Anatase TiO2 nanoparticles for lithium-ion batteries

To cite this version:
S. El-Deen, A. Hashem, A. Ghany, S. Indris, H. Ehrenberg, et al.. Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics, Springer Verlag, In press, <10.1007/s11581-017-2425-y>. <hal-01693653>
Anatase TiO$_2$ nanoparticles for lithium-ion batteries

S.S. El-Deen1, A.M. Hashem2,3, A.E. Abdel Ghany2,4, S. Indris3, H. Ehrenberg3, A. Mauger4, C.M. Julien4

1Department of Nuclear Chemistry, Hot Laboratories Center, Atomic Energy Authority, Inshas P.O. Box 13759, Egypt

2National Research Centre, Inorganic Chemistry Department, 33 El Bohouth st. (former El Tahrir st.), Dokki Giza, P.O. 12622, Egypt

3Karlsruhe Institute of Technology (KIT), Institute for Applied Materials -Energy Storage Systems (IAM-ESS), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

4Sorbonne Universités, Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), UMR 7590, 4 place Jussieu, 75005 Paris, France

Corresponding author: christian.julien@upmc.fr (C.M. Julien)
Abstract

Anatase TiO$_2$ nanoparticles were prepared by a simple sol-gel method at moderate temperature. X-ray powder diffraction (XRD) and Raman spectroscopy revealed the exclusive presence of anatase TiO$_2$ without impurities such as rutile or brookite TiO$_2$. Thermogravimetric analysis confirmed the formation of TiO$_2$ at about 400 °C. Particles size of about 20 nm observed by transmission electron microscopy matches well with the dimension of crystallites calculated from XRD. The electrochemical tests of the sol-gel prepared anatase TiO$_2$ show promising results as electrode for lithium-ion batteries with a stable specific capacity of 174 mAh g$^{-1}$ after 30 cycles at C/10 rate. The results show that improvement of the electrochemical properties of TiO$_2$ to reach the performance required for use as an electrode for lithium-ion batteries require not only nano-sized porous particles, but also a morphology that prevents the self-aggregation of the particles during cycling.

Keywords: TiO$_2$ anatase; nanoparticles; Raman spectroscopy; electrode material; lithium-ion batteries.
Introduction

Special attention was directed to rechargeable lithium batteries as important primary (non-rechargeable) and secondary (rechargeable) electrochemical cells to power most of portable electronic devices such as cell phones, cameras, laptops, etc. Nowadays, lithium-ion batteries (LiBs) are regarded as electrochemical power sources in electric (EVs) and hybrid-electric (HEVs) vehicles due to their high energy and power densities, long cyclability and the absence of a memory effect [1,2].

Current cathode materials of commercial lithium batteries are LiCoO$_2$, LiFePO$_4$ or LiMn$_2$O$_4$, while the graphite or carbonaceous materials are chosen as anode materials [3]. However, graphitic anode material cannot meet all the commercial requirements for important applications because limitation coming from some drawbacks such as initial capacity loss and structural modification during electrochemical cycling [4-6]. Consequently, scalable syntheses of low cost and new electrode materials delivering stable and high specific capacity are desirable. Actually, several transition-metal oxides are under investigation for this purpose such as NiO [7, 8], Co$_3$O$_4$ [8], CuO [8], Fe$_2$O$_3$ [9-12] and TiO$_2$ [13-16].

Titanium dioxide (TiO$_2$) has various applications in solar cells [17-21], photo-electrochemical sensor [22], photo catalysis [23-26] and energy storage [27]. Nanostructured TiO$_2$ as electrode materials for Li-ion batteries is recognized for its unique electrochemical properties. This oxide has outstanding properties such as high theoretical capacity (335 mAh g$^{-1}$), low cost, high safety, low toxicity, good cycling life, convenient discharge potential (<2.0 V), slight volume change (3–4%) during lithium intercalation and fast ionic transport especially in nano-structured form [28-30]. These advantages have discussed recently in [3]. Among the different polymorphs forms of TiO$_2$, e.g. rutile ($P4_2/mnm$ S.G.), anatase ($I4_1/amd$ S.G.), brookite ($Pbca$ S.G.), bronze TiO$_2$-B ($C2/m$), ramdellite ($Pbnm$ S.G.), etc. the anatase lattice can accommodate 0.5Li per formula unit with good insertion kinetics, while rutile and brookite frameworks can uptake few percents of Li$^+$ ions during the insertion/deinsertion reaction [31,32].

