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A B S T R A C T

Light absorption of the colored fraction of dissolved organic matter (CDOM) is a dominant optical component of
the Arctic Ocean (AO). Here we show Pan-Arctic characteristics of CDOM light absorption for various Arctic
regions covering both coastal and oceanic waters during the Tara Oceans Polar Circle expedition. The Siberian
(or eastern) side of the AO is characterized by higher CDOM absorption values compared to the North American
(or western) side. This is due to the difference in watersheds between the eastern and western sides of the AO
and is consistent with an Arctic absorption database recently built by Matsuoka et al. (2014). A direct com-
parison between in situ and satellite data demonstrates that CDOM absorption is derived Arctic-wide from sa-
tellite ocean color data with an average uncertainty of 12% (root mean square error of 0.3 m−1) using our
previously published algorithm. For river-influenced coastal waters, we found a single and highly significant
relationship between concentrations of dissolved organic carbon (DOC) and CDOM absorption (r2 > 0.94)
covering major Arctic river mouths. By applying this in situ relationship to satellite-derived CDOM absorption,
DOC concentrations in the surface waters are estimated for river-influenced coastal waters with an average
uncertainty of 28%. Implications for the monitoring of DOC concentrations in Arctic coastal waters are dis-
cussed.

1. Introduction

Colored dissolved organic matter (CDOM) refers to the fraction of
the dissolved organic matter pool that absorbs light in water, and is
quantified by its spectral absorption coefficient [m−1]. CDOM plays a
variety of roles in ocean physical and biogeochemical processes (e.g.,
Moran and Zepp, 1997; Miller et al., 2002; Matsuoka et al., 2012, 2015)
and provides the possibility to trace, using a simple optical measure-
ment, the concentration of dissolved organic carbon (DOC) in seawater,
the second largest reservoir of carbon in the ocean (Hansell, 2002).
Strong correlations between DOC concentration and CDOM absorption

have been reported for river-influenced coastal waters at all latitudes
(e.g., Massicotte et al., in press and references therein), highlighting the
potential usefulness of CDOM to study DOC distributions in these wa-
ters.

Despite the important role of CDOM in biogeochemical cycles and as
a DOC proxy, our ability to document it in situ has been restricted by sea
ice in the Arctic Ocean. Since the early 2000s, however, partly due to a
significant reduction of summer extent of the Arctic ice pack, a number
of in situ datasets have been acquired, and recently an Arctic seawater
light absorption database was built to provide a synoptic view of the
spatial and temporal variations of CDOM in the Arctic Ocean (Matsuoka
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et al., 2014). Still, a large part of the Siberian (or eastern) side of the
Arctic Ocean (EAO), where high concentrations of organic carbon are
delivered by river discharge (Raymond et al., 2007), was undersampled
in the above-mentioned study, which impeded comparing optical
properties between the EAO and the North American (or western) side
of the Arctic Ocean (WAO). This is an important gap because a very
large amount of organic carbon (400 Pg; Pg = 1015 g) is stored in the
upper three meters of the northern Siberia soils (McGuire et al., 2009)
and a significant fraction of this organic carbon may be delivered by
river discharge into the Arctic Ocean, which might alter biogeochem-
ical processes of the ocean (e.g., McGuire et al., 2009; IPCC, 2013). We
lack knowledge about how the DOC budget of the Arctic Ocean will be
modified as a consequence of ongoing global warming. Remote sensing
of CDOM provides a powerful mean for tracing DOC in the Arctic Ocean
and observing its dynamics and response to climate change from space.

The objectives of this study are therefore 1) to examine optical
characteristics of CDOM in the different Arctic seas, 2) establish a re-
lationship between DOC concentration and CDOM absorption coeffi-
cient that can be applied to wide range of river-influenced coastal
waters, and 3) apply this relationship to satellite-derived CDOM ab-
sorption for estimating DOC concentrations from space. With known
uncertainties, examples of monitoring of spatial-temporal variability in
DOC concentrations for Arctic river-influenced coastal waters are
shown at the end of the present study.

2. Materials and methods

The Tara Oceans Polar Circle expedition was conducted from 24
May to 5 November 2013 following a long transect in the Arctic Ocean
(Fig. 1a). While the data presented in this study were mainly obtained
from the Tara expedition, an Arctic absorption database built by
Matsuoka et al. (2014) (hereafter referred to as the M2014 database), is
also used here for comparison. Briefly, the M2014 database includes
data from Western and Eastern Arctic Ocean covering Beaufort,
Chukchi, Kara, and Laptev seas from May to October (Table 1).

To establish a DOC versus aCDOM(443) relationship that is applicable
to wide range of river-influenced coastal waters of the Arctic Ocean, we
compiled and used publicly available data in addition to the Tara data
(Section 2.1.4; Table 1). This provides a confidence of the general re-
lationship in terms of statistics. Similarly, data obtained from MALINA,
ICESCAPE2010, ICESCAPE2011 cruises included in the M2014 data-
base (Matsuoka et al., 2014), in addition to Tara data, were also used to
evaluate the performance of the CDOM algorithm developed by
Matsuoka et al. (2013) (hereafter referred to as gsmA algorithm; see
Sections 2.1.5 and 2.2.1).

In the present study, we refer waters having
aCDOM(443) < 0.1 m−1 and> 0.1 m−1 as oceanic and coastal waters,
respectively. Of coastal waters, these waters are specifically referred to
as river-influenced coastal waters when the aCDOM(443) shows a sig-
nificantly high correlation with salinity or DOC.

2.1. In situ data

2.1.1. CDOM absorption
2.1.1.1. UltraPath measurements. Light absorption coefficients of
CDOM using an UltraPath (World Precision Instruments, Inc.) was
determined by following the protocols proposed by Bricaud et al.
(2010) and Matsuoka et al. (2012). To avoid repeating the protocols,
only relevant points to the present study are recalled here. A sample
was collected daily from a surface CTD/Niskin bottle or the in-line
system flow-through (when no CTD deployment took place) into glass
bottles pre-rinsed with MilliQ water. The sample bottles were covered
with aluminium foil to avoid a potential effect of light degradation on
CDOM in the water. These samples were filtered within a few hours
after the sampling using 0.2 μm GHP filters (Acrodisc Inc.) pre-rinsed
with 200 ml of Milli-Q water. Absorbance spectra of filtrates were

measured from 200 to 727 nm with 1 nm increments relative to a salt
solution that was used as a reference. The reference was prepared to
have a similar salinity as samples (± 2 salinity units) using Milli-Q
water and granular NaCl precombusted in an oven (at 450 °C for 4 h).
Abnormally high absorbance values in the near infrared spectral
domain were sometimes observed due to the presence of air bubbles
in the cell of the sample. These suspicious spectra were removed prior
to analysis. While significant effort was made to minimize the
difference in temperature and salinity between a sample and
reference water during our cruise, this was challenging especially for
areas in which waters showed a large salinity gradient with different
water temperature. The temperature difference was minimized by
placing both the reference and the filtrates at 4 °C in the dark for up
to 1 h. The salinity difference was minimized by subtracting the mean
value of ODCDOM(λ) between 683 and 687 nm (ODnull,CDOM) from the
whole spectrum following Babin et al. (2003) and CDOM absorption
coefficients (aCDOM(λ), m−1) were calculated as follows:

=
−

λ
λ

l
a ( ) 2.303

[OD ( ) OD ]
CDOM

CDOM null,CDOM
(1)

where 2.303 is a factor for converting base e to base 10 logarithms, and
l is the optical pathlength (m). A 2 m optical pathlength was used for
the measurement, except for water having high CDOM content
(> 2.0 m−1; Matsuoka, unpublished data) where 0.1 m pathlength
was used. Replicates of CDOM absorption spectra were averaged for
each measurement.

We acknowledge that scattering due to colloids might have influ-
enced absorption measurement using a long pathlength (> 0.5 m;
Floge et al., 2009), which in turn might have influenced CDOM spectra
when applying null-correction. However, for Mackenzie river mouth
where the highest particle concentrations of the Arctic Ocean are ob-
served (Holmes et al., 2002), Matsuoka et al. (2012) showed that CDOM
absorption measurements using an UltraPath with 2-m pathlength were
within the instrument resolution from those measured using a Perkin-
Elmer Lambda-19 spectrophotometer with 10-cm cell. These results
suggest that the impact of colloidal scattering on our absorption mea-
surement can be considered as negligible in the present study.

2.1.1.2. ac-s measurements. To obtain CDOM measurements between
those done with the UltraPath, we used a hyper spectral ac-s instrument
installed in an automated flow-through system (red crosses in Fig. 1a).
Hereafter CDOM absorption coefficients provided by the ac-s are noted
as aacsCDOM(λ) (in m−1).

