T. Heberer, K. Reddersen, and A. Mechlinski, From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas, Water Sci. Technol, pp.46-81, 2002.

J. Martin, D. Camacho-muñoz, J. L. Santos, I. Aparicio, and E. Alonso, Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal, Journal of Hazardous Materials, vol.239, issue.240
DOI : 10.1016/j.jhazmat.2012.04.068

A. J. Watkinson, E. J. Murby, and S. D. Constanzo, Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling, Water Research, vol.41, issue.18, pp.41-4164, 2007.
DOI : 10.1016/j.watres.2007.04.005

A. Jelic, M. Gros, A. Ginebreda, R. Cespedes-sánchez, F. Ventura et al., Barcelo, Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment, Water Res, pp.45-1165, 2011.

T. X. Bui and H. Choi, Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15, Journal of Hazardous Materials, vol.168, issue.2-3
DOI : 10.1016/j.jhazmat.2009.02.072

S. W. Nam, D. J. Choi, S. K. Kim, N. Her, and K. D. Zoh, Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon, Journal of Hazardous Materials, vol.270, pp.144-152, 2014.
DOI : 10.1016/j.jhazmat.2014.01.037

M. M. Huber, S. Canonica, G. Y. Park, and U. Von-gunten, Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes, Environmental Science & Technology, vol.37, issue.5, pp.1016-1024, 2003.
DOI : 10.1021/es025896h

G. Boczkaj and A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review, Chemical Engineering Journal, vol.320, pp.608-633, 2017.
DOI : 10.1016/j.cej.2017.03.084

P. A. Reddy, P. V. Reddy, E. Kwon, K. H. Kim, T. Akter et al., Recent advances in photocatalytic treatment of pollutants in aqueous media, Environment International, vol.91, pp.91-94, 2016.
DOI : 10.1016/j.envint.2016.02.012

J. Zhao, C. Chen, and W. Ma, Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation, Topics in Catalysis, vol.14, issue.3-4, pp.269-278, 2005.
DOI : 10.1007/s11244-005-3834-0

U. I. Gaya and A. H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.9, issue.1
DOI : 10.1016/j.jphotochemrev.2007.12.003

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Research, vol.88, pp.88-428, 2016.
DOI : 10.1016/j.watres.2015.09.045

B. F. Agbaba and . Abramovic, Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: Influencing factors, intermediates, and products, Chem. Eng. J, vol.307, pp.1105-1115, 2017.

F. Fresno, R. Portela, S. Suarez, and J. M. Coronado, Photocatalytic materials: recent achievements and near future trends, J. Mater. Chem. A, vol.13, issue.6, pp.2863-2884, 2014.
DOI : 10.1021/nl401615t

V. Eskizeybek, F. Sari, H. Gülce, and A. Avci, Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations, Applied Catalysis B: Environmental, vol.119, issue.120, pp.197-206, 2012.
DOI : 10.1016/j.apcatb.2012.02.034

A. Rajeswari, S. Vismaiya, and A. Pius, Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water, Chemical Engineering Journal, vol.313, pp.313-928, 2017.
DOI : 10.1016/j.cej.2016.10.124

T. S. Anirudhan and J. R. Deepa, Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photocatalytic degradation of ciprofloxacin hydrochloride from aqueous solutions, J. Colloid Interface Sci, pp.490-343, 2017.

K. S. Ranjith, P. Manivel, R. T. Rajendrakumar, and T. Uyar, Multifunctional ZnO nanorodreduced graphene oxide hybrids nanocomposites for effective water remediation: Effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption, Chem. Eng. J, pp.325-588, 2017.

A. Nzihou and P. Sharrock, Role of Phosphate in the Remediation and Reuse of Heavy Metal Polluted Wastes and Sites, Waste and Biomass Valorization, vol.139, issue.3, pp.163-174, 2010.
DOI : 10.1111/j.1745-6584.1994.tb00664.x

URL : https://hal.archives-ouvertes.fr/hal-01634023

X. Cao, L. Q. Ma, D. R. Rhue, and C. S. Appel, Mechanisms of lead, copper, and zinc retention by phosphate rock, Environ. Pollut, pp.131-435, 2004.

A. Dybowska, D. A. Manning, M. J. Collins, T. Wess, S. Woodgate et al., An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals, Science of The Total Environment, vol.407, issue.8
DOI : 10.1016/j.scitotenv.2008.12.053

. Laghzizil, Pyridine and phenol removal using natural and synthetic apatites as low-cost sorbents: influence of porosity and surface interactions, J. Hazard. Mater, vol.181, pp.736-741, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00504830

K. Lin, Y. Pan, R. Chen, X. Cheng, and X. Xu, Study of the adsorption of phenol from aqueous solution onto apatite nanopowders, J. Hazard. Mater, pp.161231-240, 2009.