It is well known that the decrease of the particle size from micron- to nano-scale can enhance the specific capacities and the rate capability due to the shorter pathway L for ions and electrons and an increase of the surface area A of the interface between electrode and electrolyte. Higher A diminishes the overpotential and increases the reaction at the interface, while smaller L favors the characteristic times τ for kinetics in the proportion $\tau=\frac{L^2}{\pi D^+}$ with D^+ the diffusion coefficient of ions [3,28]. The growth of nanosized TiO$_2$ powders can be
obtained using different synthesis routes such as co-precipitation [33-36], sol-gel [13], emulsion [16] and hydrothermal methods [31].

In this work, we study the nanosized TiO$_2$ material synthesized via sol-gel technique. The synthesized oxide was investigated by several tools such as X-ray diffraction (XRD), thermogravimetry analysis (TGA), Raman spectroscopy (RS) and transmission electron microscopy (TEM). Further electrochemical properties of anatase TiO$_2$ were carried out by cyclic voltammetry, galvanostatic charge-discharge and cycling tests as electrode material in lithium-ion battery.

Experimental

TiO$_2$ nanoparticles were prepared by the sol-gel method according to the method described by Deedar et al. [36], using titanium iso-propoxide (TIP) ($\text{C}_{12}\text{H}_{28}\text{O}_4\text{Ti}$) as raw materials. The mixture of TIP (108 ml) and n-propanol (252.5 ml) was stirred for 5 min using a magnetic stirrer at 500 rpm. In the next step, HCl (2 ml) was added to n-propanol (25.5 ml) at the rate of 1 ml/min. (molar ratio of HCl/TIP was 0.2). After stirring for 30 min, 160.3 ml of the mixture was diluted in 25.3 ml of water at a rate of 1 ml/min. The molar ratio of H_2O/TIP was 4. Then, the mixture was stirred for 24 h at room temperature to form a gel, which was dried overnight. Subsequently, the gel was calcined at 400 °C for 1 h in a muffle-type furnace to obtain the nanosized TiO$_2$ anatase particles.

XRD patterns were collected using a Philips X’Pert apparatus equipped with a CuK$_\alpha$ X-ray source ($\lambda = 1.54056$ Å) in the 2θ range 10–80°. Raman scattering (RS) spectra were recorded using a LabRam Evolution HR (HORIBA) spectrometer equipped with a Nd:YAG laser (523 nm, 1 mW). The spectra were recorded using a backscattering geometry, and the laser power was kept below 25 mW to prevent the degradation of materials by the laser during data acquisition (spectral resolution of 2 cm$^{-1}$). TGA measurements were carried out using a thermal gravimetric analyzer (Perkin Elmer, TGA 7 series) in the temperature range of 30–1000 °C in air at a heating rate of 10 °C min$^{-1}$. A JEOL, transmission electron microscope (TEM, JEM-1230, Japan) was used to investigate the structure and morphology of nanoparticles.

TiO$_2$ electrodes were prepared from a mixture 80% (w/w) of the active material, 10% (w/w) super C65 carbon (TIMCAL) and 10% (w/w) polyvinylidene fluoride (Solef PVdF 6020 binder, Solvay), in N-methyl-2-pyrrolidone (NMP, Sigma-Aldrich) to get a slurry. Typical electrode with a thickness of 90 nm obtained by coating the slurry on Al foil at a
loading of ~7 mg cm\(^{-2}\) was dried over night at 80 °C; then discs were punched out with a diameter of 1.2 cm. Further drying for the electrode disks at 100 °C under vacuum was done and finally it was compacted with a pressure of 8 tons. The cell was assembled using two-electrode Swagelok®-type test cells in an argon-filled glove box with lithium foil (Alfa Aesar) as anode, LP30 1 mol L\(^{-1}\) LiPF\(_6\) in (1:1) ethylene carbonate (EC) and dimethyl carbonate (DMC) as electrolyte, and glass microfiber filters (Whatmann®-GF/D 70 mm Ø) as separator. A VMP3 multi-channel potentiostat (Bio-Logic, France) was used for the electrochemical tests of the electrodes at 25 °C in the voltage range of 1-3 V with galvanostatic cycling (C/10 rate) and cyclic voltammetry (CV) at 0.05 mV s\(^{-1}\) sweep rate.