Filtered water was pumped through the ac-s (WET Labs) for 10 min
per hour (see Boss et al., 2013 for the ac-s setup). The last minute of
every 10 min filtered cycle was median-binned and saved. No clean
water spectra for calibration were collected with the ac-s during the
expedition, and instrument was cleaned weekly. Therefore, the spectra
potentially contained errors due to instrument drift (it is acknowledged
that the ac family of instrument drifts in time as presented by
Twardowski et al., 1999; Temperature and salinity effects are insig-
nificant as we focus here only on the 400–550 nm spectral range; Pegau
et al., 1997). To solve this issue, the ac-s data were shifted spectrally to
match the corresponding UltraPath measurements in this range. The
calibration for ac-s spectra were made by computing and offset between
UltraPath and dissolved ac-s measurements done within 25 min:

= −λ λOffset a ( ) median(a ( ))CDOM
UP

CDOM
acs‐obs (2)

where aUPCDOM(λ) and aacs-obsCDOM (λ) represent CDOM absorption using Ul-
traPath (UP) and ac-s, respectively. There were 59 such matchups
within 12 h and 20 km from an UP measurement of dissolved matter,
the nearest calibration spectra (in time) was used to correct the spectra:

= +λ λa ( ) a ( ) Offset(nearest)CDOM
acs

CDOM
acs‐obs (3)

The ac-s was then interpolated with 1-nm increments.
A spectral slope (SCDOM, nm−1) was calculated by fitting an



exponential equation to the data in the spectral domain (i.e., 400–406
to 500 nm) as follows:

= ∗ − −λa ( ) a (443) e λ
CDOM CDOM

acs S ( 443)CDOM (4)

The spectral range was chosen to be as similar as possible relatively

to the one for the M2014 database (350 to 500 nm; Matsuoka et al.,
2014) while avoiding the range from 500 to 550 nm for ac-s measure-
ments where the signal was, on occasion, within the uncertainty of the
measurement (not shown). Using the MALINA data, which exhibited a
large variability in aCDOM(λ) (see Matsuoka et al., 2012 for details), it

Fig. 1. (a) A map of the Arctic Ocean showing sam-
pling stations during the Tara Oceans Polar Circle
cruise for colored dissolved organic matter (CDOM)
absorption measurement using a ac-s (red) and an
UltraPath (green), DOC concentration determination
(blue), and radiometric measurements using a C-OPS
(orange). Gray symbols show sampling stations for an
Arctic absorption database built by Matsuoka et al.
(2014) (M2014). Among the M2014, sampling stations
for MALINA (gray circle), ICESCAPE2010 (gray plus),
and ICESCAPE2011 (gray diamond) cruises are parti-
cularly indicated. GS, NS, KR, LP, SB, and BB represent
Greenland Sea, Norwegian Sea, Kara Sea, Laptev Sea,
Southern Beaufort Sea, and Baffin Bay, respectively.
Contour lines for 200-m and 2000-m are depicted as
solid and dashed black lines, respectively. (b) Fre-
quency distribution of ac-s aCDOM(443) (m−1) obtained
for the Tara (pink) and M2014 database (gray). (c)
Same as (b) but for SCDOM (nm−1). (For interpretation
of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Summary of CDOM absorption coefficients (m−1), DOC concentrations (μM), and Rrs(λ) (sr−1) data used in the present study. ID #1 is the main dataset used in the present study. ID #2 is
a large optical database established by Matsuoka et al. (2014) (M2014 database) and is used for comparison. IDs #3–7 are only used to establish a DOC versus aCDOM(443) relationship.

ID # Dataset Location Period Variable N Reference

1 Tara Pan-Arctic Ocean 2013-05-24–2013-11-05 CDOMa (DOC) Rrs(λ) 919 (20) 26 This study
2 M2014 database Beaufort, Chukchi, Kara, and Laptev Seas 2002-05-05–2011-10-13 CDOM Rrs(λ) 797 77 Matsuoka et al. (2014)
3 R2007 Southern Beaufort Sea 2002-07-22–2004-06-17 CDOM (DOC) 2 (2) Retamal et al. (2007)
4 O2009 Southern Beaufort Sea 2002-10-01–2004-08-01 CDOM (DOC) 14 (14) Osburn et al. (2009)
5 M2012 Southern Beaufort Sea 2009-07-30–2009-08-27 CDOM (DOC) 35 (35) Matsuoka et al. (2012)
6 G2015 Kara and Laptev Seas 2013-09-01–2013-09-06 CDOM (DOC) 35 (35) Gonçalves-Araujo et al. (2015)
7 O2016 Southern Beaufort Sea 2003-06-01–2011-06-01 CDOM (DOC) 9 (9) Osburn et al. (2016)

a 919 of data were obtained from ac-s measurements that were calibrated against UltraPath ones as described in Section 2.1.1.



was demonstrated that the difference in the two spectral slopes using
the two different spectral ranges was low (root mean square error,
RMSE = 0.0012 nm−1, N= 381). To confirm that the RMSE does not
influence our results, we used a bootstrap method which randomly adds
uncertainties (both positive and negative of variable magnitude in-
dependent at each wavelength) based on the RMSE (i.e., 0.0012 nm−1)
as follows. For each aCDOM(λ) spectrum, a maximum error (εmax) was
calculated using aCDOM(443) and SCDOM ± 0.0012 at 400 nm. The
positive and negative εmax was then randomly added to aCDOM(λ) from
400 to 500 nm. A SCDOM was calculated to the εmax-included data as
described above. This analysis was repeated a thousand times. The
statistics associated with the new SCDOM were obtained and compared
to those in the Table 2. Results were not significantly different from the
values presented in the Table 2 (p = 0.10, t-test).

Prior to the analysis, we removed all the spectra not within a 1 day
temporal window around an UltraPath measured spectra (in total,
919 ac-s spectra were retained).

2.1.2. CDOM fluorescence
An Aquatic Laser Fluorescence Analyzer (ALFA, WETLabs;

Chekalyuk et al., 2014; Chekalyuk and Hafez, 2013; Chekalyuk et al.,
2016) was installed as part of the Tara flow-through system. The ALFA
instrument provides dual-wavelength excitation (405 and 514 nm) of
laser-stimulated emission (LSE) for spectral and temporal fluorescence
analysis. Spectral deconvolution (SDC) was used to examine fluores-
cence associated with a specific constituent and Raman scattering in
water (R). The Raman scattering intensity was used for fluorescence
normalization to provide adjustment for potential variability of the
excitation source intensity and water optical properties (Chekalyuk and
Hafez, 2008). We analyzed the ALFA SDC assessment of the CDOM
fluorescence/Raman ratios measured using laser excitation at 405 nm
and 514 nm. The ALFA sensor was cleaned weekly following the
manufacturer recommended protocol.

2.1.3. DOC concentration
Surface water samples were collected directly from either the

Rosette Niskin bottle or from the flow-through system (at the same time
as the UP measurements; see Fig. 1a) into acid-clean 60 ml HDPE
Nalgene bottles through pre-combusted GF/F filters (450 °C for 4 h;
e.g., Carlson et al., 2010; Shen et al., 2012). Samples were then im-
mediately stored at −20 °C. At the end of the cruise the samples were
shipped to the University of South Carolina for analysis. Concentrations
of dissolved organic carbon (DOC) were determined using the high-
temperature combustion method and a Shimazu total organic carbon
(TOC-VCSN) analyzer (Shen et al., 2016). In total, 20 samples were
collected for DOC analyses.

2.1.4. Additional CDOM absorption and DOC concentrations data
While the dataset obtained from the Tara cruise provide a large

number of CDOM absorption spectra, the number of the corresponding
DOC concentrations data is limited (i.e., N= 20). To augment our
dataset for our analysis, we added publicly available datasets for both
CDOM absorption and DOC concentrations data from Retamal et al.
(2007), Osburn et al. (2009), Matsuoka et al. (2012), Goncalves-Araujo
et al. (2015), and Osburn et al. (2016) (hereafter referred to as R2007,
O2009, M2012, G2015, and O2016, respectively; see Table 1). These

data cover major Arctic river mouths including both Siberian and North
American sides.

CDOM absorption was determined using a traditional spectro-
photometer with a 5 or 10 cm quartz cell, except for M12 where an
UltraPath was used as described above (section UltraPath measurements
in Section 2.1.1). DOC concentrations were determined based on high
temperature oxidation using a TOC analyzer for the mentioned data.

2.1.5. Remote sensing reflectance
We followed the NASA Ocean Optics Protocols (Mueller and Austin,

1995) and Hooker et al., 2013 to measure in-water upwelled radiance
(Lu, μW cm−2 nm−1 sr−1) and downward irradiance (Ed, μW
cm−2 nm−1). These data were obtained at 19 wavelengths ranging
from 320 to 780 nm (10 nm full-width at half-maximum, FWHM). A
compact-optical profiling system (C-OPS, Biospherical Instruments Inc.)
(Morrow et al., 2010) was deployed at 29, 36, and 19 stations for Tara
Arctic, MALINA, and ICESCAPE2010 cruises, respectively. For the
ICESCAPE2011 cruise, a profiling reflectance radiometer series 800
(PRR-800, Biospherical Instruments Inc.; 10 nm FWHM) was deployed
at 24 stations. The above-water downward irradiance, so-called the
global solar irradiance (Es: sum of direct and diffuse components) were
used to correct Ed and Lu data for change in the incident light field
during water column profiling. The effect of ship shadow was mini-
mized by deploying the in-water spectroradiometer away from the main
ship body. Only data having tilt angles< 5° were used for analysis in
the present study, as recommended by Hooker et al. (2013). Subsurface
Lu values at null depth (i.e., Lu(0−, λ)) were calculated using the slope
and intercept by fitting the least-squares linear equation to the log-
transformed upwelled radiance versus z for MALINA, ICESCAPE2010,
and ICESCAPE2011 data. The depth interval was chosen following the
method described by Antoine et al. (2013). Briefly, a centered depth z0
and +/− Δz was first set within homogeneous surface layer. The Δz
was then increased to have the best statistical fit but was chosen to be as
minimal as possible within the homogeneous surface layer. Data within
this depth interval were used to extrapolate Lu(z, λ) to Lu(0−, λ). For
Tara data, loess extrapolation was performed. The remote sensing re-
flectance, Rrs(λ) is defined to be equal to 0.54 Lu (0−, λ)/Es (λ), where
λ indicates wavelength. In the present study, Rrs(λ) at six wavelengths
(i.e, 412, 443, 490, 532, 555, and 670 nm corresponding approximately
to the ocean color bands of the Moderate-Resolution Imaging Spectro-
radiometer (MODIS) onboard the Aqua satellite, Aqua/MODIS) were
used to derive aCDOM(λ) at 443 nm using gsmA algorithm. Prior to
analysis, we removed the water Raman contribution to Rrs(λ) using the
method of Lee et al. (2013). The impact of Raman scattering on Rrs(λ)
data is examined in Appendix A.1.

