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On the stability of the state 1 in the non-local Fisher-KPP equation in bounded domains

We consider the non-local Fisher-KPP equation on a bounded domain with Neumann boundary conditions. Thanks to a Lyapunov function, we prove that under a general hypothesis on the Kernel involved in the non-local term, the homogenous steady state 1 is globally asymptotically stable. This assumption happens to be linked to some conditions given in the literature, which ensure that travelling waves link 0 to 1.

Introduction

We consider the so-called non-local Fisher-KPP equation endowed with Neumann boundary conditons ∂u ∂t (t, x) = µ 1 -Ω K(x, y)u(t, y) dy u(t, x) + ∆u(t, x), x ∈ Ω, t > 0, ∂u ∂n (t, x) = 0, x ∈ ∂Ω, t > 0,

u(0, x) = u 0 (x) 0 x ∈ Ω, (1) 
where Ω a regular bounded domain of R d and K > 0 a Kernel modelling an additional death rate due to non-local interactions.

We will sometimes write in short K[u] = Ω K(x, y)u(y) dy for a generic function u.

Assuming

∀y ∈ Ω, Ω K(x, y) dx = 1, (2) 
and in the limit K(x, y) → δ x-y , we recover the classical Fisher KPP-equation

∂u ∂t = µ(1 -u)u + ∆u. (3) 
The assumption (2) ensures that 1 remains a homogeneous stationary solution of (1).

The classical Fisher-KPP equation ( 3) is often analysed on the whole space for the investigation of travelling waves, which are known to exist since the pioneering works of Fisher, Kolmogorov, Petrovsky and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] for any speed above 2 √ µ. Furthermore, anynon zero initial condition eventually converges locally uniformly to 1, which is therefore a globally asymptotically stable for non zero initial conditions.

When one adds a non-local term, it does not remain true that travelling waves exist and when they do, whether they link 0 to 1 or another non-homogeneous steady-state of the equation. 1 can indeed become unstable: Türing patterns appear [START_REF] Nadin | Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation[END_REF][START_REF] Perthame | Parabolic equations in biology[END_REF].

A natural question is thus to understand under which conditions the status of 1 is changed due to the non-local term. When K(x, y) is given by a convolution φ(xy), several results have already been obtained in the full space, in dimension d = 1. If the Fourier transform is everywhere positive of if µ is small enough, it is known that travelling waves necessarily connect 0 to 1 [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF]. See also [START_REF] Alfaro | Rapid traveling waves in the nonlocal Fisher equation connect two unstable states[END_REF][START_REF] Hamel | On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds[END_REF] In this note, we provide a general result on the global asymptotic stability on 1 on a bounded domain, based on a Lyapunov functional. The results holds provided that the following general assumption on the Kernel K is satisfied:

∀f ∈ L 2 (Ω), Ω×Ω K(x, y)f (x)f (y) dx dy 0. (4) 
K is then referred to as being a positive Kernel, and ( 4) can be thought of as a strong competition assumption. These types of Lyapunov functionals have been used successfully in selection equations in [START_REF] Jabin | On selection dynamics for competitive interactions[END_REF][START_REF] Pouchol | Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy[END_REF][START_REF] Pouchol | Global stability with selection in integrodifferential Lotka-Volterra systems modelling trait-structured populations[END_REF] and are inspired by Lyapunov functions for Lotka-Volterra ODEs [START_REF] Goh | Global stability in many-species systems[END_REF].

It remains an open question to know whether this condition leads to the same conclusion on the whole space. As such, our Lyapunov function requires integrability for u(t)-1-ln(u(t)) which is too much to ask in R d . We still believe that the condition (4) is highly relevant. Indeed, when Ω = R d , and if K is a convolution K(x, y) = φ(xy), then condition (4) becomes

∀f ∈ L 2 R d , R d ×R d φ(x -y)f (x)f (y) dx dy 0. (5) 
It is easy to check that if φ has a non-negative Fourier transform, then condition is satisfied, see [START_REF] Jabin | On selection dynamics for competitive interactions[END_REF]. The converse is almost true, as evidenced by Bochner's Theorem [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]: if φ is bounded an continuous, then (4) holds if and only if it is the Fourier transform of a finite bounded measure on R d .

Consequently, condition (4) (or (1)) shows that the condition on the Fourier transform of φ used in dimension 1 in the literature can be appropriate in any dimension, and may not only be a sufficient but also a necessary condition when it comes to the stability of the state 1.

