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Abstract

The structural properties of model two-dimensional (2D) ionic liquids
are examined, with a particular focus on the charge ordering process, with
the use of computer simulation and integral equation theories. The influ-
ence of the logarithmic form of the Coulomb interaction, versus that of a
3D screened interaction form, is analysed. Charge order is found to hold
and to be analogous for both interaction models, despite their very different
form. The influence of charge ordering in the low density regime is dis-
cussed in relation to well known properties of 2D Coulomb fluids, such as
the Kosterlitz-Thouless transition and criticality. The present study suggests
the existence of a stable thermodynamic labile cluster phase, implying the
existence of a liquid-liquid “transition” above the liquid-gas binodal. The
liquid-gas and Kosterlitz-Thouless transitions would then take place inside
the predicted cluster phase.

1 Introduction

Two-dimensional fluids, although being of academic interest, provide an inter-
esting system to study the influence of fluctuations on the stability of different
phases[1], and in particular through the structural properties. Indeed, dimension-
ality plays a crucial role in the existence and nature of phase transitions[2]. Simi-
larly, dimensionality conditions the form of the Coulomb interaction, through the
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solution of the Poisson equation[3]. In two-dimensions, this solution imposes that
the Coulomb interaction is logarithmic[3, 4]. This is particularly serious at large
separations since the interaction is diverging. In particular, it leads to the well
known Kosterlitz-Thouless (KT) topological transition[6] at low density, when all
charges are found to bind below the transition temperature. This is not the case
in 3 dimension. However, in a dense liquid state, the short range effects, both
in the interactions and the correlations are equally important, and one interest-
ing question is what is the relative importance of long range versus short range
in the specific properties of a fluid. This question becomes particularly interest-
ing in two-dimensions than in three-dimensions, because of the particular form of
the Coulomb interaction and the greater importance of fluctuations because of the
reduced dimensionality.

Charge order in liquids is the result of the Coulomb interaction and is par-
ticularly observed through pair correlation functions. It has been discussed in
early studies of charged liquids[5], but lost relevance in later papers. In recent
studies[7, 8], we have shown the importance of Coulomb interaction induced
charge ordering in three-dimensional liquids. In particular, we have shown how
the perturbation of charge order by inert chemical atomic methyl groups could af-
fect the physico-chemical properties. The most apparent such property is the fact
that pure charges are crystalline at room temperature, while charges chemically
complexified with neutral groups, the so-called room temperature ionic liquids[9],
are liquid at room temperature. In the same study, we have shown that approx-
imate integral equation theories could be very accurate in predicting structural
properties. The question naturally arise as to whether these theories would remain
accurate when lowering the dimensionality. Indeed, lowering the dimensional-
ity increases the importance of fluctuations, the latter which play an important
role in the stability of the system. Interestingly, as far as simple liquids are con-
cerned, such as those made of hard particles and attractive particles, approximate
theories such as integral equations, namely the hypernetted chain (HNC), or the
Percus-Yevick theory, have about the same level of accuracy in three and two
dimensions[10, 11]. In the case of core softened interactions, the HNC theory
proved even very accurate[12]. The diagrammatically lower level Percus-Yevick
approximation becomes exact for hard discs in one-dimension[13]. These issue
indicates that the statistical description of the short range structure and that of
fluctuations are distinct, despite being related through the link between stabil-
ity and corresponding integral of the correlation functions, which is the essence
of the fluctuation dissipation theory. We consider this issue to be crucial to un-
derstand the appearance of complexity in liquids, such as clustering and micro-
heterogeneity. In the present work we set up to explore some aspects of this
problem through the analysis of a two dimensional ionic liquid in its simplest
form, namely a binary mixture of charged soft discs. We focus here on the short
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range order, namely the charge order, and the ability of theory to describe the
structure accurately. A closely related system, the charged hard disc binary mix-
ture, so called two-dimensional restricted primitive model (2D-RPM), has been
abundantly studied in the past[14, 15, 18, 19, 20, 21, 22, 23, 24], namely in the
low density low temperature region of the phase diagram, where the Kosterlitz-
Thouless transition takes place[25], as well as the liquid-gas transition[26]. These
transitions have been originally studied from very different view points. The KT
transition[6] is originally a model for how topological defects (or dislocations)
in the two-dimensional XY model appear and merge into associated pairs, sep-
arating the conducting phase from the dielectric phase[27, 28]. One peculiarity
of this transition is that it is of infinite order, and it appears in a large variety of
physical systems[27]. The liquid-vapour coexistence was initially a problem of
accurate determination through computer simulations[26]. Both these transitions
seem to have over shadowed the special form of ordering, namely charge order,
which occurs on the dense liquid part of the phase diagram. In the present paper,
we explore also the link between charge order and these two phase transitions. In
particular, we explore the role of the short versus long range parts of the Coulomb
interaction in all these phenomena.

2 Models, theoretical and computational details

The two-dimensional Coulomb interaction has a logarithmic singularity at large
separations. In the dense fluid regime, the pair interaction is always screened
at large separations. At small densities however, this is no more the case, and
the logarithmic form leads to irreversible attraction of opposite charges at low
temperatures, leading to the existence of a dielectric phase. These two distinct
behaviour pose the problem of charge order differences at short and long ranges,
particularly when the density is varied. We examine here what can be said about
these issues from theoretical point of view.

