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On the stability of the state 1 in the non-local Fisher-KPP

equation in bounded domains

Camille Pouchol
∗†‡

Abstract

We consider the non-local Fisher-KPP equation on a bounded domain with Neu-

mann boundary conditions. Thanks to a Lyapunov function, we prove that under

a general hypothesis on the Kernel involved in the non-local term, the homogenous

steady state 1 is globally asymptotically stable. This assumption happens to be linked

to some conditions given in the literature, which ensure that travelling waves link 0
to 1.

1 Introduction

We consider the so-called non-local Fisher-KPP equation endowed with Neumann bound-
ary conditons

∂u

∂t
(t, x) = µ

(

1−
∫

Ω
K(x, y)u(t, y) dy

)

u(t, x) + ∆u(t, x), x ∈ Ω, t > 0,

∂u

∂n
(t, x) = 0, x ∈ ∂Ω, t > 0,

u(0, x) = u0(x) > 0 x ∈ Ω,

(1)

where Ω a regular bounded domain of R
d and K > 0 a Kernel modelling an additional

death rate due to non-local interactions.

We will sometimes write in short K[u] =
∫

ΩK(x, y)u(y) dy for a generic function u.

Assuming

∀y ∈ Ω,

∫

Ω
K(x, y) dx = 1, (2)

and in the limit K(x, y) → δx−y, we recover the classical Fisher KPP-equation

∂u

∂t
= µ(1− u)u+∆u. (3)
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The assumption (2) ensures that 1 remains a homogeneous stationary solution of (1).

The classical Fisher-KPP equation (3) is often analysed on the whole space for the inves-
tigation of travelling waves, which are known to exist since the pioneering works of Fisher,
Kolmogorov, Petrovsky and Piskunov [7] for any speed above 2

√
µ. Furthermore, any-

non zero initial condition eventually converges locally uniformly to 1, which is therefore a
globally asymptotically stable for non zero initial conditions.

When one adds a non-local term, it does not remain true that travelling waves exist and
when they do, whether they link 0 to 1 or another non-homogeneous steady-state of the
equation. 1 can indeed become unstable: Türing patterns appear [8, 9].

A natural question is thus to understand under which conditions the status of 1 is changed
due to the non-local term. When K(x, y) is given by a convolution φ(x−y), several results
have already been obtained in the full space, in dimension d = 1. If the Fourier transform
is everywhere positive of if µ is small enough, it is known that travelling waves necessarily
connect 0 to 1 [2]. See also [1, 5]

In this note, we provide a general result on the global asymptotic stability on 1 on a
bounded domain, based on a Lyapunov functional. The results holds provided that the
following general assumption on the Kernel K is satisfied:

∀f ∈ L2(Ω),

∫

Ω×Ω
K(x, y)f(x)f(y) dx dy > 0. (4)

K is then referred to as being a positive Kernel, and (4) can be thought of as a strong
competition assumption. These types of Lyapunov functionals have been used successfully
in selection equations in [6, 10, 11] and are inspired by Lyapunov functions for Lotka-
Volterra ODEs [4].

It remains an open question to know whether this condition leads to the same conclusion on
the whole space. As such, our Lyapunov function requires integrability for u(t)−1−ln(u(t))
which is too much to ask in R

d. We still believe that the condition (4) is highly relevant.
Indeed, when Ω = R

d, and if K is a convolution K(x, y) = φ(x − y), then condition (4)
becomes

∀f ∈ L2
(

R
d
)

,

∫

Rd×Rd

φ(x− y)f(x)f(y) dx dy > 0. (5)

It is easy to check that if φ has a non-negative Fourier transform, then condition is satisfied,
see [6]. The converse is almost true, as evidenced by Bochner’s Theorem [12]: if φ is
bounded an continuous, then (4) holds if and only if it is the Fourier transform of a finite
bounded measure on R

d.

Consequently, condition (4) (or (1)) shows that the condition on the Fourier transform of
φ used in dimension 1 in the literature can be appropriate in any dimension, and may not
only be a sufficient but also a necessary condition when it comes to the stability of the
state 1.
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2 The Lyapunov function approach

We make the following regularity assumption on the Kernel K:

K ∈ C0,1
(

Ω× Ω
)

, (6)

where C0,1
(

Ω× Ω
)

denotes the set of Lipschitz continuous functions on Ω× Ω.