2.2. Satellite ocean color data

2.2.1. Match-up analysis
Aqua/MODIS Rrs(λ) data (λ = 412, 443, 488, 531, 555, and

667 nm; 15 nm and 10 nm FWHM for 412–443 and 488–667 nm, re-
spectively) were obtained from the NASA Ocean Biology Processing
Group (OBPG) satellite to in situ validation system (Bailey and Werdell,
2006; http://seabass.gsfc.nasa.gov/search). In this study, data from two
different reprocessing versions (R2013.1 and R2014.0, respectively)
were used to evaluate aCDOM(443) retrievals using gsmA algorithm.

Table 2
Statistics of absorption coefficients of CDOM at 443 nm [aCDOM(443), m−1] and its spectral slope [SCDOM, nm−1]. Values from an Arctic absorption database (M2014) are also shown for
comparison.

Parameters aCDOM(443) (m−1) SCDOM (nm−1)

Statistics Median 5% percentile 95% percentile Median 5% percentile 95% percentile
Tara Oceans Polar Circle (the present study) 0.037 0.015 0.241 0.0187 0.0151 0.0233
M2014 database (Matsuoka et al., 2014) 0.058 0.021 0.249 0.0183 0.0133 0.0240

http://seabass.gsfc.nasa.gov/search


Knowing that Aqua/MODIS has issues with radiometric degradation
since 2011 [https://oceancolor.gsfc.nasa.gov/reprocessing/r2014/
aqua/], we chose to include two Aqua/MODIS reprocessing data sets
so as to examine how this degradation – and any residual calibration
errors and differences that might persist between and within the two
processings - might influence our results. No such a radiometric issue
has been currently widely revealed for NPP/VIIRS, so the latest data
were used in the present study.

aCDOM(443) was retrieved by optimizing the difference between
measured Rrs(λ) and Rrs(λ) calculated using absorption (including un-
known aCDOM(443)) and backscattering coefficients, and coefficients
associated with geometry of the sun. The Aqua/MODIS-derived
aCDOM(443) estimates were then directly compared to in situ ac-s

aCDOM(443) measurements and the performance of the algorithm was
evaluated individually for each processing version. We used data within
+/− 3 h from satellite overpass within solar and sensor zenith angles
of 74 and 56°, respectively for this match-up analysis (Bailey and
Werdell, 2006; IOCCG, 2015). To be consistent with in situ C-OPS data,
the water Raman contribution to satellite-derived Rrs(λ) was removed
prior to the analysis using the method presented by Lee et al. (2013).

2.2.2. Estimating DOC concentration from space
To illustrate spatio-temporal variability in satellite-derived DOC

concentrations in Arctic river mouths, Aqua/MODIS Level 2 (L2) Rrs(λ)
swath images at 1-km nadir spatial resolution were obtained from the
NASA ocean color website (http://oceandata.sci.gsfc.nasa.gov/MODIS-
Aqua/L2). Cloud-free swath images were selected and were used to
retrieve aCDOM(443) using gsmA algorithm. Because of the polar orbit of
earth observing satellites, several swath images are available per day at
polar regions. Swath images within 2 h around solar noon were used to
make a daily composite aCDOM(443) image at 1 km spatial resolution.
By applying an empirical relationship between DOC concentrations and
aCDOM(443) to satellite-derived CDOM absorption (described in Section
3.2), we estimated DOC concentrations for river-influenced coastal
waters. The uncertainty in our estimates of DOC concentrations was
determined according to sensitivity analysis as described in Appendix
A.2.

2.3. Evaluation functions

We used evaluation functions proposed by Bailey and Werdell
(2006) to evaluate the performance of the retrievals of aCDOM(443)
using gsmA algorithm applied to in situ or satellite Rrs(λ) data. They
include median of satellite to in situ ratio (Rt), the semi-interquantile
range (SIQR), the median absolute percent error (MPE), and root mean
square error (RMSE) defined as follows:

⎜ ⎟= ⎛
⎝

⎞
⎠

Rt median X
X

mod

obs (5)

= −SIQR Q Q
2

3 1
(6)

⎜ ⎟= ⎛
⎝

∗ − ⎞
⎠

MPE median 100 X X
X

mod obs

obs (7)

=
∑ −
=

N
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[X X ]
n

N

1

mod obs 2

(8)

where Xmod and Xobs represent vectors of estimated and measured
aCDOM(443), respectively. Q1 and Q3 represent the 25th and 75th per-
centile, respectively. In addition, model II linear regression based on
ranged major axis (RMA) method was performed following Legendre
and Legendre (1998). In this study, log-transformed data were used for
these evaluations except for Rrs(λ) data (see Appendix A.1).

3. Results and discussion

3.1. CDOM absorption characteristics at the Pan-Arctic Ocean

CDOM absorption values fall in the range of the M2014 database
(Fig. 1b). The frequency of high aCDOM(443) values (> 1.0 m−1) was
somewhat higher compared to M2014, due mainly to higher CDOM
contents observed in the Yenisei and Ob River mouths (Aas et al., 2002;
Hessen et al., 2010; Heim et al., 2014; Matsuoka et al., 2014). Overall,
lower median aCDOM(443) values were observed in the present study
compared to the M2014 (0.037 and 0.058 m−1 for the Tara and the
M2014, respectively; Table 2). SCDOM values in this study were similarly
distributed to those in the M2014 database (Fig. 1c; medians of SCDOM

Fig. 2. Spatial distribution map of (a) aCDOM(443) (m−1), (b) SCDOM (nm−1), and (c)
salinity.

https://oceancolor.gsfc.nasa.gov/reprocessing/r2014/aqua
https://oceancolor.gsfc.nasa.gov/reprocessing/r2014/aqua
http://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/L2
http://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/L2


values for this study and the M2014 database were 0.0187 and
0.0183 nm−1, respectively; Table 2). These results confirm that CDOM
measurements obtained during the Tara Arctic expedition are re-
presentative of the range observed in the Arctic Ocean.

Spatial distribution patterns of CDOM absorption properties were
examined in a wide spatial coverage including both oceanic and coastal
waters (Fig. 2). In the Norwegian and Greenland Seas, and west coast of
Greenland, aCDOM(443) values were remarkably low (< 0.1 m−1). This
result is consistent with that reported by Kirk (1994). In contrast, high
aCDOM(443) values were observed in river-influenced coastal areas of
the Siberian side (up to 2.1 m−1) and on the Canadian side (up to
0.6 m−1). The high aCDOM(443) values corresponded with low salinity
in these waters (Fig. 2c). Indeed, aCDOM(443) values were tightly cor-
related with salinity for all river mouths (Fig. 3a), indicating that high
CDOM contents were delivered by rivers. This type of conservative
behavior of the aCDOM(443) versus salinity relationship in river-influ-
enced coastal waters has been reported elsewhere (e.g., Jerlov, 1976;
Monahan and Pybus, 1978; Nieke et al., 1997; Bélanger et al., 2006;
Retamal et al., 2007; Mannino et al., 2008; Matsuoka et al., 2012). For
WAO, the aCDOM(443) versus salinity relationship established in Sep-
tember in the present study was similar to the one obtained in the
southern Beaufort Sea in August reported by Matsuoka et al. (2012)
(blue dashed line in Fig. 3a; p > 0.5). Our aCDOM(443)-salinity re-
lationship for the Laptev Sea obtained in August was also similar to that
obtained from August to September and reported by Heim et al. (2014).
Our aCDOM(443) versus salinity relationship obtained in July for the
Kara Sea was close to the relationship observed in September by Aas
et al. (2002), although the slope was lower in the present study. These
results confirm previous studies; while the conservative physical mixing
plays a major role in the behavior of aCDOM(443)-salinity relationship at
low salinity (< 25), this relationship can vary seasonally and inter-
annually (particularly for the case of Kara Sea). Data points that de-
viated from the mixing line likely come from waters experiencing de-
gradation of organic matter due to either physical (Alling et al., 2010)
and/or biogeochemical processes (Ortega-Retuerta et al., 2012; Asmala
et al., 2014; Matsuoka et al., 2015).