A. Coradin, Parameters influencing ciprofloxacin, ofloxacin, amoxicillin and sulfamethoxazole retention by natural and converted calcium phosphates, J. Hazard. Mater, vol.291, pp.38-44, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01120277

K. Achelhi, S. Masse, G. Laurent, C. Roux, A. Laghzizil et al., Ions, Langmuir, vol.27, issue.24, pp.15176-15184, 2011.
DOI : 10.1021/la2029643

H. Yang, S. Masse, M. Rouelle, E. Aubry, Y. Li et al., Magnetically recoverable iron oxide???hydroxyapatite nanocomposites for lead removal, International Journal of Environmental Science and Technology, vol.59, issue.5
DOI : 10.3938/jkps.59.3069

URL : https://hal.archives-ouvertes.fr/hal-01132849

H. Bouyarmane, S. Saoiabi, I. Hanbali, M. Karbane, A. Rami et al., Porous hydroxyapatite-TiO 2 nanocomposites from natural phosphates and their decolorization properties, Eur. Phys. J. Special Topics, vol.224, pp.1863-1871, 2015.
DOI : 10.1140/epjst/e2015-02505-9

URL : https://hal.archives-ouvertes.fr/hal-01274331

T. Yoshida, K. Watanabe, and . Okada, Preparation and properties of titania-apatite hybrid films, J

G. Sheng, L. Qiao, and Y. Mou, Preparation of TiO2/Hydroxyapatite Composite and Its Photocatalytic Degradation of Methyl Orange, Journal of Environmental Engineering, vol.137, issue.7, pp.611-616, 2011.
DOI : 10.1061/(ASCE)EE.1943-7870.0000357

K. Kandori, Y. Yamaguchi, and M. Wakamura, Photodecomposition of surfactants using Ti(IV)-doped calcium hydroxyapatite particles, Colloid and Polymer Science, vol.123, issue.6, pp.1079-1087, 2017.
DOI : 10.2109/jcersj2.123.601

C. Piccirillo and P. M. Castro, Calcium hydroxyapatite-based photocatalysts for environment remediation: Characteristics, performances and future perspectives, Journal of Environmental Management, vol.193, pp.79-91, 2017.
DOI : 10.1016/j.jenvman.2017.01.071

A. Hassani, A. Khataee, and S. Karaca, Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling, Journal of Molecular Catalysis A: Chemical, vol.409, pp.149-161, 2015.
DOI : 10.1016/j.molcata.2015.08.020

M. Bobu, A. Yediler, I. Siminiceanu, and S. , Degradation studies of ciprofloxacin on a pillared iron catalyst, Applied Catalysis B: Environmental, vol.83, issue.1-2, pp.15-23, 2008.
DOI : 10.1016/j.apcatb.2008.01.029

P. Huo, Y. Tang, M. Zhou, J. Li, Z. Ye et al., Fabrication of ZnWO 4 -CdS heterostructure photocatalysts for visible light induced degradation of ciprofloxacin antibiotics, J

S. Sood, S. K. Mehta, A. S. Sinha, and S. K. , Bi 2 O 3 /TiO 2 heterostructures: Synthesis, characterization and their application in solar light mediated photocatalyzed degradation of an antibiotic, ofloxacin, Chemical Engineering Journal, vol.290, pp.290-335, 2016.
DOI : 10.1016/j.cej.2016.01.017

S. Asri, A. Laghzizil, A. Saoiabi, A. Alaoui, K. Abassi et al., A novel process for the fabrication of nanoporous apatites from Moroccan phosphate rock, Colloid Surf, pp.350-73, 2009.

A. Kolodziejczak-radzimska and T. Jesionowski, Zinc Oxide???From Synthesis to Application: A Review, Materials, vol.95, issue.186, pp.2833-2881, 2014.
DOI : 10.1088/1468-6996/9/3/035004

Y. S. Ho, Review of second-order models for adsorption systems, Journal of Hazardous Materials, vol.136, issue.3, pp.681-689, 2006.
DOI : 10.1016/j.jhazmat.2005.12.043

U. Hubicka, P. Zmudzki, P. Talik, B. Zuromska-witek, and J. Krzek, Photodegradation assessment of ciprofloxacin, moxifloxacin, norfloxacin and ofloxacin in the presence of excipients from tablets by UPLC-MS/MS and DSC, Chemistry Central Journal, vol.7, issue.1, p.133, 2013.
DOI : 10.1016/j.saa.2011.09.010

N. Li, J. Zhang, Y. Tian, J. Zhao, J. Zhang et al., Precisely controlled fabrication of magnetic 3D ??-Fe 2 O 3 @ZnO core-shell photocatalyst with enhanced activity: Ciprofloxacin degradation and mechanism insight, Chemical Engineering Journal, vol.308, pp.377-385, 2017.
DOI : 10.1016/j.cej.2016.09.093