Under the previous assumption (6), for u0 ∈ L1(Ω), we know from [3] that there exists a
unique non-negative classical solution in C([0,+∞), L1(Ω))∩C1((0,+∞), C2,α(Ω)), which
we denote t 7−→ Stu

0.

It will also be convenient to introduce the space Z := {u ∈ C2,α(Ω), u > 0}. Finally, we
define the non-negative function H(w) := w − 1− ln(w) for w > 0, and for u in Z

V (u) :=

∫

Ω
(u(x)− 1− ln(u(x)) dx, (7)

the last integral possibly being equal to +∞.

Our result is then the following:

Theorem 1. Assume (4), (6), (2). Then for any initial datum u0 in L1(Ω), u0 > 0,
u0 6= 0, the solution to (1) satisfies

u(t, ·) −→ 1

uniformly in Ω.

Proof. First step: computation of the Lyapunov functional.

First, let us remark that by the parabolic strong maximum principle, u(t, x) > 0 for all
t > 0, x ∈ Ω. Now, let us check that this holds true also for x ∈ ∂Ω, from which we
will infer that V (u(t)) is well defined for all t > 0. By the parabolic strong maximum
principle at the boundary, we have the following alternative for x ∈ ∂Ω: either u(t, x) > 0

or u(t, x) = 0 and
∂u

∂n
(t, x) < 0. Only u(t, x) > 0 can hold due to the Neumann boundary

conditions.

We now consider g(t) := V (u(t)) for t > 0, where {u(t)}t>0 is the trajectory given rise to
by u0. Let us prove that this is a Lyapunov functional, by computing for t > 0

g′(t) =

∫

Ω

∂u

∂t
(t)

(

1− 1

u(t)

)

=

∫

Ω
∆u(t)

(

1− 1

u(t)

)

− µ

∫

Ω
(1−K[u(t)]) (1− u(t)))

= −
∫

Ω

|∇(u(t, x))|2
u2(t, x)

dx− µ

∫

Ω2

K(x, y) (1− u(t, x))) (1− u(t, y)) dx dy.
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after integration by part for the first term. For the second one, we used 1−K[u] = K[1−u],
owing to (2).

Thanks to (4), this yields g′(t) 6 0 i.e., that g is non-increasing over the real line. Since
g > 0, we infer the convergence of g(t) as t tends to +∞, and we denote l its limit.

Second step: compactness of trajectories.

Since C2,α(Ω) is compactly embedded into C
(

Ω
)

, the trajectory {Stu
0}t>0 is relatively

compact in C(Ω), meaning that one can find ū > 0 in C(Ω) and a sequence (tk) tending
to +∞ in k, such that u(tk) converges to ū as k goes to +∞, in C

(

Ω
)

. Note that the
limit cannot be identically 0 since otherwise g(t) would go to +∞, in contradiction with
its convergence to l.

Our aim is to prove that ū = 1, which will mean that the whole trajectory converges to ū,
hence the expected result.

Third step: identifying the limit.

Let us now consider the trajectory starting from the initial datum ū, namely {Stū}t>0,
which we also denote by {ũ(t)}t>0. Because ū > 0, ū 6= 0, we again have ũ(t, x) > 0 for all
t > 0, x ∈ Ω. Let us prove that V is constant along the trajectory {Stū}t>0 for t > 0.

For this, we write V (ũ(t)) = V (Stū) = V
(

St limk→+∞ Stku
0
)

= V
(

limk→+∞ St+tku
0
)

. It
is also easy to see that for any u in C

(

Ω
)

which is furthermore positive on Ω, V (seen as
acting on C

(

Ω
)

) is continuous at u, and this implies V (ũ(t)) = limk→+∞ V
(

St+tku
0
)

= l.
As claimed the function t 7−→ V (Stū) is constant (equal to l) for t > 0.

Hence its derivative must be zero for t > 0: from the computations made in the first step,

it must hold that both
∫

Ω
|∇(ũ(t))|2

ũ2(t)
and

∫

Ω2 K(x, y) (ũ(t, x)− 1)) (ũ(t, y)− 1) dx dy vanish

identically for t > 0. Let us now fix t > 0, and from the first term, we know that ũ(t) is
a constant. From the second term and owing to K > 0, this constant must be equal to 1.
By continuity of the trajectory, this also holds true at t = 0, i.e., ū = 1, which ends the
proof.
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