p2
) at large p. (5.22)

From the existence of these functions, let us see how we can finish the proof. First

of all we can use the argument of section 5.1 to show that (W1) implies (W±2 ), by which

we mean:

ρ ∗W±2 (y)→
∫
dxW±2 (x) (y →∞). (5.23)

We define the function R by solving the convolution equation in Fourier space:

R̂(p) = Ŵ±2 (p)/Ŵ1(p). (5.24)

This solution makes sense because the Fourier transform of W±2 decays at large p faster

than that of W1, and because Ŵ1(p) does not vanish for any p.12

Second, we observe that, for any y

ρ ∗W−2 (y) 6 ρ ∗W2(y) 6 ρ ∗W+
2 (y). (5.25)

It is in this step that we use the fact that the spectral density ρ is non-negative.

Since the functions in the l.h.s. and in the r.h.s. of the last inequality tend to 1 within

±ε as y → ∞, and since ε is arbitrary, we conclude that the function in the middle must

tend to 1.

5.3 Construction of functions W±
2

The functions W±2 should look like in figure 4, i.e. they should be smooth functions closely

approximating W2 from above and below. We construct these functions by taking some

approximations of W2 from above and below, and then smoothing these approximations by

convolution. One has to work a bit to make sure that after the convolution the pointwise

comparison inequalities (5.20) are still satisfied.

12Also notice that condition (5.11) used in section 5.1 is satisfied for W1 in place of W2.
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Consider auxiliary functions φ± with the following properties:∫
|x|<ε

dxφ±(x) = 1, (5.26)

φ+(x) > 0, φ−(x) < 0 for |x| > ε, (5.27)∫ ∞
−∞

dxφ±(x) = 1±O(ε), (5.28)

and, finally, the Fourier transform of φ± decays as O(e−const.p2
). Such functions can be

found within a family of functions const.e−(x/a)2
for φ+ and const.e−(x/a)2

(1 − (x/b)2)

for φ−.

The functions W±2 can then be defined as

W±2 (x) = φ± ∗ V ±, (5.29)

V +(x) = max
y∈[x−ε,x+ε]

W2(y), (5.30)

V −(x) = min
y∈[x−ε,x+ε]

W2(y). (5.31)

The property (5.20) follows from (5.26) and (5.27), and from the fact that W2 is everywhere

non-negative. At the same time we have∫
W±2 =

(∫
φ±
)(∫

V ±
)

= 1±O(ε). (5.32)

6 Comments and extensions

6.1 Nonvanishing Fourier transform

As we have seen, the main idea in the proof of the tauberian theorem is to represent some

weight functions as convolutions of other weight functions. These representations are found

with the use of Fourier transform. In our proof, a key step was that eq. (5.24) defines a

Fourier transform of a function. For this it was important that

1. Ŵ1(p) nowhere vanishes.

2. Ŵ1(p)eε|p|
2 →∞ for any ε > 0.

It turns out that condition 2 is not important and can be removed at the cost of com-

plicating the proof [25, 26]. On the other hand condition 1 is crucial and in its absence

the tauberian theorem cannot hold. Indeed, suppose that we have a normalized weight

function W1 such that its Fourier transform has a zero at some p0: Ŵ1(p0) = 0. We can

consider a non-negative spectral density

ρ(x) = 1 + cos(p0x). (6.1)

The condition (W1) is then satisfied. On the other hand, the r.h.s. of (W2) behaves as

ρ ∗W2(y) = 1 + 1
2 [eip0yŴ2(p0) + c.c.] (6.2)

and does not go to a constant.
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6.2 Hardy-Littlewood tauberian theorem

Another important tauberian theorem which occurs in CFT applications is the Hardy-

Littlewood theorem, which was already invoked in [7]. Let us recall how it arises. We

can take the conformal block decomposition of the 4pt function, eq. (2.2), and split it into

simple powers:

G(z) =

∫ ∞
0

d∆ r(∆) z∆. (6.3)

To do this we just take each conformal block and expand it into powers. The coefficients of

this expansion being positive, we conclude that r(∆) is still a non-negative spectral density.

The interpretation of this operation is that ∆ in (6.3) runs over primaries and descendants,

while in (2.2) it was numbering the primaries only.

Now let’s forget about the origin of r(∆) apart from it being non-negative, and just take

a general power series (6.3) which satisfies the asymptotics (2.3). The Hardy-Littlewood

theorem states that, under these conditions, the spectral density satisfies the integrated

asymptotics: ∫ Y

0
d∆ r(∆) ∼ (Aγ)−1Y γ , (6.4)

γ = 2∆φ, A =

∫ ∞
0

dt tγ−1e−t = Γ(γ). (6.5)

To see this, we introduce the variable t = | log z| and rewrite the conditions of the theorem as∫ ∞
0

d∆ r(∆) e−∆t ∼ t−2∆φ (t→ 0). (6.6)

The analogy with eqs. (2.5), (2.8) and (2.7) should now be clear.

For a rigorous proof, we should run the argument in section 5. The difference is that

now we have a different weight function:

w1(t) =
1

Γ(γ)
tγ−1e−t (6.7)

and the corresponding

W1(x) =
1

Γ(γ)
e−γxe−e

−x
. (6.8)

The Fourier transform is given by

Ŵ1(p) =
Γ(γ + ip)

Γ(γ)
. (6.9)

This Fourier transform satisfies both conditions 1,2 emphasized in section 6.1. So our

argument is sufficient to prove the Hardy-Littlewood theorem.

In appendix E we discuss another proof of the Hardy-Littlewood theorem due to Kara-

mata, and why it does not quite work to prove the conformal bootstrap tauberian theorem.
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Figure 5. The integrated spectral density
∫ Y

0
d∆ r(∆) corresponding to the series (6.10).

6.3 Positivity of the spectral density

Positivity of the spectral density is important for the tauberian theorems to hold. We

will demonstrate this on the example of the Hardy-Littlewood theorem. Consider the

function [27]:

G(z) =
1

(1− z)(1 + z)2
= 1− z + 2z2 − 2z3 + 3z4 − 3z5 + 4z6 − 4z7 + . . . (6.10)

The integrated spectral density oscillates as shown in figure 5 as opposed to growing asymp-

totically linearly.