Results

Structure and Morphology

The XRD pattern of TiO\(_2\) calcined at 400 °C shown in Fig. 1 reveals the presence of characteristic peaks at 2\(\theta\) values of 25.42, 37.89, 48.12, 54.04, 55.16 and 62.79°, corresponding to (101), (004), (200), (105), (211) and (204) crystal planes of the tetragonal phase of TiO\(_2\), space group \(I4_1/amd\), respectively [31]. This result clarifies that TiO\(_2\) has exclusively grown in the anatase phase and it matches well with pattern of the database (JCPDS 21-1272). The rather broad peaks indicate the nano-sized character of the crystallites. No peak corresponding to rutile phase was observed. Rietveld refinement has been performed as follows. We start with the constraints that, at ideal stoichiometry, Ti ions occupy the \(4a\) Wyckoff position while the oxygen anions occupy the \(8e\) sites. The best fit (Fig. 1) was obtained with \(R_{wp}=11.43\%\), \(\chi^2=1.191\), \(R(F^2)=0.125\) and the lattice parameters are determined as \(a=b=3.7864\) Å and \(c=9.5142\) Å. The average crystallite size of ~22 nm was calculated via the Scherrer's equation using the full-width at half-maximum (FWHM) of seven Bragg peaks.

The thermogravimetric analysis (TGA) of precursor and as-prepared TiO\(_2\) is displayed in Fig. 2. For the precursor about 22.3% weight loss was observed till 450 °C and the profile was flat above this temperature. It means that the residual water and organic residues were eliminated below 400 °C. The weight loss between room temperature and 200 °C is mainly due to removal of alcohol and adsorbed water. The weight loss between 200 and 400 °C is attributed to the elimination of organic materials and formation of pure TiO\(_2\) nanoparticles [38] as confirmed by our TGA data (Fig. 2). The sample prepared at 400 °C for 1 hour shows only a slight weight loss (2.3%) below 450 °C due to surface water followed by almost no
weight loss, which indicates a high thermal stability of the TiO$_2$ anatase nanoparticles up to 1000 °C.

![Rietveld refinement of XRD pattern of TiO$_2$ nanoparticles heat treated at 400 °C.](image1)

Figure 1. Rietveld refinement of XRD pattern of TiO$_2$ nanoparticles heat treated at 400 °C. The Bragg lines are indexed in the tetragonal structure (space group $I4_1/amd$).

![Thermogravimetric analysis of the precursor and the sol-gel as-prepared anatase TiO$_2$ nanoparticles.](image2)

Figure 2. Thermogravimetric analysis of the precursor and the sol-gel as-prepared anatase TiO$_2$ nanoparticles.

To confirm the high purity of the TiO$_2$ anatase nanoparticles, the Raman spectrum (RS), which is a sensitive tool, was carried out to give a better insight into the structure of synthesized TiO$_2$ nanoparticles (Fig. 3). The space group of the tetragonal anatase is $I4_1/amd$ and the local symmetry is D_{2d} [39]; The group factor analysis provides six basic Raman-active modes with the representation as $A_{1g} + 2B_{1g} + 3E_g$ in contrast to four active modes...
$A_{1g}+B_{1g}+B_{2g}+E_g$ for the rutile phase [40,41]. The RS spectrum shown in Fig. 3 evidences the typical features of the TiO$_2$ anatase with the bands at 144 (E_g), 197 (E_g), 399 (B_{1g}), 513 (A_{1g}), 519 (B_{1g}) and 639 cm$^{-1}$ (E_g). Thus, a good agreement is observed between RS and XRD data, which confirms the high purity TiO$_2$ anatase phase prepared by the sol-gel synthesis at moderate temperature.

Figure 3. Raman spectrum of the as prepared anatase TiO$_2$ recorded with the 514.5 nm excitation wavelength.

Figure 4 displays the TEM image (a), the electron diffraction diagrams (b) and the HRTEM image (scale=20 nm) (c) of TiO$_2$ powder prepared at 400 °C. The nanoparticles of regular shape are well dispersed with slight agglomeration. Each grain has an average particle size of about 20 nm, which is consistent with the dimension of crystallites calculated from XRD. The electron diffraction patterns show the nanometer sized character of TiO$_2$ particles.