2.1 Interactions and Models

The Coulomb interaction in two-dimension is obtained from the a-dimensional
Poisson equation, which imposes the logarithmic form[3]. Here, we consider a
fluid made of soft discs of diameter σ , and the total interaction between two discs
i and j with respective valences Zi and Z j is set to be:

vi j(r) =−ZiZ jq
2 ln

( r

a

)

+4ε
(σ

r

)12
(1)
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where a is an scaling distance, which contributes to an arbitrary gauge of the
energy. We discuss below in Section 2.2 how we choose this parameter. q is an
elementary two-dimensional “charge” and ε is the energy parameter of the soft
interaction. Clearly, q2 must have the dimension of an energy. To set its value, we
compare with the three-dimensional case

v
(3D)
i j (r) = ZiZ j

e2

4πε0σ

(σ

r

)

+4ε
(σ

r

)12
(2)

The comparison between the two equations suggests Γ = q2 = e2/(4πε0σ). If we
choose σ = 3Å, which corresponds roughly to the diameter of the water molecule
in several models, then one can show that [7] Γ/kB = TC , with TC ≈ 55740K,
where kB is the Boltzmann constant, suggesting that Γ = q2 has indeed the dimen-
sion of an energy. We introduce the two interaction models we will be using here,
written in a non-dimensional form by scaling the energies by ε , that is setting
Γ = Γ/ε and ε = 1. If we choose ε/kB = 100K (which is relatively close to the
value used in many water models) , this choice sets the value of the Γ parameter
we will use in this work, namely Γ = Γ1 = 557. With this choice, the interactions
in reduced units of the two models are:

βvi j(r) =−ZiZ j
Γ1

τ
ln(

r

a
)+

4
τ

(σ

r

)12
Model 1 (3)

and

βvi j(r) = ZiZ j
Γ2

τ

exp(−r/λ )

r/σ
+

4
τ

(σ

r

)12
Model 2 (4)

where τ = T/(ε/kB) is the standard Lennard-Jones reduced temperature. We
introduce reduced temperatures adpated to our models as Θ1 = τ/Γ1 and Θ2 =
τ/Γ2, which fixes the leading coefficient in front of the charge term, with Γ2 =
σΓ1. Model 2 represents a screened version of the 3D-Coulomb interaction, it
decays rapidly instead of the logarithmic divergence of Model 1. We choose here
λ = 2Å.

Both models have in common that, at short range, the Coulomb interaction
dominates the soft interaction by the factor Γ1 = 557. The models differ at long
range through the presence or absence of the screening. One purpose of this work
is to examine the relative weight of these two contributions. In particular, does
the short range Coulomb influences the low-density low-temperature behaviour in
similar manner, particularly in what concerns the Kosterlitz-Thouless transition.
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2.2 Liquid state Integral Equation theory

In this work we use the hypernetted chain (HNC) approximation in order to obtain
the pair correlation functions

gi j(r) = exp
[

−βvi j(r)+hi j(r)− ci j(r)
]

(5)

The large distance logarithmic singularity of vi j(r) for Model 1 is handled through
the exact relation for the direct correlation functions

lim
r→∞

ci j(r) =−βvi j(r) (6)

Using this relation, we write the direct correlation function of Model 1 in sep-
arating out the well behaved short range part cSR;i j(r) from the large distance
ill-behaved part

ci j(r) = cSR;i j(r)+ cLR;i j(r) (7)

with[19]

cLR;i j(r) = ZiZ j
Γ

T

[

ln(
r

a
)+K0(

r

a
)
]

(8)

where K0(x) is the modified Bessel function of integer order. This function decays
exponentially at large x, and for small x it behaves as K0(x → 0) = ln(2)− γ −
ln(x), where γ ≈ 0.5722 is the Euler constant. Hence, the logarithmic singularity
at r = 0 of the log term is canceled. The crucial parameter a is determined from the
constraint that gi j(r) = 0 for 0 < r < a, which correspond to distance within the
hard core part of the discs. We choose a from the criteria exp [−βv+−(a)] = 10−5.

It is important to note that, because of the term −βvi j(r)+ ci j(r) in the HNC
closure Eq.(5), and the choice of cLJ;i j(r)in Eq.(8), the exponential does not have
any singularities, neither at r → ∞, not at r → 0. The latter singularity is in fact
handled through the exact relation

gi j(r) = 0 r<a (9)

Therefore, any Coulomb contribution can only come from the non-singular short
range part, and not from the long range part. This is the principal reason why one
can try other forms of the charge interactions, such as in Model 2 Eq.(4), which do
not necessarily obey the Poisson equation. Moreover, the absence of the Coulomb
singularities in gi j(r) leads one to ask how typical two-dimensional phenomena
such as the KT transition can manifest through the correlation functions.