6.4 Generalization to unequal external dimensions

We would like to give a quick but rigorous discussion of the case when the external operators

have unequal dimensions.13 The 4pt function in this case has the form

〈φ1(0)φ2(z)φ2(1)φ1(∞)〉 = z−∆1−∆2G(z) (6.11)

with the conformal block decomposition

G(z) =

∫ ∞
0

d∆ p(∆)G
(δ)
∆ (z), G

(δ)
∆ (z) = z∆

2F1(∆− δ,∆− δ, 2∆, z) , (6.12)

where δ = ∆1 −∆2 [20].

We are considering a reflection-positive configuration so that the spectral density p(∆)

is non-negative. From the crossed channel we know that G(1−x) ∼ x−2∆2 as x→ 0 and we

would like to know what this implies for the asymptotic spectral density. We can assume

without loss of generality that δ > 0, otherwise we apply an SL(2,R) transformation which

interchanges φ1 and φ2. Mathematically, the cases δ > 0 and δ < 0 are equivalent because

we have a hypergeometric identity

2F1(∆− δ,∆− δ, 2∆, 1− x) = x2δ
2F1(∆ + δ,∆ + δ, 2∆, 1− x) . (6.13)

We need an approximation formula for the conformal blocks in the large ∆ limit.

Going through the same steps as in section 3.1, and using the same integration variables,

13See [23] for the original discussion at an intuitive level.
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the Euler integral representation for the hypergeometric function gives:

2F1(∆− δ,∆− δ, 2∆, 1− x) =
Γ(2∆)

Γ(∆− δ)Γ(∆ + δ)

Iδ
(1 +

√
x)2∆−2δ

, (6.14)

where

Iδ =

∫ ∞
0

du

u

1

(1 + u/
√
x)2δ

(1 + κy)−∆+δ . (6.15)

The prefactor in (6.14) has the same asymptotics 1
2C(∆) as for δ = 0. Rigorous analysis

of the integral Iδ is simplified by using the following observation. Although non-obvious

from this representation, it follows from the above hypergeometric identity that we have

x2δ

(1 +
√
x)4δ

I−δ = Iδ . (6.16)

Suppose now that we drop 1 in (1 +u/
√
x) in (6.15). Given that δ > 0, this gives an upper

bound for Iδ and a lower bound for I−δ. Using (6.16), we obtain a two-sided bound for Iδ:

xδ

(1 +
√
x)4δ

∫ ∞
0

du

u1−2δ
(1 + κy)−∆−δ 6 Iδ 6 xδ

∫ ∞
0

du

u1+2δ
(1 + κy)−∆+δ . (6.17)

Now by an argument similar to the one given in appendix C we can show that in the large

∆ limit it’s possible to replace (1 + κy) by eκy in the integrals on the right and on the left,

committing a relative error at most O(1/∆a), 0 < a < 1.14 The resulting integrals then

evaluate to another Bessel function, so that we obtain, up to relative error O(1/∆a),

2xδ

(1 +
√
x)4δ

e2κ∆+K2δ(2κ∆+) 6 Iδ 6 2xδe2κ∆−K2δ(2κ∆−) , (6.18)

where we introduced ∆± = ∆±δ. If we now estimate how much the r.h.s. and the l.h.s. vary

due to this little shift of dimensions, we obtain:

Iδ = 2xδe2κ∆K2δ(2κ∆)× [1 +O(κ) +O(1/∆a)] , (6.19)

and so finally:

G
(δ)
∆ (1− x)

C(∆)f
(δ)
∆ (x)

= 1 +O(
√
x) +O(1/∆a) (x→ 0,∆→∞), (6.20)

f
(δ)
∆ (x) =

(
1−√x
1 +
√
x

)∆

e2κ∆xδK2δ(2κ∆). (6.21)

Continuing to mimic the line of reasoning in section 3, we now want to show that we

can replace conformal blocks by f
(δ)
∆ (x) in the asymptotics, i.e. the analogue of (3.8):

F(x) =

∫ ∞
∆0

d∆C(∆)p(∆)f
(δ)
∆ (x) ∼ x−2∆2 (x→ 0). (6.22)

14This argument becomes a bit more tedious because in general for δ > 0 we cannot take advantage of the

monotonicity of the integration measure in the proof of (C.3), as in eqs. (C.5). Nevertheless the statement

remains true.
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There is a minor difference that while (3.6) was true uniformly in x, our asymptotics (6.20)

contains an error term O(
√
x). However as we will see this will not be a problem.15

Here is the appropriate version of the last paragraph of section 3.1 (modifications in

blue). We will show that limx→0 G/F = 1. Pick a small ε > 0 and choose ∆∗ and x∗ such

that the ratio in (6.20) stays close to 1 within ±ε for ∆ > ∆∗ and x 6 x∗. Now split both

integrals (6.12) and (6.22) into two parts, G1, F1 below ∆∗ and G2, F2 above ∆∗. The

parts G1, F1 can be bounded by a constant for x close to 0. On the other hand G, and

hence G2, grow in this limit as a powerlaw. It follows that the limit of G/F is the same as

the limit of G2/F2. The latter ratio stays close to 1 within ±ε for x 6 x∗, since the ratio

of the integrands does so. So we conclude that the limit of G/F is 1 within ±ε.
Furthermore, arguing exactly like in section 3.2, we show that f

(δ)
∆ (x) can be replaced

in (6.22) by xδK2δ(2κ∆). Thus we finally obtain a condition of the tauberian type:∫ ∞
∆0

d∆C(∆) p(∆)K2δ(2κ∆) ∼ x−2∆2−δ = x−∆1−∆2 ∼ κ−γ , (6.23)

where γ = 2(∆1 + ∆2). As expected, this final equation is invariant under δ → −δ.
We can now analyze the asymptotics of the spectral density using the methods of

sections 4 and 5. The weight function w1(t) in (4.10) has to be replaced by

w1(t) = tγ−1K2δ(2t) (6.24)

(times a normalization factor). Notice that this weight function is integrable as K2δ(2t) =

O(t−2δ) and 2δ < γ.