The spatial distribution pattern of SCDOM was more variable than
aCDOM(443) (Fig. 3b). Given that SCDOM is influenced by complex phy-
sico-biogeochemical effects (i.e., mixing, photo-bleaching, microbial
activity; Nelson and Siegel, 2002), it is difficult to explain the spatial
variability using SCDOM and salinity alone. Instead, SCDOM versus
aCDOM(443) relationship could provide a rough idea of characteristics of
dissolved organic matter (Stedmon et al., 2011) when compared to that
in the literature. For example, Matsuoka et al. (2011) (M11) using data
obtained from oceanic waters suggested photo-bleaching is a major
effect controlling SCDOM versus aCDOM(443) relationship. Our data
points showing aCDOM(443) lower than 0.1 m−1 are generally dis-
tributed within the 95% confidence interval (gray lines in Fig. 3b). At
aCDOM(443) > 0.1 m−1 (obtained from coastal environments), most of
our data fall within the range obtained in coastal waters by Matsuoka

et al. (2012) (M12: black dashed line in Fig. 3b). These results suggest
that a majority of our data can be explained by river-influence and/or
photo-bleaching. Data points outside M11 and M12 might be attributed
to either sea ice melt (Amon, 2004; Matsuoka et al., 2012), microbial
effect (Matsuoka et al., 2015), physical mixing (Retamal et al., 2008),
or their combined effect. Further work using chemical identification
technique is required to ascertain these effects.

The Raman-corrected CDOM fluorescence at 405 nm of the ALFA
was highly correlated with the CDOM absorption measurement at
405 nm (r2 = 0.99; Fig. 4). This result highlights the informative po-
tential of CDOM fluorescence, the technology of choice on autonomous
platforms. Note that the relationship between CDOM absorption at
514 nm and the Raman-corrected CDOM fluorescence stimulated at
514 nm were less robust (r2 = 0.88; plot not shown), possibly affected
by the spectral overlap between CDOM and phycobiliprotein (PBP)
pigment fluorescence bands (Chekalyuk and Hafez, 2008). The ratios of
aCDOM(λ1) to FCDOM(λ2) (λ1 or λ2 represents either 405 nm or 514 nm)
versus SCDOM did not show clear pattern in this study (not shown).
While corresponding absorption and fluorescence data were obtained
only at two wavelengths in this study, hyper-spectral fluorescence
measurements combined with coincident absorption measurements
may provide potential for characterizing both sources and compositions
of CDOM (e.g., Stedmon and Markager, 2005; Guéguen et al., 2012;
Para et al., 2012; Goncalves-Araujo et al., 2015).

3.2. Monitoring DOC concentrations from satellite remote sensing

There is growing concern regarding the modifications in DOC fluxes

Fig. 3. (a) aCDOM(443) versus salinity re-
lationship with colors varying according to
longitude.
Regressions by Aas et al. (2002) for Kara Sea
(A02), Heim et al. (2014) for Laptev Sea
(H14), and Matsuoka et al. (2012) for
Southern Beaufort Sea (M12) are also shown
for comparison. (b) SCDOM (nm−1) versus
aCDOM(443) relationship. 95% confidence in-
tervals of regressions reported by Matsuoka
et al. (2011) for oceanic waters (gray lines)
and Matsuoka et al. (2012) for coastal waters
(black dashed lines) of the western Arctic
Ocean are also shown for comparison.

Fig. 4. Relationship between aCDOM(405) (measured using an UltraPath) and Raman-
corrected CDOM fluorescence (FCDOM(λ)) stimulated at 405 nm (ALFA measurements).



originating from permafrost thaw and the consequences in biogeo-
chemical processes in Arctic coastal waters, particularly its microbial
consumption and the potential release of carbon dioxide (CO2) into the
atmosphere (IPCC, 2007, 2013; McGuire et al., 2009). DOC con-
centrations are highly correlated with CDOM absorption for river-in-
fluenced coastal waters (e.g., Matsuoka et al., 2012, 2014; Heim et al.,
2014). In addition to mechanisms controlling CDOM absorption prop-
erties (see Section 3.1), tracing these variations temporally and geo-
graphically is important to better understand the carbon cycle.

To trace DOC dynamics, we recently developed a semi-analytical
algorithm for Arctic waters (i.e., gsmA algorithm) that can be applied to
satellite ocean color Rrs(λ) data such as those provided by Aqua/MODIS
and the Suomi National Polar-orbiting Partnership (NPP) Visible
Infrared Radiometer Suite (VIIRS) (Matsuoka et al., 2013, 2014). This
algorithm includes two steps: 1) first retrieving aCDOM(443) value and
then 2) estimating DOC concentrations. The present re-evaluation of
this algorithm using in situ Rrs(λ) (i.e., C-OPS) data obtained from both
EAO and WAO shows that aCDOM(443) value can be derived with 7.1,
0.176, and 0.060 for MPE, RMSE, and SIQR, respectively (Fig. 5;
Table 3). Rt and slope were close to 1 and coefficient of determination
was high (r2 = 0.86). In addition, a direct comparison of in situ mea-
surements with satellite-derived aCDOM(443) (i.e., match-up analysis)
demonstrates that the MPEs of aCDOM(443) estimate for the two Aqua/
MODIS processing versions (R2013.1 and R2014.0) are 9.0 and 11.6%,
respectively (Fig. 6, Table 3). Other statistical measures also show the
reasonable aCDOM(443) estimate (Rt close to 1, reasonable SIQR and
RMSE). It is interesting to note that slope for R2014.0 reduced and was
closer to 1, while MPE and RMSE somewhat increased. In either case,
given that different on-orbit temporal calibration were applied within
the two different reprocessing versions, the 3% differences in the
aCDOM(443) retrieval are small, indicating that residual errors in sa-
tellite instrument calibrations do not strongly influence our results. A
MPE of 8.5% was obtained for NPP/VIIRS. All these results confirm the
reasonable performance of gsmA algorithm for Arctic waters. Note that

coefficients of determination for all satellite sensors are relatively low
and the slope for R2013.1 is higher than 1, due mainly to the small
dynamic range of aCDOM(443) used for the analysis (Table 3).

To estimate concentrations of DOC using satellite ocean color data,
a robust DOC versus aCDOM(443) relationship must be established. It is
not clear if a DOC versus aCDOM(443) relationship would differ between
EAO and WAO. Matsuoka et al. (2014), using a limited number of data,
suggested that the difference in the relationship might be attributed to
the difference in the watershed.

To answer this question, we used publicly available DOC and
aCDOM(443) data, recently compiled by Massicotte et al. (in press), in
addition to our data obtained from the TARA cruise. This represents the
maximal number of the data currently available for the Arctic Ocean.
Analysis of covariance (ANCOVA) indeed showed that there is no sig-
nificant difference in the DOC versus aCDOM(443) relationship between
EAO and WAO (p = 0.41). Instead, a single and highly significant
correlation was found (r2 = 0.94, N= 115). Given the fact that wa-
tershed is diverse in both North American and Siberian sides of the
Arctic Ocean, it suggests that this relationship is likely insensitive to
detecting changes in quality of organic matter.

Matsuoka et al. (2014) used a regression published by Walker et al.
(2013) (hereafter referred to as W13) to estimate DOC concentrations in
EAO. The valid ranges of aCDOM(443) and DOC for their measurements
(i.e., 0.39 m−1 < aCDOM(443) < 8.4 m−1 and 166 μM < DOC
1660 μM, respectively) are restricted to high values compared to those
in the present study (dashed curve in Fig. 7). The main reason is that the
authors obtained their regression using data in river pilot stations
which were located a few hundred to> 600 km upstream from the
river mouths (Amon et al., 2012; Walker et al., 2013), restricting the
applicability of the relationship to river waters. This regression is re-
placed here by that from the present study.

To evaluate the confidence in satellite-derived DOC concentrations,
the uncertainty in our estimates of DOC concentrations was determined
by performing a sensitivity analysis as described in Appendix A.2. This
analysis suggested that DOC concentrations can be estimated with an
average uncertainty of 28%. This uncertainty is reasonable given the
large dynamic range of DOC in the coastal Arctic waters (39–732 μM in
the present study).

Ocean color data for Polar Regions inevitably suffer from frequent
cloud cover. However, because of the polar orbit of the earth-observing
satellites, several satellite images are available per day for Polar
Regions (i.e., this results in a higher density of polar data compared to
lower latitudes). This fact compensates somewhat the issue of cloud
cover (IOCCG, 2015; Doxaran et al., 2015; Matsuoka et al., 2016). This
is illustrated in daily DOC concentration images shown in Fig. 8 and 9
using the DOC versus aCDOM(443) relationship established here within
the valid ranges of the two variables used in the regression. A spatio-
temporal variability in DOC concentrations is clearly observed. Ranges
of the DOC estimates (5 and 95% percentiles) suggested that both the
low and high ends of DOC concentrations vary from time to time
(Table 4). For example, 116 μM and 289 μM (low and high ends of DOC
estimates, respectively) were observed in the Laptev (LP) sea on 19 July
2011, and these values increased significantly (150 and 341 μM for low
and high -end of DOC estimates, respectively) on 10 August 2011. On
20 September 2011, the low- and high-end values decreased (114 and

Fig. 5. Evaluation of aCDOM(443) estimated using in situ Rrs(λ) data obtained from a C-
OPS (amod

CDOM(443), m−1) against in situ measurements (aobsCDOM(443), m−1).

Table 3
Statistics of aCDOM(443) estimated using in situ Rrs(λ) (C-OPS) and satellite (Aqua/MODIS and NPP VIIRS) data using the gsmA algorithm (Matsuoka et al., 2013).