Figure 4. (a) TEM image and (b) electron diffraction diagram of anatase TiO$_2$ nanoparticles heat treated at 400 °C. (c) HRTEM image (scale=20 nm).
Electrochemical properties

The electrochemical performance of TiO\(_2\) was evaluated in half-cell configuration (Li//TiO\(_2\)) in the potential range 1-3 V vs. Li\(^+\)/Li\(0\) at room temperature. The cyclic voltammetry test for the first five cycles is displayed in Fig. 5. The cell was first discharged to enable insertion of lithium ions into the TiO\(_2\) crystal lattice, resulting in a reduction of titanium ions. Sharp peaks at ~1.70 and ~2.02 V were observed during cathodic and anodic reaction, respectively. The separation of anodic and cathodic peaks is ubiquitous in crystalline anatase electrodes. These peaks are assigned to the reduction of Ti\(^{4+}\) to Ti\(^{3+}\) during the discharge and subsequent oxidation to +4 during charge, which indicates the excellent reversibility of the anatase TiO\(_2\) as an insertion host. Electrochemical lithium insertion/extraction can be expressed by the following insertion-deinsertion reaction: TiO\(_2\) + \(\text{xLi}^+ + \text{xe}^-\) \(\leftrightarrow\) Li\(_x\)TiO\(_2\) [42]. However, in the subsequent cycles, small deviations in the peak positions are noted, possibly due to some stress in the TiO\(_2\) crystal lattice.

Figure 5. Cyclic voltammogram of TiO\(_2\) in half-cell cycled in the range 1-3 V vs. Li\(^+\)/Li\(0\) at sweep rate of 0.05 mV s\(^{-1}\).

Figure 6 shows the galvanostatic charge–discharge curves of TiO\(_2\) in the potential range 1.0–3.0 V at a 0.1C rate (C rate was calculated on the basis of 1C=335 mAh g\(^{-1}\)). An initial discharge capacity of 221 mAh g\(^{-1}\) corresponds to insertion of 0.66 mol of Li per formula unit. In the first charge, the cell delivered a reversible capacity of 189 mAh g\(^{-1}\) (0.56 mol of Li from the theoretical capacity). Although anatase TiO\(_2\) exhibits a theoretical specific capacity of 335 mAh g\(^{-1}\), the practical capacity attainable is twice smaller, because of the strong Li-Li repulsion in the Li\(_x\)TiO\(_2\) framework at greater degree of insertion, i.e. \(x>0.5\) [43]. The irreversible capacity in the first cycle is estimated to be ~32 mAh g\(^{-1}\), which corresponds to~
0.1 mol of lithium. After 30 cycles, the charge and discharge capacity slightly decreased to 182 and 174 mAh g\(^{-1}\), respectively, providing a decreasing irreversible capacity of 8 mAh g\(^{-1}\). The discharge plateau related to the beginning of lithium insertion is observed at \(~1.76\) V and the charge plateau starts at \(~1.9\) V for the Li deinsertion. These potentials are similar to those reported in the literature (\(~1.75\) and \(~1.88\) V, respectively). This behavior matches well with the redox peak mentioned above in the cyclic voltammogram. The electrochemical performance of our sample is comparable with that of the literature. For instance, Rai et al. [28] reported a discharge and charge capacity of \(~214\) and \(~154\) mAh g\(^{-1}\), respectively, for TiO\(_2\) nanoparticles (<10 nm) cycled at 0.06C. However, it was reported that during Li insertion, the symmetry of the anatase unit cell decreases and its original tetragonal (\(I4_1/amd\)) structure transforms into the orthorhombic (\(Pmn2_1\)) space group [44]. This phase transition occurs in the regime of deep discharge along with a spontaneous phase separation of a lithium-poor (Li\(_{0.01}\)TiO\(_2\)) and a lithium-rich (Li\(_{0.5}\)TiO\(_2\)) phase [45]. Note that (a) the decrease of the irreversible capacity (32 against 8 mAh g\(^{-1}\)) means no phase transition but a usual electrochemical behavior, (b) the voltage profile of the active electrode material annealed at 400 °C displays only a small polarization \(V_{ch}\)\(-\)\(V_{dis} = 120\) mV due to the good crystallinity of particles and (c) the small particle size (\(L = 20\) nm) allows quick Li-ion insertion-deinsertion due to the short distance for Li\(^+\) transport. The rate capability and cycling performance of 20-nm sized TiO\(_2\) particles are presented in Fig. 7. The rate capability has been tested at the 2\(^{nd}\) cycle in the C-rate range from C/20 to 50C as displayed by the modified Peukert plot (Fig. 7a). As commonly observed for electrode materials, the decay of the discharge capacity follows a semi-logarithmic law as the current passed through the cell increases. After tests at high C-rate of 10C (corresponding to a full discharge in 6 min), the capacity \(~125\) mAh g\(^{-1}\) is delivered after the 2\(^{nd}\) cycle and a capacity of 45 mAh g\(^{-1}\) at 30C rate, which gives evidence of the electrochemical reversibility and structural stability of the samples. Figure 7b presents the discharge capacity as a function of the cycle number for cycling between 1 and 3 V at a C/10 rate. The cell showed a very stable cycling after capacity fading in the initial few cycles. The capacity retention of about 82.5% was obtained after 30 cycles. Note that the capacity fading in the initial cycle is due to cell formation (growth of the SEI).
Figure 6. Charge and discharge curves of TiO$_2$ operated at C/10 rate in the potential range 1-3 V vs. Li$^+$/Li0 at room temperature. Cycle numbers are given in the graph.