The resulting asymptotics for the spectral density will take the form:∫ Y

0
d∆C(∆)p(∆) ∼ (Aγ)−1Y γ , (6.25)

where

A =

∫ ∞
0

dt tγ−1K2δ(2t) =
1

4
Γ
(γ

2
− δ
)

Γ
(γ

2
+ δ
)
. (6.26)

The Mellin transform of the weight function is given by:∫ ∞
0

dt tγ−1+ipK2δ(2t) =
1

4
Γ

(
γ + ip

2
− δ
)

Γ

(
γ + ip

2
+ δ

)
. (6.27)

It is non-vanishing and has the same decay properties as the Mellin transform for the δ = 0

case. So our proof of the tauberian theorem goes through.

6.5 Application to large N gauge theories

In this section we will change gears completely, and consider a confining 4d gauge theory

in the limit of a large number of colors.16 In such a theory consider a local operator O,

15On the other hand it’s crucial that (6.20) does not contain mixed error terms which decrease in x but

grow in ∆, like e.g. O(x∆).
16This additional application of the tauberian theory in physics was suggested to us by Sasha Zhiboedov.
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a scalar for simplicity. Its 2pt function in the Euclidean momentum space has a spectral

representation [28]

〈O(p)O(−p)〉 =
∑
n

|cn|2
p2 +m2

n

. (6.28)

Here mn are the masses of resonances (infinitely narrow in the large N limit), and cn are

their couplings to O. The important point is that, in the strict N →∞ limit, this equation

is supposed to apply at all momenta, including the asymptotically large momenta where

the theory approaches the UV. At those momenta the 2pt function must scale as

〈O(p)O(−p)〉 ∼ const.(p2)∆−2 , (p2 →∞) , (6.29)

where ∆ is the UV dimension of O, times a function which varies logarithmically with p2

which is generated by the logarithmic running of the gauge coupling near the UV and by

the Fourier transform from the position space if ∆ is an even integer.17

While the above equations are usually written in momentum space, it will be more

convenient for us to transform them to position space. This is because the series in momen-

tum space may not converge without subtraction needed to eliminate the contact terms,

while the series in position space should converge. Thus we obtain:

〈O(0)O(x)〉 =
∑
n

|cn|2
1

4π2x2
w(mn|x|) ∼

const.

(x2)∆
(x→ 0) , (6.30)

where

w(t) = tK1(t) , (6.31)

and once again an extra logarithmic factor is left implicit.

Let us introduce the spectral density

ρ(t) =
1

4π2

∑
n

|cn|2δ(t−mn) (6.32)

and denote Y = 1/|x|. Then we can rewrite the above equation as∫ ∞
0

dt ρ(t)w(t/Y ) ∼ const.Y 2∆−2L(Y ) (Y →∞) , (6.33)

where we now introduced explicitly the extra logarithmic factor L(Y ) . Notice that the

exponent 2∆− 2 is positive in 4d by the unitarity bound.

If there were no extra factor, L(Y ) ≡ 1, then eq. (6.33) would be of precisely the same

form as (4.3). The weight function is a partial case of (6.24) analyzed in the previous section

and satisfies the requirements needed for the application of the tauberian theorem. Thus

we would obtain a rigorous result for the asymptotics of the integrated spectral density.

Turning now to the case with the extra factor, it’s important that this factor satisfies

the so called slow variation condition

lim
Y→∞

L(λY )/L(Y ) = 1 for any λ > 0 . (6.34)

17There may be extra factors which scale as even slower varying functions, like double logs etc. We will

not write such factors but their presence will be compatible with the discussion below.
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For such factors there is a generalized tauberian theorem, Theorem 9.3 in [22], chapter IV.

Roughly, it says that the theorem in section 4 remains true if we replace 1 by L(Y ) in the

r.h.s. of both (4.8) and (4.9). So the conclusion is that the integrated spectral density in

this case will have a powerlike asymptotics times L(Y ).

The spectral density asymptotics in 4d large N theories were recently discussed in [29],

section 3. The spectral density asymptotics is recovered in that work by exhibiting a smooth

spectral density which, upon doing the integral in t, gives asymptotics as Y → ∞ which

agrees with the r.h.s. of eq. (6.33) (for an appropriate L(Y )). An attempt is then made

to prove that this spectral density asymptotics is unique. Unfortunately, this part of the

discussion in [29] appears incorrect.18 On the other hand, the above considerations based

on the tauberian theorems provide an alternative and mathematically precise way to put

the results of [29] on solid grounds.

See also [30] for other applications of tauberian theorems in general quantum field

theories.

7 Discussion

Conformal field theory is physically relevant. In addition, its equations are mathematically

well defined. One advantage of having well-defined equations is that we can study them

numerically. The modern developments in the conformal bootstrap program benefitted

from the latter fact enormously, starting from [6]. Many rigorous bounds on the parameter

space of CFTs in various dimensions have since been obtained, perhaps the most impres-

sive result being an accurate determinations of the low-lying CFT data for the 3d Ising

model [17, 31–35]. While these bounds and results have been obtained numerically, they

have rigorous error bars, precisely because they follow from a well-defined set of equation.

In particular, the theorem about OPE convergence proved in [7] provides solid basis for

this numerical analysis (see also the recent comments in [21]).

One point of view on the numerical results is that they are but the first glimpse of a

dazzling future theory which will provide an analytic solution of the bootstrap equations.

Another, more modest point of view, is that the bootstrap equations are too hard to solve

analytically in most cases of physical interest. Still, we can make progress by improving

our numerical techniques. One way to improve the existing numerical algorithms is to

combine a numerical approach to the low-lying CFT data with analytic control over the

high-dimension operators. This analytic control comes in particular from the lightcone

bootstrap, which is the d > 1 counterpart of the problem considered in this paper, reviewed

in appendix F. Looking for such a hybrid approach is a worthy goal, and some steps in this

direction have already been taken recently in [17, 36].