Retrievals Rt SIQR %MPE RMSE Slope Intercept r2 Range of in situ aCDOM(443) N

aCDOM(443)_C-OPS 1.030 0.060 7.1 0.176 1.01 −0.01 0.86⁎⁎⁎ 0.012–1.082 103
aCDOM(443)_MODIS (R2013.1) 1.038 0.114 9.0 0.275 1.26 0.36 0.53⁎⁎⁎ 0.013–0.100 32
aCDOM(443)_MODIS (R2014.0) 1.039 0.090 11.6 0.292 1.13 0.14 0.51⁎⁎⁎ 0.013–0.475 31
aCDOM(443)_VIIRS 0.997 0.063 8.5 0.303 0.17 −1.36 0.01 0.013–0.101 12

⁎⁎⁎ p < 0.0001.



274 μM) and were back to similar values as observed on 19 July 2011.
In terms of absolute DOC concentrations estimated using satellite ocean
color data, our estimates fall within the ones reported in the literature
for four and major Arctic river mouths (i.e., Ob', Yenisey, Lena, and
Mackenzie river mouths; Amon, 2004; Hessen et al., 2010; Matsuoka
et al., 2012; Orek et al., 2013). These results suggest that our approach
to obtain DOC concentrations from ocean color data is reasonable,

highlighting that the continuous monitoring of DOC concentrations is
now possible with a known uncertainty.

Note that for some images, pixels near river mouths are masked out
(for example 10 August 2011 for Lena river mouth on Fig. 8), which
points out atmospheric correction problems for river mouths. This
problem should be solved in the future using approaches such as those
applied by Doxaran et al. (2015) and Matsuoka et al. (2016).

4. Conclusions

In the present study, we show that CDOM absorption properties
vary significantly in various environments of the Pan-Arctic Ocean
using continuous sampling instruments installed in a flow-through
mode such as ac-s and ALFA. Our results suggest that establishing the
relationship between CDOM absorption and its spectral slope could be
useful for examining effects of terrestrial input, photobleaching, and
microbial activity as outlined by Stedmon et al. (2011). Combined with
spectral CDOM fluorometry, it may help to better understand varia-
bility in quality of dissolved organic matter. To facilitate discriminating
the biogeochemical effects on CDOM, the optical methods need to be
ascertained with a robust technique such as chemical identification.

Match-ups with satellite data demonstrate that CDOM absorption at
443 nm is derived using satellite ocean color data with an average
uncertainty of 12% (RMSE of 0.3 m−1), and DOC concentration is de-
rived with an average uncertainty of 28%. Long-term in situ river dis-
charge data are now publicly available thanks to several organizations
(e.g., US Geological Survey, Environment Canada) and international
projects such as the Pan-Arctic River Transport of Nutrients, Organic
matter, and Suspended sediments (PARTNERS, e.g., Holmes et al.,
2012). Satellite ocean color data have accumulated nearly 20 years.
When combining these data together, DOC fluxes for river can further
be estimated from space. This approach could be used to examine the
trend of DOC fluxes in recent decades for Arctic rivers as a consequence
of permafrost thaw and increase in river discharge (McGuire et al.,
2009; IPCC, 2013).

Satellite estimate of DOC might contribute to investigate recent

 Fig. 6. Match-up results for MODIS (a) 

reprocessing version R2013.1, (b) reprocessing version 

R2014.0, and (c) VIIRS.

Fig. 7. DOC versus aCDOM(443) relationship established using data obtained from Kara
(KR, red circles), Laptev (LP, yellow circles), and Southern Beaufort seas (SB, blue cir-
cles): DOC (μM) = 102.532*aCDOM(443)0.448 (r2 = 0.94, N= 115). Gray area represents
95% confidence intervals. Regressions by Walker et al. (2013) (W13, dashed curve) are
also shown for comparison. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)



Fig. 8. Estimates of concentrations of DOC in the surface layer for Laptev Sea using Aqua/MODIS ocean color data. Three relatively cloud-free images were selected for 2010 (left), 2011
(middle), and 2012 (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Same for Fig. 8 but for Kara Sea. Three relatively cloud-free images were selected for 2010 (left), 2011 (middle), and 2012 (right).



modifications in Arctic DOC cycling and its impact on the global CO2

flux when combined with in situ observations and a numerical model.
Regarding in situ observations, recent findings showed that old per-
mafrost-origin DOC is much more labile than what was previously
thought and thus can be rapidly utilized by heterotrophic bacteria
(Mann et al., 2015; Spencer et al., 2015). This apparently contradictory
fact is likely explained by high levels of aliphatics included in the
permafrost that is rapidly utilized by microbes (Spencer et al., 2015).
This result implies a possible increase in CO2 release to the atmosphere
by bacteria. Regarding numerical model, reasonable estimates of or-
ganic matter have been achieved in recent years (Manizza et al., 2009;
Le Fouest et al., 2013). A more accurate prediction can be achieved by
introducing satellite DOC estimates in an assimilation mode to con-
strain models. In addition, long-term in situ data (e.g., microbial and
phytoplanktonic data) have been accumulated particularly in the
Beaufort Sea to examine ecosystem changes in this region under climate
changes (e.g., Li et al., 2009; Comeau et al., 2011), which has led to
improve the performance of a numerical model that includes the mi-
crobial loop (Le Fouest et al., 2013). With the associated uncertainties,

 future modification in carbon cycle of 

the Arctic Ocean can be better assessed. This important task remains to 

be made in further studies.
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Appendix A.1. Effect of Raman scattering on Rrs(λ) data and aCDOM(443) estimate

We examined the effect of Raman scattering on Rrs(λ) data and aCDOM(443) estimate. The evaluation functions described in Section 2.3 were used
for in situ Rrs(λ) data with (corRrs(λ), sr−1) and without Raman correction (obsRrs(λ), sr−1); corRrs(λ) and obsRrs(λ) can be regarded as Xmod and Xobs,
respectively in Eq. 5–8 (but in linear scale). aCDOM(443) was further estimated using either corRrs(λ) or obsRrs(λ) independently and the difference in
the aCDOM(443) estimates was evaluated as described in Section 2.3.

Results showed that the correction removed the effect of Raman scattering on Rrs(λ) as shown in Rt and regression slopes < 1:1 line (Table A1).
The corresponding MPE of Rrs(λ) ranged from about 2% at 412 nm to about 4% at 670 nm. The SIQR varied from 0.002 sr−1 at 412 nm to 0.010 sr−1

at 670 nm. Given high quality of Rrs(λ) (the error < 5% is targeted) is required to derive meaningful geophysical values, this result suggests non-
negligible contribution of Raman scattering on Rrs(λ) data.

Independent to the above-mentioned analysis, we performed a sensitivity analysis to examine the Raman effect on Rrs(λ) using a radiative
transfer simulation (Hydrolight version 5.3, hereafter referred to as HE5.3). Simulations were done for a typical Arctic waters (chl a con-
centration = 0.1 mg m−3, 0.01 m−1 < aCDOM(443) < 0.04 m−1, and 0.1 g m−3 < suspended particle matter concentration < 1.0 g m−3)
based on Arctic optical parameters documented by Matsuoka et al. (2011, the present study), which produced HE5.3-simulated Rrs(λ) including and
without Raman effect. Result showed that Raman scattering has an impact on Rrs(λ) more than 3% particularly in the green-red spectral domain. This
result is consistent with our analysis.

Table 4
Ranges of DOC estimates (5% and 95% percentiles in μM) using Aqua/MODIS ocean color
data for Kara (KR) and Laptev (LP) seas for some selected (relatively clear-sky) images.

Ranges of DOC (in μM) 2010 2011 2012

LP Jul. 19
[55, 303]
Aug. 4
[148, 275]
Aug. 23
[80, 234]

Jul. 19
[116, 289]
Aug. 10
[150, 341]
Sep. 20
[114, 274]

Jul. 13
[90, 255]
Aug. 8
[99, 258]
Sep. 4
[137, 266]

KR Jul. 3
[73, 277]
Jul. 30
[118, 445]
Aug. 18
[143, 380]

Jun. 25
[93, 288]
Jul. 15
[107, 327]
Sep. 14
[116, 376]

Jun. 29
[107, 328]
Jul. 26
[148, 321]
Aug. 4
[94, 343]

Table A1
Summary of the Raman effect on Rrs(λ) data and aCDOM(443) estimate.

Variable Rt SIQR %MPE Slope Intercept r2 RMSE N

Rrs(412) 0.981 0.002 1.95 0.976 0.000 1.00⁎⁎⁎ 1.00E-04 103
Rrs(443) 0.978 0.002 2.20 0.976 0.000 1.00⁎⁎⁎ 1.00E-04 103
Rrs(490) 0.973 0.006 2.73 0.986 0.000 1.00⁎⁎⁎ 1.00E-04 103
Rrs(532) 0.966 0.008 3.38 0.986 0.000 1.00⁎⁎⁎ 1.00E-04 103
Rrs(555) 0.963 0.010 3.71 0.984 0.000 1.00⁎⁎⁎ 1.00E-04 103
Rrs(670) 0.962 0.010 3.85 0.981 0.000 1.00⁎⁎⁎ 1.00E-04 103
aCDOM(443) 0.999 0.013 1.32 0.987 −0.012 0.93⁎⁎⁎ 0.237 103

⁎⁎⁎ p < 0.0001.

https://doi.pangaea.de/10.1594/PANGAEA.836320
https://doi.pangaea.de/10.1594/PANGAEA.836320


The significant contribution of Raman scattering on Rrs(λ) for Arctic waters is somewhat contradictory because this effect is more pronounced in
typical Morel and Prieur (1977)'s case 1 water than in case 2 waters (Morel and Gentili, 1991, 1993; Gordon, 1999); Arctic waters are often classified
as case 2 water due to high proportion of CDOM absorption relative to scattering (Antoine et al., 2013; Matsuoka et al., 2011, 2014). However, it is
logical that upwelling radiance in the water column within the remote sensing domain (up to 37° from the sun zenith) is contributed by Raman
scattering when single scattering prevails in case 2 water (Loisel and Morel, 2001).