The HNC equation must be solved for the functions hi j(r) and ci j(r) in con-
junction with the Ornstein-Zernike equation, which is written in the Fourier space
under the following matrix form
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SM = I (10)

where S is the matrix of the structure factors

Si j(k) = δi j +
√

ρiρ jh̃i j(k) (11)

and M is related to the direct correlation function through

Mi j(k) = δi j −
√

ρiρ jc̃i j(k) (12)

I is the unity matrix, and the tilde designate the Fourier transform in two-dimensions,
defined as

f̃ (k) = 2π

∫ ∞

0
rdr f (r)J0(kr) (13)

where J0(x) is the Bessel function of integer order. In the case of Model 1 we note
that the Fourier transform of cLR;i j(r) is well defined :

c̃LR;i j(k) =−ZiZ jκ
−2
0

2k2 +a−2

k2(k2 +a−2)
(14)

where κ0 =
√

kBT/(2πΓ) is the Debye length in 2 dimensions. Clearly, c̃LR;i j(r)
has the 1/k2 singularity at k= 0. This singularity enforces the following Stillinger-
Lovett (SL) sum rules[32] for the h̃i j(k), which is the way the Coulomb singularity
enters the correlation functions.

∑
j

Z jρ jh̃
(0)
i j =−Zi (15)

∑
i j

ZiZ jρiρ jh̃
(2)
i j = κ−2

0 (16)

where h̃
(2n)
i j = (−1)n 1

4n[n!]2
∫

d~rhi j(r)r
2n are the 2n-order moments of h̃i j(k) in the

small-k Taylor expansion. These relations are not obeyed in the case of Model
2 since there is no Coulomb interaction in this case. Hence; we can appreciate
how charge order is obeyed in both models while SL relations are violated in the
second one.

The integral equation is solved using standard techniques developed for the
2D case[10]. The correlation functions are sampled on a logarithmic grid of 1024
points, and the Fourier transforms are handled through the Talman technique[29,
30].
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2.3 The Kosterlitz-Thouless transition and the small density

limit

The OZ equation, which is an exact equation[31], and the HNC equation, which
becomes exact at low densities, show that, when ρ = 0, the obvious solution for
all temperatures is

hi j(r) = ci j(r) = fi j(r) = exp
(

−βvi j(r)
)

−1 (17)

where fi j(r) is the Mayer function. However, for Coulomb interactions, one sees
from Eq.(1) that the cross Mayer function f+−(r) is asymptotically ill-defined be-
cause it diverges as rΓ/kBT for large distances. However, the correlation functions
hi j(r) and ci j(r) are always well behaved asymptotically as ρ → 0. One way to
conciliate these two contradictory results is that the system of free charges under-
goes a phase transition to a dielectric phase in the low density region. This is the
principal reason why the solution at ρ = 0 must be singular at low temperatures.
In other words, for purely mathematical reasons, we expect a physical singularity
to arise in the regime ρ = 0 and T = 0. The KT transition is precisely such a tran-
sition, and it arises at an universal small temperature kBT/Γ = 1/4[6]. It should
be noted that this universality is entirely related to the 2D Coulomb form of the
interaction[6, 27, 28].

This problem is obviously avoided with Model 2, since the interaction is well
behaved asymptotically. The absence of long range Coulomb interaction lead to
the existence of free charges at all temperatures, even in the very low density
region. However, what happens to charge ordering in the low density low temper-
ature region? Surely, due to the strong short range attraction in Model 2 we expect
the existence of clusters below some temperature. The calculations conducted in
the present work seem to suggest that the integral equations fail at some low tem-
perature both for Model 1 and Model 2, and in very similar manner. This could
be related to the fact that, through Eq.(6), the long range features of Model 1 and
Model 2 are cancelled in Eq.(5) in a similar fashion. The failure of the integral
equation theory is usually associated to the proximity of a phase transition, more
precisely the existence of a spinodal line signaling the instability of the current
phase. From this fact, one is led to speculate that the low temperature failure for
both the Coulomb interaction of Model 1 and that of Model 2, could have the
same origin, namely the clustering of charges, with the difference that these clus-
ters would reduce strictly to dipolar pairs at low density in the case of Model 1.
Screening the Coulomb interaction would then lead a larger clustering form -more
polydisperse than dipoles, precursor of the liquid-gas phase separation predicted
from computer simulations. This is the hypothesis that our results below seem
to suggest. It should be noted, however, that the cluster region may not be a true
phase in the thermodynamic sense. Such non-thermodynamic “cluster phases” are
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found, for example, in many real real systems as well in models with short range
attraction and long range repulsion.

2.4 Monte Carlo simulations

We perform Monte Carlo (MC) simulations in the canonical (NVT) ensemble [34]
of the model where particles interact by a screened version of the 3D-Coulomb in-
teraction. The periodic boundary conditions and the minimum image convention
were used to mimic an infinite size of the system of particles. Starting config-
urations were selected randomly. At each step, we tried to translate a randomly
chosen particle, each with the same probability. A MC cycle which corresponds
to N moves of particles. Average quantities are computed from 107 MC cycles
that are performed after an equilibration period of 106 cycles. Thermodynamic
quantities such as energy were calculated as statistical averages over the course
of the simulations [34]. Cut off of the potential was half-length of the simulation
box. All simulations were performed with N = 100 or N = 200 molecules. To
fix the ideas, 100 molecules is equivalent to about 1000 particles in 3D. Increas-
ing the number of particles had no significant effect on the calculated quantities.
The Monte Carlo moves in the cluster region have been performed with the same
particle move algorithm. The problems posed by the hard core part of discs is
avoided here since the interaction is continuous. Moreover, in this work we did
not explore by simulation the very low density region, where cluster moves rather
than particle moves have been suggested[35].