18First, the use of Euler-Maclaurin formula in (3.10) presupposes that the sequence of pole residues can be

analytically continued, which is not a given. Second, the whole attempt of justifying the uniqueness based on

appealing to Fredholm alternative, eq. (3.13) and below, is unfounded, since the Fredholm alternative deals

with full solutions of integral equations and not with asymptotic solutions. We thank Marco Bochicchio for

having tried to convince us, unsuccessfully, in the correctness of his proof.
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It is to be hoped that this future hybrid approach, when it is found, will preserve the

nice feature of the current numerical approach in that the obtained bounds on the CFT

parameter space will still be completely rigorous. If this is to happen, we are obliged to

find a rigorous understanding of the high-dimension spectrum. In this paper we provided

such an understanding for one toy problem in the context of 1d CFTs.

It should be pointed out that there is still a huge gap between what we have shown

and what is expected to be true, even in 1d CFTs. Here we established just the leading

asymptotics of the integrated spectral density. But instead, it seems reasonable to expect

that the spectrum of exchanged operators should become asymptotically equally spaced,

approaching generalized free theory spectra discussed in appendix B (or perhaps with a

finite number of trajectories of this type). The distribution of these operators should

respect the leading as well as subleading asymptotics corresponding to subleading terms in

the OPE in the crossed channel. We expect that to prove such a result it will be crucial

to use analytic structure of the 4pt function for complex z, similarly to what was done

recently in [36]. Analyticity should lead to more powerful conclusions than what we have

achieved here via real analysis methods (notice in particular that asymptotics (2.3) was

used by us only for x→ 0 along the real axis).
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A CFT in d = 1

In this paper by unitary CFT in d = 1 dimension we mean a system of correlation functions

of local operators on the real line

〈O1(x1) . . .On(xn)〉 (x1 < x2 < . . . < xn) (A.1)

satisfying the following axioms which are adaptations of the axioms of global conformal

invariance in d > 1 (see e.g. [37]).

Axiom 1. There is a privileged class of operators called primaries. Their correlation

functions remain invariant under the SL(2,R) group of fractional linear transformations

x→ x′ = f(x) =
ax+ b

cx+ d
(A.2)

provided that the operators transform as

Oi(x)→ |f ′(x)|∆iOi(x′). (A.3)
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Here ∆i is a parameter characterizing the operator called its scaling dimension. All oper-

ators which are not primaries are derivatives of primaries of some finite order. They are

called descendants.

One difference between CFT in d = 1 and in d > 1 is that the correlation functions

generally depend on the point ordering as indicated. Notice that we can equivalently think

of correlation functions as defined on a circle which is the conformal compactification of

the real line. SL(2,R) transformations then preserve circular ordering. We may or may

not assume parity invariance under x→ −x.

Axiom 2. (Unitarity) There is an antilinear conjugation map defined on the primary

operators: O → O∗. This map has two properties:

• (‘Time-reversal’) Correlation functions of conjugate operators in reversed positions

are related by complex conjugation:

〈O∗n(−xn) . . .O∗1(−x1)〉 = 〈O1(x1) . . .On(xn)〉∗ . (A.4)

Notice that this is different from parity invariance which would also relate correlation

functions under x→ −x but without complex conjugation.

• (Reflection positivity) The following reflection-symmetric linear combinations of 2n-

point correlation functions of primaries are non-negative:∫
dy g̃(y)

∫
dx g(x)〈O∗n(yn) . . .O∗1(y1)O1(x1) . . .On(xn)〉 > 0 , (A.5)

where g(x) = g(x1, . . . , xn) is an arbitrary function or distribution with support on

0 < x1 < x2 < . . . < xn (A.6)

(away from coincident points to avoid singularities), and g̃(y) is the reflected complex-

conjugate function:

g̃(y1, . . . , yn) = g(−y1, . . . ,−yn)∗ . (A.7)

The physical meaning of this property is that we can consider a state

|Ψ〉 =

∫
dx g(x)|O1(x1) . . .On(xn)|0〉 . (A.8)

Then eq. (A.5) can be rewritten as

〈Ψ|Ψ〉 > 0 . (A.9)

It is a simple consequence of reflection positivity (for n = 1) that all primaries should

satisfy the 1d unitarity bound ∆ > 0.19

19To exclude all ∆ < 0, it suffices to consider g(x) = δ(x− x0) + α δ′(x− x0) for an appropriate α.
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Let us pass to the basis of ‘hermitean’ operators satisfying O = O∗. Hermitean primary

operators are normalized so that their 2pt functions take the form:

〈Oi(x1)Oj(x2)〉 =
δij

|x1 − x2|2∆Oi
. (A.10)

The SL(2,R) invariance implies that 3pt functions of primaries take the form:

〈O1(x1)O2(x2)O3(x3)〉 =
C123

(x2 − x1)h123(x3 − x2)h231(x3 − x1)h132
(x1 < x2 < x3) ,

(A.11)

where hijk = ∆i + ∆j −∆k. The 3pt function coefficients are in general complex (even for

hermitean operators). In general, they depend on the circular ordering of the operators.

It follows from the time-reversal property that C321 = C∗123.

Axiom 3. (OPE) n-point correlation functions of primaries can be reduced to (n − 1)-

point correlation functions using the OPE:

O1(x1)O2(x2) =
∑
k

C12k
1

(x2 − x1)∆1+∆2−∆k
(Ok(x1) + . . .) (A.12)

where we assume the operator ordering x1 < x2 in the l.h.s. The . . . in the r.h.s. stands to

the contributions of the descendants of Ok; they are fixed by the SL(2,R) invariance. For

a continuous spectrum one should replace the sum by an integral.

The given axioms are sufficient to introduce the concept of conformal blocks, derive

the representation (2.2) for the 4pt function of four identical hermitean primaries, and the

positivity of the spectral density.20

Systems of correlation functions satisfying such axioms may arise in physics in a variety

of ways. One example are the generalized free theories discussed in the next section. One

can also consider renormalization group flows starting from such generalized free theories,

perturbing them by local operators. E.g. one can consider the generalized free boson φ

and perturb it by the operator φ4 (relevant for ∆ < 1/4). This gives a flow to a fixed

point which has SL(2,R) invariance [38]. This flow occurs in the studies of the critical

point of the 1d long-range Ising model [39] (see e.g. [40, 41] for recent work). Similar

flows involving generalized free fermions were recently considered in connection with the

Sachdev-Ye-Kitaev (SYK) model [42].21

A second way to get 1d CFTs is starting from higher-dimensional CFTs and intro-

ducing line defects into them (see e.g. [44] for a general discussion). For example one can

take a 2d CFT in a half-plane (in this case the defect is a boundary), or two different 2d