A question then arises if the Raman effect has an impact on aCDOM(443) estimate. By applying gsmA algorithm to either corRrs(λ) or obsRrs(λ), we
obtained MPE and SIQR values of 1.32 and 0.013, respectively for the aCDOM(443) estimates. It was shown that Rt and slope of the regression for
aCDOM(443) with corRrs(λ) versus the one with obsRrs(λ) relationship were still close to 1 and the corresponding r2 was high (r2 = 0.93, N= 103). This
result suggests the minor impact of Raman scattering on aCDOM(443) estimate when using gsmA algorithm. It should be noted however that the few
percent difference in Rrs(λ) could have a significant impact on a geophysical value when using other algorithms. This needs to be determined in the
further work.

Appendix A.2. Uncertainty analysis

The uncertainty in estimates of DOC concentrations is required to provide a sense of confidence of the estimates. A similar statistical analysis
performed by Matsuoka et al. (2016) was adopted in the present study. In essence, mean and the standard deviation of the intercept (int) and the
slope (slo) for the log-transformed DOC versus aCDOM(443) relationship established in the present study were used to generate their normality of
distribution by using 105 of iteration for each of the variables (the int or the slo each is a vector having 105 of data, hereafter referred to as int and
slo; vector in bold). The number of data (i.e., 105) was determined so as to obtain a standard error of the DOC estimate < 0.1% (in black; right axis
of Fig. A1). Similarly, normality of distribution of aCDOM(443) was also generated using the mean of the measured value (obtained from Fig. 7) and
the standard deviation was set to be 12% of the mean (the uncertainty of satellite retrievals of aCDOM(443); see Section 3.2 and Table 3; the
aCDOM(443) is also a vector having 105 of data). The int, slo, and aCDOM(443) values were then introduced into our DOC versus aCDOM(443)
relationship to estimate DOC concentrations (105 of DOC estimates). The coefficient of variation (CV) for the DOC estimates was calculated to be
28% (in red; left axis of Fig. A1) and determined as the uncertainty in the present study.

References

Aas, E., Hokedal, J., Hojerslev, N.H., Sandvik, R., Sakshaug, E., 2002. Spectral properties
and UV-attenuation in Arctic marine waters. In: Hessen, D.O. (Ed.), UV Radiation and
Arctic Ecosystems. Springer, Berlin.

Alling, V., Sanchez-Garcia, L., Porcelli, D., Pugach, S., Vonk, J.E., van Dongen, B., Morh,
C.-M., Anderson, L.G., Sokolov, A., Andersson, P., Humborg, C., Semiletov, I.,
Gustafsson, O., 2010. Nonconservative behavior of dissolved organic carbon across
the Laptev and east Siberian seas, Global Biogeochem. Cycle 24, GB4033. http://dx.
doi.org/10.1029/2010GB003834.

Amon, R., 2004. The role of dissolved organic matter for the organic carbon cycle in the
Arctic Ocean. In: Stein, R., Macdonald, R.W. (Eds.), The Organic Carbon Cycle in the
Arctic Ocean. New York, Springer.

Amon, R.M.W., Rinehart, A.J., Duan, S., Louchouarn, P., Prokushkin, A., Guggenberger,
G., Bauch, D., Stedmon, C., Raymond, P.A., Holmes, R.M., McClelland, J.W.,
Peterson, B.J., Walker, S.A., Zhulidov, A.V., 2012. Dissolved organic matter sources
in large Arctic rivers. Geochim. Cosmochim. Acta 94, 217–237.

Antoine, D., Hooker, S.B., Belanger, S., Matsuoka, A., Babin, M., 2013. Apparent optical
properties of the Canadian Beaufort Sea – part 1: observational overview and water
column relationships. Biogeosciences 10, 4493–4509. http://dx.doi.org/10.5194/bg-
10-4493-2013.

Asmala, E., Bowers, D.G., Autio, R., Kaartokallio, H., Thomas, D.N., 2014. Qualitative
changes of riverine dissolved organic matter at low salinities due to flocculation. J.
Geophys. Res. 119. http://dx.doi.org/10.1002/2014JG002722.

Babin, M., Stramski, D., Ferrari, G.M., Claustre, H., Bricaud, A., Obolensky, G., Hoepffner,
N., 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal
particles, and dissolved organic matter in coastal waters around Europe. J. Geophys.
Res. 108. http://dx.doi.org/10.1029/2001JC00082.

Bailey, S., Werdell, P.J., 2006. A multi-sensor approach for the on-orbit validation of
ocean color satellite data products. Remote Sens. Environ. 102, 12–23.

Bélanger, S., Xie, H., Krotkov, N., Larouche, P., Vincent, W.F., Babin, M., 2006.
Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters
from 1979 to 2003: interannual variability and implications of climate change. Glob.
Biogeochem. Cycles 20. http://dx.doi.org/10.1029/2006GB002708.

Boss, E., Gildor, H., Slade, W., Sokoletsky, L., Oren, A., Loftin, J., 2013. Optical properties

Fig. A1. Statistical analysis for determining uncertainty of satellite estimates of DOC concentrations. Left (red) and right (black) axis represents coefficient of variation (CV, in percent)
and standard error (SE) relative to the absolute DOC estimate (in percent) as a function of the number of data points, respectively. Red and black dashed lines represent 28% in CV and
0.1% in SE relative to DOC estimates, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0005
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0005
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0005
http://dx.doi.org/10.1029/2010GB003834
http://dx.doi.org/10.1029/2010GB003834
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0015
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0015
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0015
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0020
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0020
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0020
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0020
http://dx.doi.org/10.5194/bg-10-4493-2013
http://dx.doi.org/10.5194/bg-10-4493-2013
http://dx.doi.org/10.1002/2014JG002722
http://dx.doi.org/10.1029/2001JC00082
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0040
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0040
http://dx.doi.org/10.1029/2006GB002708


of the Dead Sea. J. Geophys. Res. 118, 1821–1829. http://dx.doi.org/10.1002/jgrc.
20109.

Bricaud, A., Babin, M., Claustre, H., Ras, J., Tièche, F., 2010. Light absorption properties
and absorption budget of Southeast Pacific waters. J. Geophys. Res. 115, C0800.
http://dx.doi.org/10.1029/2009JC005517.

Carlson, C.A., Hansell, D.A., Nelson, N.B., Siegel, D.A., Smethie, W.M., Khatiwala, S.,
Meyers, M.M., Halewood, E., 2010. Dissolved organic carbon export and subsequent
remineralization in the mesopelagic and bathypelagic realms of the North Atlantic
basin. Deep-Sea Res., Part II 57, 1433–1445.

Chekalyuk, A., Hafez, M., 2008. Advanced laser fluorometry of natural aquatic environ-
ments. Limnol. Oceanogr. Methods 6, 591–609.

Chekalyuk, A., Hafez, M., 2013. Analysis of spectral excitation for measurements of
fluorescence constituents in natural waters. Opt. Express 21 (24). http://dx.doi.org/
10.1364/OE.21.029255.

Chekalyuk, A., Barnard, A., Quigg, A., Hafez, M., Zhao, Y., 2014. Aquatic laser fluores-
cence analyzer: field evaluation in the northern Gulf of Mexico. Opt. Express 22 (18).
http://dx.doi.org/10.1364/OE.22.021641.

Chekalyuk, A., Hafez, M., Tara Oceans Consortium, Coordinators, Tara Oceans
Expedition, Participants, 2016. Properties of Seawater and Particulate Matter from a
WETLabs ALFA Hyperspectral Laser Spectrofluorometer Mounted on the Continuous
Surface Water Sampling System During the Tara Oceans Expedition 2009–2013.
http://dx.doi.org/10.1594/PANGAEA.861926.

Comeau, A.M., Li, W.K.W., Tremblay, J.-E., Carmack, E.C., Lovejoy, C., 2011. Arctic
Ocean microbial community structure before and after the 2007 record sea ice
minimum. PLoS One 6 (11), 1–12.

Doxaran, D., Devred, E., Babin, M., 2015. A 50% increase in the mass of terrestrial par-
ticles delivered by the Mackenzie River into the Beaufort Sea (Canadian Arctic
Ocean) over the last 10 years. Biogeosciences 12, 3551–3565. http://dx.doi.org/10.
5194/bg-12-3551-2015.

Floge, S.A., Hardy, K.R., Boss, E., Wells, M.L., 2009. Analytical intercomparison between
type I and type II long-pathlength liquid core waveguides for the measurement of
chromophoric dissolved organic matter. Limnol. Oceanogr. Methods 7, 260–268.

Goncalves-Araujo, R., Stedmon, C.A., Heim, B., Dubinenkov, I., Kraberg, A., Moiseev, D.,
Brancher, A., 2015. From fresh to marine waters: characterization and fate of dis-
solved organic matter in the Lena River delta region, Siberia. Front. Mar. Sci. 2.
http://dx.doi.org/10.3389/fmars.2015.00108.