The Lyapunov function approach

We make the following regularity assumption on the Kernel K:

K ∈ C 0,1 Ω × Ω , (6) 
where C 0,1 Ω × Ω denotes the set of Lipschitz continuous functions on Ω × Ω.

Under the previous assumption ( 6), for u 0 ∈ L 1 (Ω), we know from [START_REF] Coville | Convergence to equilibrium for positive solutions of some mutationselection model[END_REF] that there exists a unique non-negative classical solution in C([0, +∞), L 1 (Ω)) ∩ C 1 ((0, +∞), C 2,α (Ω)), which we denote t -→ S t u 0 .

It will also be convenient to introduce the space Z := {u ∈ C 2,α (Ω), u 0}. Finally, we define the non-negative function H(w) := w -1 -ln(w) for w > 0, and for u in Z

V (u) := Ω (u(x) -1 -ln(u(x)) dx, (7) 
the last integral possibly being equal to +∞.

Our result is then the following:

Theorem 1. Assume (4), ( 6), [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF]. Then for any initial datum u 0 in L 1 (Ω), u 0 0, u 0 = 0, the solution to (1) satisfies

u(t, •) -→ 1 uniformly in Ω.
Proof. First step: computation of the Lyapunov functional.

First, let us remark that by the parabolic strong maximum principle, u(t, x) > 0 for all t > 0, x ∈ Ω. Now, let us check that this holds true also for x ∈ ∂Ω, from which we will infer that V (u(t)) is well defined for all t > 0. By the parabolic strong maximum principle at the boundary, we have the following alternative for x ∈ ∂Ω: either u(t, x) > 0 or u(t, x) = 0 and ∂u ∂n (t, x) < 0. Only u(t, x) > 0 can hold due to the Neumann boundary conditions.

We now consider g(t) := V (u(t)) for t > 0, where {u(t)} t 0 is the trajectory given rise to by u 0 . Let us prove that this is a Lyapunov functional, by computing for t > 0

g ′ (t) = Ω ∂u ∂t (t) 1 - 1 u(t) = Ω ∆u(t) 1 - 1 u(t) -µ Ω (1 -K[u(t)]) (1 -u(t))) = - Ω |∇(u(t, x))| 2 u 2 (t, x) dx -µ Ω 2 K(x, y) (1 -u(t, x))) (1 -u(t, y)) dx dy.
after integration by part for the first term. For the second one, we used

1-K[u] = K[1-u],
owing to (2).

Thanks to (4), this yields g ′ (t) 0 i.e., that g is non-increasing over the real line. Since g 0, we infer the convergence of g(t) as t tends to +∞, and we denote l its limit.

Second step: compactness of trajectories.

Since C 2,α (Ω) is compactly embedded into C Ω , the trajectory {S t u 0 } t 0 is relatively compact in C(Ω), meaning that one can find ū 0 in C(Ω) and a sequence (t k ) tending to +∞ in k, such that u(t k ) converges to ū as k goes to +∞, in C Ω . Note that the limit cannot be identically 0 since otherwise g(t) would go to +∞, in contradiction with its convergence to l.

Our aim is to prove that ū = 1, which will mean that the whole trajectory converges to ū, hence the expected result.

Third step: identifying the limit.

Let us now consider the trajectory starting from the initial datum ū, namely {S t ū} t 0 , which we also denote by {ũ(t)} t 0 . Because ū 0, ū = 0, we again have ũ(t, x) > 0 for all t > 0, x ∈ Ω. Let us prove that V is constant along the trajectory {S t ū} t 0 for t > 0.

For this, we write

V (ũ(t)) = V (S t ū) = V S t lim k→+∞ S t k u 0 = V lim k→+∞ S t+t k u 0 .
It is also easy to see that for any u in C Ω which is furthermore positive on Ω, V (seen as acting on C Ω ) is continuous at u, and this implies V (ũ(t)) = lim k→+∞ V S t+t k u 0 = l.

As claimed the function t -→ V (S t ū) is constant (equal to l) for t > 0.

Hence its derivative must be zero for t > 0: from the computations made in the first step, it must hold that both Ω |∇(ũ(t))| 2 ũ2 (t)

and Ω 2 K(x, y) (ũ(t, x) -1)) (ũ(t, y) -1) dx dy vanish identically for t > 0. Let us now fix t > 0, and from the first term, we know that ũ(t) is a constant. From the second term and owing to K > 0, this constant must be equal to 1. By continuity of the trajectory, this also holds true at t = 0, i.e., ū = 1, which ends the proof.