3 Results

Fig.1 illustrates the various components of the interactions used in this work. The
blue curve represents the 1/r12 repulsive term. The magenta curve represents the
2D Coulomb interaction between opposite charge. The two green curves represent
the Yukawa repulsive term for λ = 1 (dark green) and λ = 2 used in this work. It
is seen that the true and effective charge interactions have seemingly very different
forms, and yet they produce very similar correlations, which means very similar
particle distributions in the configurational space.

3.1 Phase diagram

Fig.2 shows the (ρ ,Θ) phase diagram, or rather the no-solution diagram in what
concerns the HNC theory. Data from previous reports for the 2D-RPM model are
shown[21, 26], namely the liquid-gas coexistence curve[26] (black), the conductor-
dielectric separator (red curve) and the HNC results (blue curve). The green curve
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represents the present results for Model 1 and the yellow curve for Model 2. The
inset shows a zoom of the very small density region in logarithmic scale for the
density, which enhances the shape similarities of the 3 no-solution curves of HNC.
It is seen that the HNC no-solution curve of model 1 is quite close that of the
2D-RPM. This is expected since both repulsive interactions produce very similar
structure factors in the 3D case, and it is mostly a packing effect. Indeed, since
soft discs can interpenetrate, they would experience the Coulomb association at
higher temperatures than the hard disc fluid. Hence, at fixed density, one expects
that the no-solution would occur at a somewhat higher temperature that the equiv-
alent hard disc system. This is what we observe here, at least in the high density
region. At lower density, the turnover peak is higher and at a lower density, but
both curves seem to converge towards the same limit for ρ = 0. This is the KT
limit, at Θ = 0.25[6] We observe that Model 1 tends to this limit from above the
RPM results.

Model 2 has a no-solution line (shown in yellow) well below the true Coulomb
one, but above the 2D-RPM liquid-gas coexistence predicted from simulations
(black curve). This is consistent with screened Coulomb liquid-gas coexistence
being above that of pure Coulomb in 3D binary Yukawa mixtures[16, 17]. For
this model, we do not expect a KT behaviour at low densities, but an ordinary
liquid-gas transition at low temperatures, similarly to Model 1. However, we note
that the yellow curve has two important particularities. First, it nearly superposes
to the high density part of the pure Coulomb no-solution curve (green). This
trend clearly indicates that both Models coincide in the dense fluid region, where
charge order dominates and indifferentiates both models. We will show in the next
section that this is equally true for the structural properties as well. The second
trend is that the shape of this curve, in particular near the turnover point (square
symbol) resembles that of the pure Coulomb curves, particularly visible in the
inset through the flattening at very low densities.

It is intriguing that the screened Coulomb interaction of Model 2 should lead
to an nearly asymptotic temperature limit at the low densities, quite similar to
the KT transition (red dashed line in the inset of Fig.2). Indeed, since the 2D-
Coulomb interaction diverges at large distances, it is understandable that, in the
gas limit, all ions become associated into neutral pairs. This flattening effect is
not found in the 3D case [36, 37], where it is clearly seen that the temperatures
decay with decreasing densities. However, from theoretical ground, a true KT
transition is not expected for Model 2, since free ions will always exist in the
limit ρ → 0 and T → 0. The nearly flat asymptote indicates that ion pairing in
the low density region is different from the 3D case. The data shown here leads
to speculate that charge pairing could be important, even for screened Coulomb
interactions, despite the fact that KT transition is not expected to occur for this
Model 2.
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The second point above lead us to reconsider the low density behaviour of
the two models, and in particular that of Model 2. For the 3D case, it has been
suggested[33] that the HNC no-solution region is connected to the liquid-gas co-
existence, despite the huge difference between the 2 curves, specifically in the low
density region. The fact that the screened Coulomb no-solution curve is still con-
siderably above the LG curve suggests that the HNC theory cannot find solutions,
not because of the liquid-gas coexistence, but because of clustering connected to
charge pairing, which leads to the KT scenario in the case of pure Coulomb inter-
action. As suggested by the structural properties discussed in sections below, the
no-solution curve of HNC corresponds to appearance of correlated dimer clusters,
and has nothing to do with the LG binodal. Rather, the no-solution curve of HNC
represents a real physical curve, where a particular form of clustering occurs. We
conjecture that this state represents a fluid essentially made of polydisperse labile
clusters. It represents a fluid different than a liquid of monomers, hence HNC
cannot find solutions inside this region. This labile cluster “phase” should con-
tain polydisperse clusters together with free ions exchanging continously. In this
context, HNC would signal a liquid-liquid (or fluid-fluid) transition between two
types of disordered liquids/fluids. From this point of view, the turnover point
would then be different than a liquid-gas critical point, and would require a new
interpretation,

To summarize, it would seem that Model 2 gives a no-solution line which has
the same characteristic as Model 1, in particular with a low density turnover point
and a tendency to reach an horizontal asymptote for ρ → 0. This latter point is
perhaps the most striking. It shows that charge pairing plays an important role in
2D because of the existence of tightly bound opposite charges, which is a weak
remnant of the KT transition which occurs only for Model 1.