Gordon, H.R., 1999. Contribution of Raman scattering to water-leaving radiance: a re-
examination. Appl. Opt. 38 (15), 3166–3174.

Guéguen, C.F., McLaughlin, A., Carmack, E.C., Itoh, M., Narita, H., Nishino, S., 2012. The
nature of colored dissolved organic matter in the southern Canada Basin and East
Siberian Sea. Deep-Sea Res. II 81–84, 102–113.

Hansell, D., 2002. DOC in the global ocean carbon cycle. In: Hansell, D.A., Craig, C.A.
(Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic press,
California.

Heim, B., Abramova, E., Doerffer, R., Günther, F., Hölemann, J., Kraberg, A., Lantuit, H.,
Loginova, A., Martynov, F., Overduin, P.P., Wegner, C., 2014. Ocean colour remote
sensing in the southern Laptev Sea: evaluation and applications. Biogeosciences 11,
4191–4210.

Hessen, D.O., Carroll, J., Kjeldstad, B., Korosov, A.A., Pettersson, L.H., Pozdnyakov, D.,
Sørensen, K., 2010. Input of organic carbon as determinant of nutrient fluxes, light
climate and productivity in the Ob and Yenisey estuaries. Estuar. Coast. Shelf Sci. 88,
53–62.

Holmes, R.M., McClelland, J.W., Peterson, B.J., Shiklomanov, I.A., Shiklomanov, A.I.,
Zhulidov, A.V., Gordeev, V.V., Bobrovitskaya, N.N., 2002. A circumpolar perspective
on fluvial sediment flux to the Arctic Ocean. Glob. Biogeochem. Cycles 16 (4). http://
dx.doi.org/10.1029/2001GB001849.

Holmes, R.M., McClelland, J.W., Peterson, B.J., Tank, S.E., Bulygina, E., Eglinton, T.I.,
Gordeev, V.V., Gurtovaya, T.Y., Raymond, P.A., Repeta, D.J., Staples, R., Striegl,
R.G., Zhulidov, A.V., Zimov, S.A., 2012. Seasonal and annual fluxes of nutrients and
organic matter from large rivers to the Arctic Ocean and surrounding Seas. Estuar.
Coasts 35, 369–382.

Hooker, S.B., Morrow, J.H., Matsuoka, A., 2013. The 1% and 1 cm perspective in vali-
dating and deriving AOP data products. Biogeosciences 10, 4511–4527. http://dx.
doi.org/10.5194/bg-10-4511-2013.

IOCCG, 2015. Ocean colour remote sensing in polar seas. In: Babin, M., Arrigo, K.R.,
Belanger, S., Forget, M.-H. (Eds.), IOCCG Report Series, No. 16. Darmouth, Canada.

IPCC, 2007. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B.,
Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: the Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA.

IPCC, 2013. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: the Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA 1535 pp. http://dx.doi.org/10.
1017/CBO9781107415324.

Jerlov, N.G., 1976. Marine Optics. Elsevier scientific publishing company, Amsterdam.
Kirk, J.T.O., 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge

Univ. Press, New York.
Le Fouest, V., Zakardjian, B., Xie, H., Raimbault, P., Joux, F., Babin, M., 2013. Modeling

plankton ecosystem functioning and nitrogen fluxes in the oligotrophic waters of the
Beaufort Sea, Arctic Ocean: a focus on light-driven processes. Biogeosciences 10,
4785–4800. http://dx.doi.org/10.5194/bg-10-4785-2013.

Lee, Z., Hu, C., Shang, S., Du, K., Lewis, M., Arnone, R., Brewin, R., 2013. Penetration of
UV-visible solar radiation in the global oceans: insights from ocean color remote

sensing. J. Geophys. Res. 118, 1–15. http://dx.doi.org/10.1002/jgrc.20308.
Legendre, P., Legendre, L., 1998. Numerical Ecology. York, New.
Li, W.K.W., MaLaughlin, F.A., Lovejoy, C., Carmack, E.C., 2009. Smallest algae thrive as

the Arctic Ocean freshens. Science 326, 539.
Loisel, H., Morel, A., 2001. Non-isotropy of the upward radiance field in typical coastal

(case 2) waters. Int. J. Remote Sens. 22 (2), 275–295.
Manizza, M., Follows, M.J., Dutkiewicz, S., McClelland, J.W., Menemenlis, D., Hill, C.N.,

Townsend-Small, A., Peterson, B.J., 2009. Modeling transport and fate of riverine
dissolved organic carbon in the Arctic Ocean. Global Biogeochem. Cyc. 23, GB4006.
http://dx.doi.org/10.1029/2008GB003396.

Mann, P.J., Eglinton, T.I., McIntyre, C.P., Zimov, N., Davydova, A., Vonk, J.E., Holmes,
R.M., Spencer, R.G.M., 2015. Utilization of ancient permafrost carbon in headwaters
of Arctic fluvial networks. Nature Comm. 6, 7856. http://dx.doi.org/10.1038/
ncomms8856.

Mannino, A., Russ, M.E., Hooker, S.B., 2008. Algorithm development and validation for
satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight. J.
Geophys. Res. 113, C07051. http://dx.doi.org/10.1029/2007JC004493.

Massicotte, P., Asmala, E., Markager, S., Stedmon, C.A., 2017. Global patterns in the
relationship of DOC and spectral CDOM absorbance: from lakes to oceans. Sci. Total
Environ (in press).

Matsuoka, A., Hill, V., Huot, Y., Bricaud, A., Babin, M., 2011. Seasonal variability in the
light absorption properties of western Arctic waters: parameterization of the in-
dividual components of absorption for ocean color applications. J. Geophys. Res. 116.
http://dx.doi.org/10.1029/2009JC005594.

Matsuoka, A., Bricaud, A., Benner, R., Para, J., Sempéré, R., Prieur, L., Bélanger, S., Babin,
M., 2012. Tracing the transport of colored dissolved organic matter in water masses
of the Southern Beaufort Sea: relationship with hydrographic characteristics.
Biogeosciences 9, 2012. http://dx.doi.org/10.5194/bg-9-925-2012.

Matsuoka, A., Hooker, S.B., Bricaud, A., Gentili, B., Babin, M., 2013. Estimating ab-
sorption coefficients of colored dissolved organic matter (CDOM) using a semi-ana-
lytical algorithm for southern Beaufort Sea waters: applications to deriving con-
centrations of dissolved organic carbon from space. Biogensci. 10. http://dx.doi.org/
10.5194/bg-10-917-2013.

Matsuoka, A., Babin, M., Doxaran, D., Hooker, S.B., Mitchell, B.G., Bélanger, S., Bricaud,
A., 2014. A synthesis of light absorption properties of the Arctic Ocean: application to
semianalytical estimates of dissolved organic carbon concentrations from space.
Biogeosciences 11, 3131–3147. http://dx.doi.org/10.5194/bg-11-3131-2014.

Matsuoka, A., Ortega-Retuerta, E., Bricaud, A., Arrigo, K.R., Babin, M., 2015.
Characteristics of colored dissolved organic matter (CDOM) in the Western Arctic
Ocean: relationships with microbial activities. Deep-Sea Res. II Top. Stud. Oceanogr.
118, 44–52.

Matsuoka, A., Babin, M., Devred, E.C., 2016. A new algorithm for discriminating water
sources from space: a case study for the southern Beaufort Sea using MODIS ocean
color and SMOS salinity data. Remote Sens. Environ. 184, 124–138.

McGuire, A.D., Anderson, L.G., Christensen, T.R., Dallimore, S., Guo, L., Hayes, D.J.,
Heimann, M., Lorenson, T.D., Macdonald, R.W., Roulet, N., 2009. Sensitivity of the
carbon cycle in the Arctic to climate change. Ecol. Monogr. 79 (4), 523–555.

Miller, W.L., Moran, M.A., Sheldon, W.M., Zepp, R.G., Opsahl, S., 2002. Determination of
apparent quantum yield spectra for the formation of biologically labile photo-
products. Limnol. Oceanogr. 47, 343–352.

Monahan, E.C., Pybus, M.J., 1978. Colour, ultraviolet absorbance and salinity of the
surface waters off the west coast of Ireland. Nature 274, 782–784.

Moran, M.A., Zepp, R.G., 1997. Role of photoreactions in the formation of biologically
labile compounds from dissolved organic matter. Limnol. Oceanogr. 42 (6),
1307–1316.

Morel, A., Gentili, B., 1991. Diffuse reflectance of oceanic waters: its dependence on Sun
angles as influenced by the molecular scattering contribution. Appl. Opt. 30 (30),
4427–4438.

Morel, A., Gentili, B., 1993. Diffuse reflectance of oceanic waters. II. Bidirectional aspects.
Appl. Opt. 32 (33), 6864–6879.

Morel, A., Prieur, L., 1977. Analysis of variations in ocean color. Limnol. Oceanogr. 22
(4), 709–722.

Morrow, J.H., Hooker, S.B., Booth, C.R., Bernhard, G., Lind, R.N., Brown, J.W., 2010.
Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex
Waters, NASA Tech. Memo., 2010-215856. NASA Goddard Space Flight Center,
Greenbelt, Maryland, pp. 42–50.