CFTs separated by a line interface. One can also consider line defects in 3d dimensional

CFTs imposing nontrivial monodromy for the global symmetry when moving around the

defect, as done for the 3d Ising model in [45, 46] and for the O(N) model in [47]. Wilson

20We have pk = CφφkCkφφ = |Cφφk|2.
21Note that the SYK model itself does not quite satisfy the axioms of 1d CFT, because of a small explicit

breaking of the SL(2,R) invariance [43]. However the nonlocal variation of the SYK model considered in [42]

does satisfy the 1d CFT axioms.
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line operators in conformal gauge theories also provide examples of line defects [48]. In

all these examples, by taking OPE of higher-dimensional CFT operators with the defect

one can define the local operators on the defect. Their correlators will satisfy axioms of

1d CFT.22

A third way to get 1d CFT is to start with a general UV complete 2d QFT (which

may be conformal or massive) and put it in a classical curved background with AdS2

geometry. In this setup 1d CFT lives on the boundary of the AdS space and provides a

dual description of bulk physics (see [52] for a recent use of this observation).

One necessary property of the 1d CFTs is that they are nonlocal, in that they do not

have an analogue of a local conserved stress tensor operator, unlike local CFTs possible

in d > 2. This is formally obvious already from the fact that any conserved operator in

d = 1 is a constant. Physically the nonlocality of these theories can be traced back to

their construction:

• Generalized free theories are nonlocal because they can be defined by a gaussian

non-local action (see e.g. the detailed discussion in [38]). Flows originating from such

theories are thus also expected to be nonlocal.

• 1d CFTs arising as boundaries or defects of higher-dimensional CFTs are also non-

local when viewed in isolation. Their local description is impossible without taking

into account the higher-dimensional bulk.

• 1d CFTs arising from QFTs in AdS are nonlocal because we are considering a classi-

cal, non-fluctuating, AdS background. This is to be contrasted with the more stan-

dard AdS/CFT setting in higher dimensions, where the gravitational background is

allowed to fluctuate, the graviton field describing these small fluctuations being dual

to the local stress tensor operator on the boundary.

Finally, we note that 1d CFTs have been previously studied via numerical bootstrap

in [46, 52, 53], and by analytic bootstrap techniques in [21, 54, 55].

B Generalized free theories

The two simplest unitary 1d CFTs are the generalized free boson and fermion. These are

gaussian theories, in the sense that n-point correlation functions are expressed in terms of

the 2pt function via Wick’s theorem. The bosonic (+) and fermionic (−) 4pt functions are

given by:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉= 〈φ(x1)φ(x2)〉〈φ(x3)φ(x4)〉
+〈φ(x1)φ(x4)〉〈φ(x2)φ(x3)〉±〈φ(x1)φ(x3)〉〈φ(x2)φ(x4)〉 (B.1)

22We thank Subir Sachdev for bringing to our attention the following further example of 1d CFT arising

in condensed matter physics [49–51]. Take a (2+1)-dimensional quantum antiferromagnet with spatially

anisotropic couplings. Varying the anisotropicity parameter λ, one can reach a quantum critical point, which

is a relativistic CFT in the O(3) Wilson-Fisher universality class. Now introduce a magnetic impurity into

the regular 2d lattice. The interaction between the impurity spin and the fluctuations of the Néel order

parameter in the bulk antiferromagnet is relevant. It triggers an RG flow leading, at long time scales, to a

fixed point which is a nontrivial 1d CFT living on the worldline of the impurity.
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where the points are ordered as x1 < x2 < x3 < x4 and

〈φ(x1)φ(x2)〉 = (x2 − x1)−2∆φ . (B.2)

The corresponding functions G(z) are given by

G(z) = 1± z2∆φ +

(
z

1− z

)2∆φ

. (B.3)

The exact conformal block decomposition is known. In addition to the unit operator, it

contains operators of dimension (i > 0)

∆i =

{
2∆φ + 2i (boson)

2∆φ + 2i+ 1 (fermion) ,
(B.4)

while the squared OPE coefficients are given by (see [46], eqs. (4.14–15), and [55], sec-

tion 2.3.1)

pi =
(2∆φ)i

4i
×


2(2∆φ)2i

(2i)!(2∆φ + i− 1/2)i
(boson)

(2∆φ)2i+1

(2i+ 1)!(2∆φ + i+ 1/2)i
(fermion).

(B.5)

Expressing the coefficients in terms of the operator dimension, we have in both cases

p(∆) ≈ 8
√
π

Γ(2∆φ)2
∆4∆φ−3/24−∆ (∆� 1). (B.6)

Recalling that the operator dimensions increase in step of 2, we see that this asymptotics

is in agreement with (2.8), (2.7).

C I ∼ J

Here we will show (3.4). It is convenient to change the integration variable to y:

I =

∫ ∞
0

dy√
y(y + 4)

(1 + κy)−∆ (C.1)

and similarly for J . Let us split this integral into two parts:

I =

∫ y∗

0
+

∫ ∞
y∗

= I1 + I2 , (C.2)

and similarly for J . We will fix an ε > 0 and choose y∗ = 1/(κ∆1−ε).

We will show that, uniformly in κ,

I2/I1, J2/J1 = O(e−∆ε
) (C.3)

and

I1/J1 = 1 +O(1/∆1−2ε) . (C.4)

These two facts clearly imply (3.4), with a = 1− 2ε.
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Let us show (C.3). Using the monotonicity of the integration measure, we have

I1 >
1√

y∗(y∗ + 4)

∫ y∗

0
dy (1 + κy)−∆,

I2 6
1√

y∗(y∗ + 4)

∫ ∞
y∗

dy (1 + κy)−∆. (C.5)

Doing the integrals in the r.h.s. and taking the ratio, the y∗-dependent prefactors cancel

and we get

I2/I1 6
(1 + 1/∆1−ε)1−∆

1− (1 + 1/∆1−ε)1−∆
, (C.6)

from where (C.3) follows. A similar argument works for J2/J1.