3.2 Charge order

Fig.3 shows three snapshots for Model 2, the first two taken above the yellow
line of Fig.2, and the last one below, in the no-solution region of HNC. All these
snapshots illustrate the charge order, which consists in a local alternation of + and
- sites, giving it a short ranged “checker-board” aspect. The first shot is taken at
high density ρ = 0.9 with Θ = 0.12 and the other at low density ρ = 0.3 with
Θ = 0.135. They both show a rather uniform coverage, despite locally bound +
and - pairs. The last one, for ρ = 0.3 and Θ= 0.09 shows a less uniform coverage,
with apparent large clusters. This looks like a cluster “phase” region, which is
inaccessible to HNC. Since computer simulations of Ref.[26] predict equilibrium
liquid-gas phase separation well below this parameter region (the black curve in
Fig.3 for 2D-RPM), the cluster phase is logically a true thermodynamical phase.
The fact that it is inaccessible to HNC, indicates that this integral equation theory
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must be adjusted to account for the cluster phase, much the same way it must be
adjusted to account for orientationally ordered phases[38, 39]. Since there is no
symmetry breaking, we are forced to conclude that HNC points to the existence
of a liquid-liquid phase transition, at the blue line in Fig.2 for Model 1, and the
yellow line for Model 2.

Fig.4 shows how the various structure functions account for charge order. The
pair correlation functions g+−(r) and g++(r) are shown in the 3 main panels, as
well as the corresponding structure factors in the insets. The three panels show
how these correlations vary as the valence Z = Z+ =−Z− is varied from Z = 0.2
(leftmost panel), Z = 0.5 (central panel) and Z = 1 (rightmost panel) , this latter
valence used in the remainder of the report. Correlations from both models are
shown, and are seen the behave very similarly, despite the very different form of
the charge-charge interactions. The leftmost panel shows correlations which look
very similar to a Lennard-Jones mixture, where all correlations are more or less in
phase, while the right most panel shows perfect out-of-phase oscillatory behaviour
of the functions g+−(r) and g−−(r). This particular behaviour corresponds to an
alternate short ranged “checker-board” disposition of opposite charged discs. It
represents an entire different form of disorder, namely an “ordered form of dis-
order” which we call charge order. The structure factors reflect this behaviour
through the opposite sign peaks at kσ ≈ 5, which corresponds to diagonal dis-
tance between 2 discs of same charge in a dense short ranged checker-board ar-
rangement of discs. This peak is almost inexistent for Z = 0.2 (left panel), where
it is the main peak at kσ ≈ 2π which is predominant. The greater amplitude of
the first peak of g+−(r) as well as the correspondingly smaller peak for g++(r)
in the right panel further illustrate charge order, due to greater contact probability
of oppositely charged discs. Another interesting feature is the small k behaviour
of S+−(k) and S−−(k). The Stillinger-Lovett sum rules, strictly valid only for
Model 1, impose S+−(k = 0) = S++(k = 0). This is verified in all three panels
for different values of Z. However, we observe that Model 2 is almost verifying
these relations for Z=1. This means that configurational charge ordering imposes
a near SL sum rule, even though the mathematical form of the structure factors is
not strictly obeyed. This is an important information, which will help clarify the
low density behaviour in subsequent sections.

3.3 Comparison with computer simulations

Fig.5 shows a comparison between the Monte Carlo simulation and HNC corre-
lation function, for Model 2. It is seen that at low density ρ = 0.1, both results
are indistinguishable, while marked differences appear at high density of ρ = 0.9.
These differences are very similar to those found for hard discs, and are likely to
represent the approximate diagrammatic nature of HNC -ie- the missing bridge
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functions. In view of of very good agreement at the low density, it is very likely
that HNC reproduces quite accurately the physical behaviour of the model, hence
the conjectures made in the previous paragraph are likely to be correct.

3.4 Density dependence

Fig.6 shows how charge ordering changes with density, for both models. Panel (a)
represents the charge order shown in Fig.3c, albeit at different state parameters.
Panels (b-d) represent how charge order evolves as the density is decreased and
the temperature increased. It is seen that the range of charge order correlations de-
creases with decreasing density, as witnessed by the smaller reach and amplitude
of the out-of-phase oscillations. The opposite peaks in the structure factors persist,
but with lesser importance, as well a shift to smaller k values. These manifesta-
tions are accompanied with a dramatic increase of the first peak of g+−(r) and a
nonetheless dramatic flattening of the g++(r) first peak. Fig.(6d) shows that short
range charge order has vanished. All these results point to the following config-
urational behaviour. As the density is decreased, the short ranged checker-board
order cannot cover the whole configurational space, and because it is restricted
to those areas where charges cluster. At very low densities, only dimer clusters
exist. The no-solution of HNC marks the limit where the fluid of free particles
exist. This is far from a “spinodal” behaviour, which is driven by long range cor-
relations, as in the LG spinodal. It is rather driven by the dramatic increase of the
first peak. When rigidly bound pairs form, it is a different physical system, for
which the present formulation as free particles is no more valid. So HNC signals
a real physical feature, and not a numerical artifact.

3.5 Temperature dependence

Fig.7 for Model 1, and Fig.8 for Model 2, illustrate the temperature dependence of
the correlations in (a) the moderately dense fluid at ρ = 0.5 and (b) the gas phase
region at ρ = 0.001. The aim here is to figure out if there is a difference in na-
ture between the high density and low density fluid-fluid transitions, as predicted
by the integral equation theory. The main panel of the figures show the running
integral G12(r) = 2π

∫ r
0 sds[g+−(s)−1] of the cross correlation function g+−(r).

