Z. Herman and J. Futrell, Dynamics of ion???molecule reactions from beam experiments: A historical survey, International Journal of Mass Spectrometry, vol.377, pp.84-92, 2015.
DOI : 10.1016/j.ijms.2014.06.009

E. Ferguson, Ion-Molecule Reactions, Annual Review of Physical Chemistry, vol.26, issue.1, pp.17-38, 1975.
DOI : 10.1146/annurev.pc.26.100175.000313

M. Larsonn, W. D. Geppert, and G. Nyman, Ion chemistry in space, Reports on Progress in Physics, vol.75, issue.6, pp.75-066901, 2012.
DOI : 10.1088/0034-4885/75/6/066901

S. Petrie and D. K. Bohme, Ions in space, Mass Spectrometry Reviews, vol.302, issue.2, pp.258-280, 2007.
DOI : 10.1007/3540098259_4

W. D. Geppert and M. Larsson, Experimental Investigations into Astrophysically Relevant Ionic Reactions, Chemical Reviews, vol.113, issue.12, pp.8872-8905, 2013.
DOI : 10.1021/cr400258m

J. L. Snow, G. Orlova, V. Blagojevic, and D. K. Bohme, Gas-Phase Ionic Syntheses of Amino Acids:?? ?? versus ??, Journal of the American Chemical Society, vol.129, issue.32, pp.9910-9917, 2007.
DOI : 10.1021/ja068725b

V. Blagojevic, S. Petrie, and D. K. Bohme, Gas-phase syntheses for interstellar carboxylic and amino acids, Monthly Notices of the Royal Astronomical Society, vol.14, issue.3, pp.7-11, 2003.
DOI : 10.1002/(SICI)1097-0231(20000215)14:3<135::AID-RCM851>3.0.CO;2-M

URL : https://academic.oup.com/mnras/article-pdf/339/1/L7/3572121/339-1-L7.pdf

L. E. Snyder, F. J. Lovas, J. M. Hollis, D. N. Friedel, P. R. Jewell et al., A Rigorous Attempt to Verify Interstellar Glycine, The Astrophysical Journal, vol.619, issue.2, pp.914-930, 2005.
DOI : 10.1086/426677

J. Shobbrook and T. Travouillon, A search for propylene oxide and glycine in Sagittarius B2 (LMH) and Orion, Mon. Not. R. Astron. Soc, vol.376, pp.1202-1210, 2007.

P. A. Jones, M. R. Cunningham, P. D. Godfrey, and D. M. Cragg, A Search for biomolecules in Sagittarius B2 (LMH) with the Australia Telescope Compact Array, Monthly Notices of the Royal Astronomical Society, vol.70, issue.1-3, pp.579-589, 2007.
DOI : 10.1086/191348

J. M. Hollis, J. A. Pedelty, L. E. Snyder, P. R. Jewell, F. J. Lovas et al., A Sensitive Very Large Array Search for Small???Scale Glycine Emission toward OMC???1, The Astrophysical Journal, vol.588, issue.1
DOI : 10.1086/373945

C. Briois, U. Calmonte, M. R. Combi, and H. Cottin, Prebiotic chemicals -amino acid and phosphorus -in the coma of comet 67P/Churyumov-Gerasimenko. Sci, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01351340

P. D. Holtom, C. J. Bennett, Y. Osamura, N. J. Mason, and R. I. Kaiser, NHCOOH) in Extraterrestrial Ices, The Astrophysical Journal, vol.626, issue.2, pp.940-952, 2005.
DOI : 10.1086/430106

A. Rimola, M. Sodupe, and P. Ugliengo, COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES, The Astrophysical Journal, vol.754, issue.1, pp.754-778, 2012.
DOI : 10.1088/0004-637X/754/1/24

J. E. Elsila, J. P. Dworkin, M. P. Bernstein, M. P. Martin, and S. A. Sandford, Mechanisms of Amino Acid Formation in Interstellar Ice Analogs, The Astrophysical Journal, vol.660, issue.1, pp.911-918, 2007.
DOI : 10.1086/513141

D. E. Woon, Pathways to Glycine and Other Amino Acids in Ultraviolet-irradiated Astrophysical Ices Determined via Quantum Chemical Modeling, The Astrophysical Journal, vol.571, issue.2, pp.177-180, 2002.
DOI : 10.1086/341227

S. Maeda and K. Ohno, No activation barrier synthetic route of glycine from simple molecules (NH3, CH2, and CO2) via carboxylation of ammonium ylide: a theoretical study by the scaled hypersphere search method, Chemical Physics Letters, vol.398, issue.1-3, pp.240-244, 2004.
DOI : 10.1016/j.cplett.2004.09.062

R. Spezia, Y. Jeanvoine, W. L. Hase, and K. Song, SYNTHESIS OF FORMAMIDE AND RELATED ORGANIC SPECIES IN THE INTERSTELLAR MEDIUM VIA CHEMICAL DYNAMICS SIMULATIONS, The Astrophysical Journal, vol.826, issue.2, p.107, 2016.
DOI : 10.3847/0004-637X/826/2/107

URL : https://hal.archives-ouvertes.fr/hal-01386212

C. Barrientos, P. Redondo, L. Largo, V. M. Rayon, and A. Largo, GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES, The Astrophysical Journal, vol.748, issue.2, pp.748-99, 2012.
DOI : 10.1088/0004-637X/748/2/99