On the other hand, (C.4) follows from the fact that the ratio of integrands is everywhere

close to 1 on the corresponding interval:

log
(1 + κy)−∆

e−κy∆
= [− log(1 + κy) + κy]∆ = O((κy∗)

2∆) = O(1/∆1−2ε) . (C.7)

D Tauberian theorem without exact prefactor

Here we will give a simple argument that condition (4.3), which we copy here for conve-

nience, ∫ ∞
0

d∆ q(∆)w1(∆/Y ) ∼ Y γ (Y →∞) (D.1)

implies that23 (Q(Y ) =
∫ Y

0 d∆ q(∆))

C2Y
γ 6 Q(Y ) 6 C1Y

γ (Y � 1) . (D.2)

For this argument we will assume that w1 is a positive function which is differentiable and

monotonically decreasing. There will be also a few extra conditions which will introduce

when we need them. For w1 as in (4.2) all these conditions will be satisfied.

Since w1 is monotonically decreasing, we have∫ ∞
0

d∆ q(∆)w1(∆/Y ) > w1(1)Q(Y ) . (D.3)

From here the r.h.s. inequality in (D.2) for Y � 1 follows. Increasing the constant C1

somewhat if needed, we can achieve that this inequality is true for all Y > 0. This is

possible because q(∆), and hence Q(∆), vanishes for ∆ 6 ∆0.

Now let us show the other direction. We rewrite integrating by parts∫ ∞
0

d∆ q(∆)w1(∆/Y ) = −Y −1

∫ ∞
0

d∆Q(∆)w′1(∆/Y )

=

∫ ∞
0

d∆

∆
Q(∆)g(∆/Y )

=

∫ ∞
0

dt

t
Q(Y t)g(t) , (D.4)

23The lower bound is slightly better than C2Y
γ/ log Y proved in [9], appendix B.3.
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where we denoted g(t) = −tw′1(t) (a positive function by assumption). We dropped the

boundary terms in the first line of this equation. The t = 0 boundary term vanishes

because Q(∆) = 0 for small ∆. Using the already proved r.h.s. inequality in (D.2), the

t =∞ boundary term vanishes if

tγw′1(t)→ 0 (t→∞). (D.5)

We will assume that this is also satisfied.

Let us split the last integral in (D.4) into three parts
∫ t1

0 +
∫ t2
t1

+
∫∞
t2

. In the first and

the last integral we bound the integrand using the already proved upper bound in (D.2)

(valid for any Y as mentioned), which gives∫ t1

0
+

∫ ∞
t2

6 B1Y
γ , B1 = C1

(∫ t1

0
+

∫ ∞
t2

)
dt tγ−1g(t). (D.6)

We will assume that
∫∞

0 dt tγ−1g(t) converges (this is satisfied for our w1 taking into account

γ > 0). Given this, we can pick t1 and t2 so that B1 < 1. Then the remaining part of the

integral,
∫ t2
t1

, should be asymptotically larger than (1−B1)Y γ . On the other hand we have∫ t2

t1

dt

t
Q(Y t)g(t) 6 B2Q(Y t2), B2 =

∫ t2

t1

dt

t
g(t). (D.7)

This implies the l.h.s. inequality in (D.2) with C2 = (1−B1)/(B2t
γ
2).

E Karamata’s argument

The Hardy-Littlewood theorem can be given an elementary proof using a beautiful argu-

ment due to Karamata [27]. The argument runs as follows. Consider for simplicity the

case γ = 1 (the general case being similar). Suppose that∫ ∞
0

d∆ r(∆) f(∆ t) ∼ t−1 (t→ 0), (E.1)

where we denoted f(t) = e−t. Then clearly∫ ∞
0

d∆ r(∆) f(∆(n+ 1)t) ∼ t−1 1

n+ 1
(t→ 0). (E.2)

The r.h.s. can be written as

t−1

∫ ∞
0

dy f((n+ 1)y)

/∫ ∞
0

dy f(y) . (E.3)

Taking finite linear combinations of (E.2) we obtain∫ ∞
0

d∆ r(∆)P (∆ t) ∼ t−1

∫ ∞
0

dy P (y)

/∫ ∞
0

dy f(y) (t→ 0) (E.4)

for any P (y) which is of the form

P (y) =
N∑
n=0

cnf((n+ 1)y). (E.5)
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Now suppose that we can find functions P+(y) and P−(y) which are of the form (E.5) and

such that Karamata’s conditions hold:

P−(y) 6 Θ(y ∈ [0, 1]) 6 P+(y) (0 6 y 6∞), (K1)

while the integrals ∣∣∣∣∫ ∞
0

P±(y)dy − 1

∣∣∣∣ 6 ε (K2)

with ε arbitrarily small.

Since the spectral density is non-negative, we can integrate (K1) and obtain:∫ ∞
0

d∆ r(∆)P−(∆ t) 6
∫ ∞

0
d∆ r(∆) Θ(∆ t ∈ [0, 1]) 6

∫ ∞
0

d∆ r(∆)P+(∆ t). (E.6)

By (E.4), the sides of this inequality behave as ∼ t−1(1 + O(ε)). Since ε is arbitrary, the

middle function must behave as ∼ t−1. This middle function is exactly∫ 1/t

0
d∆ r(∆), (E.7)

and so we proved the theorem.

We still have to show that (K1), (K2) can be satisfied. For f(t) = e−t this is easy to

show introducing a new variable x = e−t ∈ [0, 1]. Then finite sums (E.5) are polynomials

and functions P± can be shown to exist applying the Weierstrass approximation theorem.

See [27] for details.

One may be wondering if the conformal bootstrap tauberian theorem can be proved by

Karamata’s argument [23]. For this one would need to show that conditions (K1), (K2) can

be satisfied for f(y) = K0(y). We do not know if this can be done. The Weierstrass the-

orem, or its generalization the Stone-Weierstrass theorem, require that the approximating

set of functions form an algebra under pointwise multiplication. This condition is satisfied

by the polynomials but not by the linear combinations of K0(ny).