It allows to measure how the increase of first peak and short range correlations
vary with the increase of the long range tail, as the temperature is decreased to-
wards the no-solution line, at fixed density. Indeed, it is currently admitted that
the existence of the no-solution line would correspond to the long range behaviour
g(r)→ exp(−r/ξ )/r, with the correlation length ξ increasing in a peculiar way.
For the high density ρ = 0.5, the asymptote settles at larger distances as the tem-
perature is decreased. The structure factors in the upper inset are compared at
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2 different temperatures, one high Θ1 = 0.18 and one close to the no-solution
boundary Θ1 = 0.07845. The k=0 increase for the latter temperature is clearly
seen. The behaviour of S+−(k = 0) and the first peak g+−(σ) is shown in the
lower inset as a function of Θ−1 , and confirm that the correlation length increases
faster than the first peak. However, Fig.7b shows a different trend at low density
ρ = 0.001. The main panel shows clearly that the asymptote of G12(r) is reached
earlier as the temperature is decreased. The upper inset shows that the structure
factors do not show the typical small-k raise. The lower inset shows a marked
decrease of both the inverses 1/S+−(k = 0) and 1/g+−(rP), where rP is the first
peak position, but without the typical turnover that would signal a square-root
branching behaviour.

Fig.8 shows the corresponding behaviour for Model 2. While Fig.8a shows
that the high density behaviour of Model 2 is similar to Model 1 in Fig.7a, Fig. 8b
points to low density differences between the two models. First of all, the asymp-
tote of G12(r) is reached at much smaller distances. This is a direct consequence
of the comparison in Fig.6c, where, at ρ = 0.01, g+−(r) for Model 1 is seen to
have a wider decay than for Model 2. However, the temperature dependence of
the reach of the asymptote is similar to Model 1. The top inset shows that there
is no k=0 raise anomaly, again similarly to Model 1. The Stillinger-Lovett laws
are not obeyed, as expected. The lower inset shows a sharper drop of the inverses
1/S+−(k = 0) and 1/g+−(rP) than for Model 1 in Fig.7b. Our interpretation of
these low density differences between the two models is that the Stillinger-Lovett
conditions, constrain enormously the behaviour of the long range shape of g+−(r)
, as well that of small k behaviour of S+−(k). This is due to the long range nature
of the Coulomb interaction in Model 1, which is missing in Model 2. However, the
charge pairing, which is dictated solely by the short range part of the interaction,
exist in both models, and conditions the same way the formation of neutral dimers.
It is the formation of higher clusters which may be different in both models, ne-
cessitating lower temperatures for Model 2 in order to compare with Model 1.
This may explain that the KT-like shape of the no-solution curve (yellow) appears
shifted to the lower part of the phase diagram of Fig.2, as compared to Model 1
(blue).

4 Discussion

Aside the short ranged checker board type charge ordering, which seems to dom-
inate in both models studied here, perhaps the most interesting part is the fate of
these systems in the very low density region, where they all seem to indicate the
existence of a lower cluster phase, dielectric for Model 1, but with high density
of dipoles for Model 2. The mechanism for loss of solution of the HNC theory
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is the same for both models: it is the dramatic raise of the first peak of g+−(r)
which is due to charge pairing. Interestingly, there is no marked signature of the
small-k increase of the structure factors, typical of the LG spinodal. In any case,
it is certain that it is charge pairing which destabilises the free charge phase into
a dielectric phase. Therefore, it is not a surprise that both models, which predict
charge pairing at high densities, equally predict this pairing at lower densities.
The universality of the KT transition is solely due to the Coulomb form and is
related to the appearance of a dielectric phase. The screened Coulomb form in-
teraction, because of the lack of long range, does not allow a full dielectric phase,
since many free charges might exist even at low temperature. So the KT transition
for such interactions is out-ruled. However, the similarity of the no-solution lines
for HNC suggest that strong clustering cannot be described by this theory. Hence
it may represent a new phase, such as a labile cluster phase. The snapshot in Fig.3
suggest this difference.

The second interesting point suggested by the present study, is the possibil-
ity of a fluid-fluid transition below the no-solution region of HNC. While this
transition is acceptable in the low density region, because of the formation of the
dielectric phase, it is less obvious in the high density region, where it could be
possible that the no-solution curve would be only the premise of the LG coexis-
tence predicted by simulations[26]. Both Fig.7a and Fig.8a point to such scenario.
However, the no-solution curve for HNC is quite above the LG coexistence curve
of the simulations. This is also the case for the 3D RPM. Moreover, in 3D, very
close to the no-solution line, the results of HNC are remarkably in agreement with
those of the simulations, at least for the soft-core RPM[7]. This agreement is dete-
riorated in the present 2D results, principally because of the increased fluctuations
due to the reduced dimensionality. Nevertheless, these results point to the possible
existence of a cluster phase below the no-solution line, as shown in Fig.3c. This
phase could be made mostly of dimers in the very low density region, leading to
the KT pairing scenario, while leading to higher clusters in the high density region.
Then, the liquid part of LG coexistence curve would be the result of a collapse of
a fluid of aggregates into a denser liquid. One additional evidence for an inter-
mediate cluster phase is indirectly provided by studied of the ultra-soft RPM in
the 3D case[40], studied both from computer simulations and approximate mean
field theories taking into account various levels of ionic association. The results
of Ref.[40] seems to indicate that all the theoretical (ρ ,Θ) curves lie above that
phase diagram determined by computer simulations, just like in the present case.
The impossibility of reaching the true binodal could be an indirect evidence that
the cluster phase needs to be explicitly taken into account.