Mueller, J.L., Austin, R.W., 1995. In: Hooker, S.B., Firestone, E.R., Acker, J.G. (Eds.),
Ocean Optics Protocols for SeaWiFS Validation, Revision 1. NASA Tech. Memo.
104566. Vol. 25 NASA GSFC, Greenbelt, Maryland 67 pp.

Nelson, N.B., Siegel, D.A., 2002. Chromophoric DOM in the open ocean. In: Hansell, D.A.,
Carlson, C.A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic
press, San Diego.

Nieke, B., Reuter, R., Heuermann, R., Wang, H., Babin, M., Therriault, J.C., 1997. Light
absorption and fluorescence properties of chromophoric dissolved organic matter
(CDOM), in the St. Lawrence Estuary (case 2 waters). Cont. Shelf Res. 17, 235–252.

Orek, H., Doerffer, R., Rottgers, R., Boersma, M., Wiltshire, K.H., 2013. A bio-optical
model for remote sensing of Lena water. Biogeosci. Discuss. 10, 4888–4925.

Ortega-Retuerta, E., Jeffrey, W.H., Babin, M., Bélanger, S., Benner, R., Marie, D.,
Matsuoka, A., Raimbault, P., Joux, F., 2012. Carbon fluxes in the Canadian Arctic:
patterns and drivers of bacterial abundance, production and respiration on the
Beaufort Sea margin. Biogeosciences 9, 3679–3692.

Osburn, C.L., Retamal, L., Vincent, W.F., 2009. Photoreactivity of chromophoric dissolved
organic matter transported by the Mackenzie River to the Beaufort Sea. Mar. Chem.
115, 10–20.

Osburn, C.L., Boyd, T.J., Montgomery, M.T., Bianchi, T.S., Coffin, R.B., Paerl, H.W., 2016.
Optical proxies for terrestrial dissolved organic matter in estuaries and coastal

http://dx.doi.org/10.1002/jgrc.20109
http://dx.doi.org/10.1002/jgrc.20109
http://dx.doi.org/10.1029/2009JC005517
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0060
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0060
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0060
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0060
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0065
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0065
http://dx.doi.org/10.1364/OE.21.029255
http://dx.doi.org/10.1364/OE.21.029255
http://dx.doi.org/10.1364/OE.22.021641
http://dx.doi.org/10.1594/PANGAEA.861926
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0085
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0085
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0085
http://dx.doi.org/10.5194/bg-12-3551-2015
http://dx.doi.org/10.5194/bg-12-3551-2015
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0095
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0095
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0095
http://dx.doi.org/10.3389/fmars.2015.00108
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0105
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0105
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0110
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0110
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0110
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0115
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0115
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0115
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0120
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0120
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0120
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0120
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0125
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0125
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0125
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0125
http://dx.doi.org/10.1029/2001GB001849
http://dx.doi.org/10.1029/2001GB001849
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0135
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0135
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0135
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0135
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0135
http://dx.doi.org/10.5194/bg-10-4511-2013
http://dx.doi.org/10.5194/bg-10-4511-2013
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0145
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0145
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0150
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0150
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0150
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0150
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0150
http://dx.doi.org/10.1017/CBO9781107415324
http://dx.doi.org/10.1017/CBO9781107415324
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0160
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0165
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0165
http://dx.doi.org/10.5194/bg-10-4785-2013
http://dx.doi.org/10.1002/jgrc.20308
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0180
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0185
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0185
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0190
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0190
http://dx.doi.org/10.1029/2008GB003396
http://dx.doi.org/10.1038/ncomms8856
http://dx.doi.org/10.1038/ncomms8856
http://dx.doi.org/10.1029/2007JC004493
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0210
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0210
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0210
http://dx.doi.org/10.1029/2009JC005594
http://dx.doi.org/10.5194/bg-9-925-2012
http://dx.doi.org/10.5194/bg-10-917-2013
http://dx.doi.org/10.5194/bg-10-917-2013
http://dx.doi.org/10.5194/bg-11-3131-2014
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0235
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0235
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0235
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0235
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0240
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0240
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0240
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0245
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0245
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0245
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0250
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0250
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0250
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0255
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0255
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0260
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0260
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0260
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0265
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0265
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0265
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0270
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0270
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0275
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0275
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0280
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0280
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0280
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0280
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0285
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0285
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0285
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0290
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0290
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0290
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0295
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0295
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0295
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0300
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0300
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0305
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0305
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0305
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0305
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0310
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0310
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0310


waters. Front. Mar. Sci. 2. http://dx.doi.org/10.3389/fmars.2015.00127.
Para, J., Charrière, B., Matsuoka, A., Miller, W.L., Rontani, J.F., Sempéré, R., 2012. UV/

PAR radiations and DOM properties in surface coastal waters of the Canadian shelf of
the Beaufort Sea during summer 2009. Biogeosciences 10. http://dx.doi.org/10.
5194/bg-10-2761-2013.

Pegau, W.S., Gray, D., Zaneveld, J.R., 1997. Absorption and attenuation of visible and
near-infrared light in water: dependence on temperature and salinity. Appl. Opt. 36
(24), 6035–6046.

Raymond, P.A., McClelland, J.W., Holmes, R.M., Zhulidov, A.V., Mull, K., Peterson, B.J.,
Striegl, R.G., Aiken, G.R., Gurtovaya, T.Y., 2007. Flux and age of dissolved organic
carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic
rivers. Glob. Biogeochem. Cycles 21, GB4011. http://dx.doi.org/10.1029/
2007GB002934.

Retamal, L., Vincent, W.F., Martineau, C., Osburn, C.L., 2007. Comparison of the optical
properties of dissolved organic matter in two river-influenced coastal regions of the
Canadian Arctic. Estuar. Coast. Shelf Sci. 72, 261–272.

Retamal, L., Bonilla, S., Vincent, W.F., 2008. Optical gradients and phytoplankton pro-
duction in the Mackenzie River and the coastal Beaufort Sea. Polar Biol. 31, 363–379.

Shen, Y., Fichot, C.G., Benner, R., 2012. Dissolved organic matter composition and
bioavailability reflect ecosystem productivity in the Western Arctic Ocean.

Biogeosciences 9, 4993–5005. http://dx.doi.org/10.5194/bg-9-4993-2012.
Shen, Y., Benner, R., Robbins, L.L., Wynn, J.G., 2016. Sources, distributions and dynamics

of dissolved organic matter in the Canada and Makarov Basins. Front. Mar. Sci. 3
(198). http://dx.doi.org/10.3389/fmars.2016.00198.

Spencer, R.G.M., Mann, P.J., Dittmar, T., Eglinton, T.I., McIntyre, C., Holmes, R.M.,
Zimov, N., Stubbins, A., 2015. Detecting the signature of permafrost thaw in Arctic
rivers. Geophys. Res. Lett. 42, 2830–2835. http://dx.doi.org/10.1002/
2015GL063498.

Stedmon, C.A., Markager, S., 2005. Resolving the variability in dissolved organic matter
fluorescence in a temperate estuary and its catchment using PARAFAC analysis.
Limnol. Oceanogr. 50 (2), 686–697.

Stedmon, C.A., Amon, R.M.W., Rinehart, A.J., Walker, S.A., 2011. The supply and char-
acteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan
Arctic trends and differences. Mar. Chem. 124, 108–118.

Twardowski, M.S., Sullivan, J.M., Donaghay, P.L., Zaneveld, J.R., 1999. Microscale
quantification of the absorption by dissolved and particulate material in coastal
waters with an ac-9. J. Atmos. Ocean. Technol. 16, 691–707.

Walker, S.A., Amon, R.M.W., Stedmon, C.A., 2013. Variations in high-latitude riverine
fluorescent dissolved organic matter: A comparison of large Arctic rivers. J. Geophys.
Res. 118, 1–14. http://dx.doi.org/10.1002/2013/JG002320.

http://dx.doi.org/10.3389/fmars.2015.00127
http://dx.doi.org/10.5194/bg-10-2761-2013
http://dx.doi.org/10.5194/bg-10-2761-2013
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0325
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0325
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0325
http://dx.doi.org/10.1029/2007GB002934
http://dx.doi.org/10.1029/2007GB002934
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0335
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0335
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0335
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0340
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0340
http://dx.doi.org/10.5194/bg-9-4993-2012
http://dx.doi.org/10.3389/fmars.2016.00198
http://dx.doi.org/10.1002/2015GL063498
http://dx.doi.org/10.1002/2015GL063498
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0365
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0365
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0365
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0370
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0370
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0370
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0380
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0380
http://refhub.elsevier.com/S0034-4257(17)30363-2/rf0380
http://dx.doi.org/10.1002/2013/JG002320

	Pan-Arctic optical characteristics of colored dissolved organic matter: Tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data
	Introduction
	Materials and methods
	In situ data
	CDOM absorption
	UltraPath measurements
	ac-s measurements
	CDOM fluorescence
	DOC concentration
	Additional CDOM absorption and DOC concentrations data
	Remote sensing reflectance

	Satellite ocean color data
	Match-up analysis
	Estimating DOC concentration from space

	Evaluation functions

	Results and discussion
	CDOM absorption characteristics at the Pan-Arctic Ocean
	Monitoring DOC concentrations from satellite remote sensing

	Conclusions
	Acknowledgements
	Effect of Raman scattering on Rrs(λ) data and aCDOM(443) estimate
	Uncertainty analysis
	References