Ref. [23], appendix F.2, note 9, tried to reduce Karamata’s conditions for f(y) = K0(y)

to those for f(y) = e−y. They proposed to use an integral transforms to represent e−y as

a multiplicative convolution of K0(y). However, this seems impossible because the Mellin

transform of K0(y) decreases faster at infinity (these Mellin transforms are identical with

the Fourier transforms (5.17) and (6.9)). In any case, even if such an integral representation

exists, it will involve a continuum of dilatations of K0(y), while in (E.5) we need a finite

linear combination.24

So, straightforward adaptation of Karamata’s argument does not seem to work for

the conformal bootstrap tauberian theorem. Still, one can see the proof we presented

in section 5 as “Karamata’s argument on steroids”, as there is a clear analogy between

Karamata’s conditions and our (5.20), (5.21). That in our proof we passed from dilata-

tions to translations is just a matter of convenience. On the other hand the important

extra ingredients were a systematic and justified use of convolution, as opposed to finite

linear combinations, and the control over the Fourier transform at infinity needed to find

convolution representations.

24We thank Liam Fitzpatrick for the correspondence related to these points.
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x3 = (1, 1)x1 = 0

x2 = (z, z̄)

z

z̄

x4 ! 1

x1 = 0

x2 = (z, z̄)

z

z̄

x4 ! 1
x3 = 1

Figure 6. The causal diamond where the Minkowski 4pt function is nonsingular. The 4pt function

is real and positive in the diamond, symmetric with respect to the diagonal z = z̄. The function

G(z, z̄) decreases from the diagonal in the direction shown by the arrow.

F Connection to the lightcone bootstrap for d > 1

The initial motivation for considering a tauberian theorem of the kind we proved in this

paper came from analyzing the conformal bootstrap equations near the lightcone [9, 10].

Let us review this connection.

In a unitary CFT in d > 1 dimensions, consider a 4pt function of four identical scalar

primaries

〈φ(0)φ(z, z̄)φ(1)φ(∞)〉 = (zz̄)−∆φG(z, z̄). (F.1)

Here we are placing four operators in a two-dimensional plane (which is a subspace of the

full d-dimensional space if d > 2), putting them at four points in this plane as indicated.

Crucially, we will be considering this plane being of Minkowski signature, analytically

continuing correlators from the Euclidean. For the Minkowski signature the coordinates

z and z̄ are two independent real coordinates, and the 4pt function is real and smooth

(real-analytic) when the operator φ(z, z̄) is in the causal diamond 0 < z, z̄ < 1 limited by

the null rays emanating from the operators φ(0) and φ(1), see figure 6.

The 4pt function can be expanded into conformal blocks gτ,`(z, z̄) of primaries labeled

by their spin ` and twist τ = ∆− `:

G(z, z̄) = 1 +
∑
`,τ

Pτ,` gτ,`(z, z̄) . (F.2)

Conformal blocks themselves have in the causal diamond a convergent power series expan-

sion of the form

gτ,`(z, z̄) = (zz̄)τ/2
∞∑

m,n=0

am,nz
mz̄n. (F.3)

In unitary theories coefficients Pτ,` are real and positive. For primaries above the unitarity

bounds all coefficients am,n are also real and positive. It follows that all terms in the

expansions (F.2) and (F.3) are real and positive, and so the expansion must converge to

the 4pt function (no possibility for any cancellation).

Moreover we can derive a bound on the 4pt function in the diamond in terms of its

value on the diagonal. Let us decrease z starting from a point on the diagonal z = z̄ ∈ (0, 1).
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In unitary theories in d > 2 we have unitarity bounds:

τ > τ0 = (d− 2)/2 > 0. (F.4)

It follows that as we decrease z every term in (F.2) except for the first term is decreasing

at least as fast as zτ0 . We thus have:

1 6 G(z, z̄) 6 G(z̄, z̄) (0 < z 6 z̄). (F.5)

In what follows we assume that our theory has a twist gap: all operators but the

unity have a positive twist τ > τmin > 0. This assumption follows automatically from the

unitarity bounds in d > 2. It is not satisfied in local CFTs in d = 2 where the stress

tensor and other conserved currents have twist zero, but it may be satisfied in nonlocal

two-dimensional CFTs. By the same argument, the bound (F.5) can then be strengthened

as follows

1 6 G(z, z̄) 6 1 + (z/z̄)τmin/2[G(z̄, z̄)− 1] (0 < z 6 z̄). (F.6)

Consider now the crossing equation for the 4pt function, which takes the form

(zz̄)−∆φG(z, z̄) = [(1− z)(1− z̄)]−∆φG(1− z, 1− z̄). (F.7)

First of all let us derive an auxiliary result by considering the crossing equation on

the diagonal and taking the limit z = z̄ → 1. We can use the OPE in the r.h.s., which is

dominated by the unit operator, and conclude

G(z̄, z̄) ∼ (1− z̄)−2∆φ (z̄ → 1). (F.8)

In particular we have

G(z̄, z̄) = O((1− z̄)−2∆φ) (0 < z̄ < 1). (F.9)

Next we would like to consider the crossing equation away from the diagonal. We will

be interested in the limit z → 0 while z̄ will belong to some fixed range close to 1 (figure 7).

In this region, taking into account (F.9), we can rewrite the bound (F.6) as

G(z, z̄) = 1 +O
(
zτmin/2(1− z̄)−2∆φ

)
. (F.10)

So we see that G(z, z̄) → 1 as z → 0 although approach becomes slower and slower as

z̄ → 1.25

In any case we see that the l.h.s. of (F.7) behaves as

(zz̄)−∆φ ×
[
1 +O

(
zτmin/2(1− z̄)−2∆φ

)]
(F.11)

in the considered limit. The leading singular behavior is const.z−∆φ . We are interested in

how this singular behavior can arise from the crossed channel.

25In Mean Field Theory (see below), by inspection of the exact four point function, one can see that we

can replace (1− z̄)−2∆φ by (1− z̄)−∆φ in the error term. We do not know if such an improvement is possible

for general CFTs. We thank Amit Sever for raising this question.
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x3 = (1, 1)x1 = 0

x2 = (z, z̄)

z

z̄

x4 ! 1

x1 = 0

x2 = (z, z̄)

z

z̄

x4 ! 1
x3 = 1

z

z̄

Figure 7. The region in which we are analyzing crossing.