If we admit the existence of a fluid-fluid transition, one question would be
how to detect it through thermodynamic considerations. The wide literature in the
low density region of the KT transition, indicate that this would be a transition of
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infinite order, with no usual thermodynamic signature. Studies of heat capacity
in the 3D case indicate the existence of a weak bump anomaly above the LG
transition[41]. It is obvious that more investigations are required, and we hope
that the present work would stimulate them.

5 Conclusion

The present works indicates that charge ordering holds both for pure 2D-Coulomb
and screened 3D-Coulomb forms of the interaction. It is enough that large am-
plitude short range interactions exist. This is analogous to the screened Coulomb
interaction, in other words massive interactions versus massless interactions, to
borrow a Condensed Matter Physics modern language, where the parameter 1/λ
in Eq.(4) plays the role of a “mass”[1]. In this context, it was interesting to ad-
dress the problem of charge ordering in two-dimensions, where peculiarities such
as the KT transitions are known to exist. We report evidence for a transition for
massive interactions, as separating differently clustered free charge region of the
phase diagram. The strict dimer dielectric phase would then be a particular case,
when all charges in the lower phase are bound in pairs. Furthermore, it would
seem that an approximate theory such as the HNC closure, is be able to predict
the solution boundary of this phase separation. Most of the interesting physics, as
discovered by other authors, such as LG binodal or conducting-dielectric transi-
tion, lies below the region accessible to the HNC theory. This observation opens
the grounds to extend this approximation to this region, by considering explic-
itly bound charge pairs, for example. The concept of charge order can equally
extended to more complex molecular models, following insights gained in the
three-dimensional case. Finally, the confirmation through other methods of the
existence of a fluid-fluid transition requires further investigations of simple two-
dimensional ionic liquids.
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Figure Captions

Fig.1 Terms of the interactions in Model 1 and 2 in Eqs.(3,4). The blue
curve represents the 1/r interaction, the magenta curve the 2D Coulomb
interaction between charges of opposite signs, and the green curves
represent the Yukawa term, green for λ = 2 and dark green for λ = 1
.

Fig.2 Phase diagram (ρ ,θ ). The black and red curves are, respectively,
the liquid-gas binodal and the conductor-dieletric boundary, as de-
termined from computer simulations[26] for the 2D-RPM. The blue
curve is the HNC no-solution line for the 2D-RPM[21]. The green
and yellow curves are the HNC no-solution lines from this work, for
Model 1 and Model 2, respectively. The inset is a zoom on the low
density behaviour, with logarithmic scale for the density. The red
dashed line shows the KT asymptote.

Fig.3 Snapshots of Model 2 for 3 different conditions. (a) Dense fluid ρ =
0.9 and Θ = 0.12 ; (b) low density hot fluid ρ = 0.1 and Θ = 0.135
; (c) Cluster phase below the non-solution region ρ = 0.3 and Θ =
0.09.

Fig.4 Valence dependence of charge ordering at density ρ = 0.9 for Model
1 (Θ1 = 0.045) and Model 2 (Θ2 = 0.1) , as determined by the HNC
approximation. (a) Z=0.2, (b) Z=0.5 and (c) Z=1. Model 1: blue
curve for g++(r) and magenta for g+−(r) . Model 2: green curve for
g++(r) and gold for g+−(r) . The insets represent the corresponding
structure factors Si j(k) with same color conventions.

Fig.5 Comparison with simulations for Model 2 for Θ2 = 0.16, ρ = 0.9
(main panel) and ρ = 0.1 (inset). HNC: blue curve for g++(r) and
magenta for g+−(r) . Simulations: green curve for g++(r) and gold
for g+−(r) .

Fig.6 Density dependence of charge order for Model 1 and Model 2, close
to their respective no-solution curve for HNC. Line conventions: Model
1: ++ in blue and +− in magenta; Model 2: ++ in green and +− in
gold. (a) ρ = 0.8 , Θ1 = Θ2 = 0.054; (b) ρ = 0.3 , Θ1 = 0.1436 and
Θ2 = 0.108; (c) ρ = 0.1 , Θ1 = 0.2 and Θ2 = 0.135; (d) ρ = 0.01 ,
Θ1 = 0.36 and Θ2 = 0.135.

Fig.7 Temperature dependence of structure parameters for Model 1. (a)
Main panel: running KBI G+−(r) for ρ = 0.5 and for different tem-
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peratures; from bottom to top Θ1 = 0.18, 0.09, 0.08 , 0.079 and
0.07845 . Top inset shows S++(k) (upper set of curves) and S+−(k)(lower
set of curves) for Θ1 = 0.18 (blue) and Θ1 = 0.07845(magenta). Lower
inset shows Θ-dependence of 1/S+−(0) (blue) and inverse of first
peak of g+−(magenta). (b) Similar data as (a), but for very low den-
sity ρ = 0.001. Temperatures in the main panel are Θ1 = 0.9, 0.72,
0.54 and0.53. Upper inset S++(k) (upper set) and S+−(k) (lower set)
for Θ1 = 0.9 (blue) and Θ1 = 0.53 (magenta). Lower inset, same as
in (a).