D. Ortiz, P. Martin-gago, A. Riera, K. Song, J. Salpin et al., Gas-phase collision induced dissociation mechanisms of peptides: Theoretical and experimental study of N-formylalanylamide fragmentation, International Journal of Mass Spectrometry, vol.335, pp.33-44, 2013.
DOI : 10.1016/j.ijms.2012.11.001

R. Molina, E. Ortiz, D. Salpin, J. Spezia, and R. , Elucidating collision induced dissociation products and reaction mechanisms of protonated uracil by coupling chemical dynamics simulations with tandem mass spectrometry experiments, Journal of Mass Spectrometry, vol.470, issue.606, pp.1340-1351, 2015.
DOI : 10.1002/jlac.19294700106

URL : https://hal.archives-ouvertes.fr/hal-01224902

R. Spezia, J. Martens, J. Oomens, and K. Song, Collision-induced dissociation pathways of protonated Gly2NH2 and Gly3NH2 in the short time-scale limit by chemical dynamics and ion spectroscopy, International Journal of Mass Spectrometry, vol.388, pp.40-52, 2015.
DOI : 10.1016/j.ijms.2015.07.025

URL : https://hal.archives-ouvertes.fr/hal-01220092

A. Martin-somer and W. L. Hase, Model Simulations of the thermal dissociation of the TIK(H + ) 2 tripeptide. Mechanisms and kinetic parameters, J. Phys. Chem. A, vol.120, pp.8211-8227, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01626381

R. Molina, E. Eizaguirre, A. Haldys, V. Urban, D. Doisneau et al., Characterization of Protonated Model Disaccharides from Tandem Mass Spectrometry and Chemical Dynamics Simulations, ChemPhysChem, vol.37, issue.19, pp.2812-2823, 2017.
DOI : 10.1002/jms.289

URL : https://hal.archives-ouvertes.fr/hal-01626382

R. Molina, E. Salpin, J. Spezia, R. Martínez-núñez, and E. , On the gas phase fragmentation of protonated uracil: a statistical perspective, Physical Chemistry Chemical Physics, vol.605, issue.606, pp.14980-14990, 2016.
DOI : 10.1016/j.cplett.2014.05.026

URL : https://hal.archives-ouvertes.fr/hal-01386210

M. J. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model, Journal of the American Chemical Society, vol.107, issue.13, p.3902, 1985.
DOI : 10.1021/ja00299a024

J. Mcnamara and I. Hillier, Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules, Physical Chemistry Chemical Physics, vol.93, issue.19, pp.2362-2370, 2007.
DOI : 10.1103/PhysRevB.54.16533

G. B. Rocha, R. O. Freire, A. M. Simas, J. P. Stewart, C. et al., RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I, Journal of Computational Chemistry, vol.15, issue.10, pp.1101-1111, 2006.
DOI : 10.1093/comjnl/7.4.308

J. J. Stewart, Optimization of parameters for semiempirical methods I. Method, Journal of Computational Chemistry, vol.24, issue.2
DOI : 10.1093/comjnl/6.2.163

J. J. Stewart, Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements, Journal of Molecular Modeling, vol.73, issue.12, pp.1173-1213, 2007.
DOI : 10.1002/jcc.540141106

M. J. Dewar and W. Thiel, Ground states of molecules. 38. The MNDO method. Approximations and parameters, Journal of the American Chemical Society, vol.99, issue.15, pp.99-4899, 1977.
DOI : 10.1021/ja00457a004

B. Ahlswede and K. Jug, Consistent modifications of SINDO1: I. Approximations and parameters, Journal of Computational Chemistry, vol.9, issue.6, pp.563-571, 1999.
DOI : 10.1002/(SICI)1096-987X(19990430)20:6<563::AID-JCC1>3.0.CO;2-2

B. Ahlswede and K. Jug, Consistent modifications of SINDO1: II. Applications to first- and second-row elements, Journal of Computational Chemistry, vol.69, issue.6, pp.572-578, 1999.
DOI : 10.1063/1.436380

S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, Journal of Computational Chemistry, vol.101, issue.12, pp.1463-1473, 2004.
DOI : 10.1021/jp001766o

P. Zhang, Y. Chuang, and J. Pu, MOPAC?version 5.022mn by based on MOPAC 5

W. L. Hase, D. M. Ludlow, R. J. Wolf, and T. Schlick, Translational and vibrational energy dependence of the cross section for H + C2H4 .fwdarw. C2H5*, The Journal of Physical Chemistry, vol.85, issue.8, pp.958-968, 1981.
DOI : 10.1021/j150608a008

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol.30, issue.1, p.98, 1967.
DOI : 10.1016/0031-8914(64)90224-1

X. Hu, W. L. Hase, and T. Pirraglia, Vectorization of the general Monte Carlo classical trajectory program VENUS, Journal of Computational Chemistry, vol.35, issue.8, pp.1014-1024, 1991.
DOI : 10.1021/bk-1987-0353

H. Swamy, K. N. Linde, S. R. Varandas, and A. , A general chemical dynamics computer program, QCPE Bull, vol.16, p.671, 1996.

E. Martínez-núñez, An automated method to find transition states using chemical dynamics simulations, Journal of Computational Chemistry, vol.95, issue.4, pp.222-234, 2015.
DOI : 10.1021/j100165a009

R. D. Levine, Molecular Reaction Dynamics, 2005.