The key insight of [9, 10] is that this can only happen due to cooperative behavior of

many primaries of high spin and approximately constant twist. The individual conformal

blocks in the crossed channel behave for z � 1, l� 1, z̄ fixed as [9]

gτ,`(1− z, 1− z̄) = G`(1− z)(1− z̄)τ/2F (τ, z̄)× [1 +O(1/
√
`,
√
z)]. (F.12)

Here G`(z) are the 1d conformal blocks defined in (2.2), for ∆ = `. The function F is a

d-specific function which is analytic, regular and positive at z̄ = 1.

Neglecting the error terms in (F.11) and (F.12), the crossing equation becomes

z−∆φ ∼
∑
`,τ

Pτ,`G`(1− z)× (1− z̄)τ/2−∆φ z̄∆φF (τ, z̄). (F.13)

This equation is similar to the problem (2.2), (2.3) which we studied in this paper, but it’s

also rather more nontrivial. Notice that we are dealing with an asymptotics in z where

coefficients are functions dependent on another parameter z̄. The asymptotics should be

valid for any z̄ close to one, but the range of z when it kicks in becomes smaller and smaller

as z̄ → 1; it can be estimated from (F.10) as

z � (1− z̄)4∆φ/τmin . (F.14)

This is a significant complication in analyzing the consequences of (F.13).

If one ignores this complication and proceeds naively, one can try to argue as follows.

The factor (1− z̄)τ/2−∆φ in z̄ dependent coefficients in the r.h.s. is non-analytic in the limit

z̄ → 1, unless operators have twists

τ = 2∆φ + 2n (n = 0, 1, 2 . . .). (F.15)

In a generic CFT there will be small deviations from these twists, but let us assume that

these deviations can be neglected in the limit l → ∞. One then plugs twists (F.15)

into (F.13), takes the limit z̄ → 1 and requires that the equation should be satisfied order

by order in (1 − z̄). For example from the (1 − z̄)0 term one gets that the n = 0 series

must satisfy:

z−∆φ ∼ F (2∆φ, 1)
∑
`

P2∆φ,`G`(1− z). (F.16)

The n = 1 series must satisfy a similar equation needed to satisfy the equation at the order

(1− z̄)1 etc.
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We would like to emphasize that imposing the equation order by order in (1 − z̄)

appears to us a nontrivial assumption. It would be nice to justify it rigorously. A key

difficulty in doing this is that the z → 0 asymptotics is not valid uniformly for z̄ near 1.

This problem appears to us more difficult than the one we solved in this paper, and it

deserves further study.

Ref. [9] tried to formalize the above way of reasoning as follows. They proposed to

define a spectral density in the twist space

ρ(σ) = lim
z→0

z∆φ
∑
τ,`

Pτ,`G`(1− z)δ(τ − σ). (F.17)

The limit should be understood in the sense of linear functionals, integrated against a

continuous function f(τ). It is an open problem to show that the limit exists in any CFT.26

Assuming that the limit exists, the spectral density must satisfy the equation

1 =

∫ ∞
τmin

dσ ρ(σ)(1− z̄)σ/2−∆φ z̄∆φF (σ, z̄) (F.18)

for any z̄ close to 1. To solve this equation, one considers the generalized free scalar field

in d dimensions, also known as Mean Field Theory (MFT). In this theory the 4pt function

is given in d > 1 by (B.1) with the + sign, and the conformal block decomposition can be

found exactly. The only operators present in the OPE are those of twists exactly (F.15).

The OPE coefficients can be found exactly, and expanding them at large spin and perform-

ing the sum in (F.17) one finds that in this particular case the limit does exist and is given

by a sum of delta-functions

ρ(σ) =
∞∑
n=0

PMFT
2∆φ+2nδ(σ − (2∆φ + 2n)) , (F.19)

with PMFT
2∆φ+2n given in ref. [9], eq. (25). This, then, is one solution of eq. (F.18). One then

argues that this solution is unique.

We thus obtain the following generalization of eq. (F.16):∑
`

P2∆φ+2n,`G`(1− z) ∼ PMFT
2∆φ+2nz

−∆φ (n = 0, 1, 2 . . .), (F.20)

where P2∆φ+2n,` denotes OPE coefficients of a series of operators approaching twist 2∆φ+2n

in the large spin limit.

Eqs. (F.16), (F.20) are of the same basic form as the problem (2.2), (2.3) which we

studied in this paper, with a minor redefinition of parameters and with a restriction that

∆’s must be integers. Using our results, we can rigorously show that eq. (F.20) implies an

26The existence of the limit after integration with an f(τ) is not obvious as z∆φGl(1−z) is not monotonic

as z → 0. Therefore, while the function under the limit sign would remain bounded as z → 0 for any

bounded f(τ), it may a priori oscillate. Ref. [9] tacitly assumes that the limit exists (see their eq. (91)) but

does not provide a proof. However, to appeal to the Riesz Representation Theorem as they subsequently

do, it is definitely necessary to first ascertain that the limit exists for a class of f(τ). We thank David

Simmons-Duffin and Jared Kaplan for the comments on this point.
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asymptotic for the integrated OPE coefficients of each series of operators. These are the

asymptotics conjectured in [9], eq. (32).

It would be interesting to put on more solid ground other parts of the argument in [9].

This concerns in particular the existence of the limit for ρ(σ) in (F.17). Also the arguments

in [9], section 2.3 (and analogous arguments in [10]), need further justification. There, the

subleading terms in the z → 0 and z̄ → 1 asymptotics are conjectured to imply subleading

powerlaw asymptotics of OPE coefficients and twists as `→∞. We are not aware of any

mathematical theorem which can be used to show this rigorously in full generality.

In general, it’s subtle to control subleading terms in tauberian theorems [22]. In

mathematics literature, it’s known that the ability to go out to the complex plane is very

useful in this task, see [22], chapter III. In our work here, as well as in earlier arguments

in [9, 10], only real analysis methods were used. A different approach to the lightcone

bootstrap was recently proposed in ref. [36], which relies crucially on the analytic structure

of the CFT 4pt function for complex values of z, z̄. This approach leads to an explicit

inversion formula which defines an analytic function of ∆, `, whose poles encode the physical

spectrum of the CFT. It is possible that further investigations based on this formula will

bring clarity to the problems discussed in this section.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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