Fig.8 Temperature dependence of structure parameters for Model 2. (a)
Main panel: running KBI G+−(r) for ρ = 0.5 and for different tem-
peratures; from bottom to top Θ2 = 0.8, 0.27, 0.16 , 0.10 , 0.096,
0.086and 0.082 . Top inset shows S++(k) (blue) and S+−(k)(magenta)
for Θ1 = 0.18 (blue) and Θ1 = 0.085(magenta). Lower inset shows
Θ-dependence of 1/S+−(0) (blue) and inverse of first peak of g+−(magenta).
(b) Similar data as (a), but for very low density ρ = 0.001. Temper-
atures in the main panel are Θ1 = 0.8, 0.27, 0.16 and0.10. Upper
inset S++(k) (blue) and S+−(k) (magenta) for Θ1 = 0.8 (blue) and
Θ1 = 0.10 (magenta). Lower inset, same as in (a).
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Fig.1- Terms of the interactions in Model 1 and 2 in Eqs.(3,4). The blue curve

represents the 1/r12 interaction, the magenta curve the 2D Coulomb interaction
between charges of opposite signs, and the green curves represent the Yukawa
term, green for λ = 2 and dark green for λ = 1 .

.

20



.

.
Fig.2 Phase diagram (ρ ,θ ). The black and red curves are, respectively, the

liquid-gas binodal and the conductor-dieletric boundary, as determined from com-
puter simulations[26] for the 2D-RPM. The blue curve is the HNC no-solution line
for the 2D-RPM[21]. The green and yellow curves are the HNC no-solution lines
from this work, for Model 1 and Model 2, respectively. The inset is a zoom on the
low density behaviour, with logarithmic scale for the density. The red dashed line
shows the KT asymptote.
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Fig.3 - Snapshots of Model 2 for 3 different conditions. (a) Dense fluid ρ = 0.9

and Θ = 0.12 ; (b) low density hot fluid ρ = 0.1 and Θ = 0.135 ; (c) Cluster phase
below the non-solution region ρ = 0.3 and Θ = 0.09.
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Fig.4 - Valence dependence of charge ordering at density ρ = 0.9 for Model 1

(Θ1 = 0.045) and Model 2 (Θ2 = 0.1) , as determined by the HNC approximation.
(a) Z=0.2, (b) Z=0.5 and (c) Z=1. Model 1: blue curve for g++(r) and magenta
for g+−(r) . Model 2: green curve for g++(r) and gold for g+−(r) . The insets
represent the corresponding structure factors Si j(k) with same color conventions.
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Fig.5 Comparison with simulations for Model 2 for Θ2 = 0.16, ρ = 0.9 (main

panel) and ρ = 0.1 (inset). HNC: blue curve for g++(r) and magenta for g+−(r)
. Simulations: green curve for g++(r) and gold for g+−(r) ..
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Fig.6 - Density dependence of charge order for Model 1 and Model 2, close

to their respective no-solution curve for HNC. Line conventions: Model 1: ++
in blue and +− in magenta; Model 2: ++ in green and +− in gold. (a) ρ = 0.8
, Θ1 = Θ2 = 0.054; (b) ρ = 0.3 , Θ1 = 0.1436 and Θ2 = 0.108; (c) ρ = 0.1 ,
Θ1 = 0.2 and Θ2 = 0.135; (d) ρ = 0.01 , Θ1 = 0.36 and Θ2 = 0.135.
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Fig.7 - Temperature dependence for Model 1. (a) Main panel: running KBI

G+−(r) for ρ = 0.5 and for different temperatures; from bottom to top Θ1 = 0.18,
0.09, 0.08 , 0.079 and 0.07845 . Top inset shows S++(k) (blue) and S+−(k)(magenta)
for Θ1 = 0.18 (blue) and Θ1 = 0.07845(magenta). Lower inset shows Θ-dependence
of 1/S+−(0) (blue) and inverse of first peak of g+−(magenta). (b) Similar data
as (a), but for very low density ρ = 0.001. Temperatures in the main panel
Θ1 = 0.9,0.72,0.54 and0.53. Upper inset S++(k) (blue) and S+−(k)(magenta)
for Θ1 = 0.9 (blue) and Θ1 = 0.53(magenta). Lower inset :same as in (a).
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Fig.8 - Temperature dependence for Model 2. (a) Main panel: running KBI

G+−(r) for ρ = 0.5 and for different temperatures; from bottom to top Θ2 = 0.8,
0.27, 0.16 , 0.10 , 0.096, 0.086and 0.082 . Top inset shows S++(k) (blue) and
S+−(k)(magenta) for Θ1 = 0.18 (blue) and Θ1 = 0.085(magenta). Lower inset
shows Θ-dependence of 1/S+−(0) (blue) and inverse of first peak of g+−(magenta).
(b) Similar data as (a), but for very low density ρ = 0.001. Temperatures in the
main panel Θ1 = 0.8,0.27,0.16 and0.10. Upper inset S++(k) (blue) and S+−(k)(magenta)
for Θ1 = 0.8 (blue) and Θ1 = 0.10(magenta). Lower inset :same as in (a).
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