For comparison, the capacity retention of the nanotubes is 81%, and that of nano-rods is only 40% after 30 cycles [46]. Therefore, the nanoparticles in the present work have reached the same cyclability as the nanotubes, with the advantage that the nanoparticles have been synthesized by a scalable and simple sol-gel synthesis process. We also note that anatase is a better photocatalyst than rutile TiO$_2$ [47], so that the sol-gel synthesis of anatase TiO$_2$ has also important applications in this context, as the sol-gel process is also efficient to synthesize thin films [48]. The drawback of the catalytic surface of TiO$_2$ is that its catalyst sites have side reactions with the organic electrolytes. The fact that our nanoparticles have irreversible capacity loss similar to other nano-structures surfaces such as nanotubes or nanorods using similar electrolytes suggest that it is a general property of this transition metal oxide linked to this catalytic property of the high energy sites at the surface. In particular, Ti-OH units are known to be highly catalytic toward counter-ion (PF$_6^-$). This drawback may be overcome by coating the TiO$_2$ anode material with a protective layer. For instance, Tan et al. [49] have recently reported that coating TiO$_2$ with a uniform and continuous nitrogen-doped carbon layer with thickness of 4±0.5 nm leads to higher discharge retention and better cycling performance.
Figure 7. (a) Modified Peukert plot of 20-nm sized TiO$_2$ particles carried out at the 2nd cycle. (b) Cycling performance of anatase TiO$_2$ nanoparticles operated at C/10 in the potential range 1-3 V vs. Li metal at room temperature.

The diffusion coefficient D_{Li} of Li$^+$ ions in anatase TiO$_2$ nanoparticles has been investigated using cyclic voltammetry at different scan rates (Fig. 8a). The relation between the current I_p and the scan rate ν is expressed by the Randles equation [50]:

$$I_p = 0.4958nFAC^*\left(\frac{D_{Li}amF}{RT}\right)^{1/2} \nu^{1/2} = \psi_{ox,red}\nu^{1/2}, \quad (1)$$

where F, R and T are the usual constants, A the surface area of the electrode, C^* the concentration of Li$^+$ ions ($C^*=23.6$ mol dm$^{-3}$ assuming a composition Li$_{0.5}$TiO$_2$), n the number of electrons and α the transfer constant ($\alpha=0.5$). D_{Li} derived from the plots in Fig. 8b are 8.5×10^{-13} and 5.8×10^{-13} cm2 s$^{-1}$ for oxidation (Li extraction) and reduction (Li insertion) respectively. These values provide a characteristic time $t=L^2/\pi D_{Li}$ for intercalation of the particles equal to 1 h. Several authors reported the diffusion coefficient of Li$^+$ ions in anatase TiO$_2$ nanoparticles as insertion host materials [51-59]. There is general agreement for overall diffusion process dominated by the bulk diffusion, which is considered as rate limiting. The diffusion coefficients evaluated using different techniques: chronoamperometry [51,54,55], galvanostatic titration [52], cyclic voltammetry [53,57,58], NMR [56] and EIS [59] appeared to be in the range 10^{-16}-10^{-12} cm2 s$^{-1}$. Our results are in good agreement with those of Kavan et al. [55], who reported a higher D_{Li} for the de-insertion process. This difference in the rate of the insertion/de-insertion process has been attributed to the lattice relaxation during the accommodation of Li$^+$ ions in the anatase framework. Cantao et al. [52] reported the
logarithmic variation of D_{Li} with the film thickness; the highest diffusion coefficient was obtained for the thicker film. Table 2 summarized the D_{Li} values of the literature.

Table 2. Diffusion coefficient of Li^+ in TiO$_2$ host materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Particle size (nm)</th>
<th>Diffusion coefficient ($cm^2 s^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatase thin films</td>
<td>1.55 µm thick</td>
<td>3.8×10^{-13}</td>
<td>[51]</td>
</tr>
<tr>
<td>TiO$_2$ thin films</td>
<td>25</td>
<td>5.0×10^{-13}</td>
<td>[52]</td>
</tr>
<tr>
<td>Anatase nanoporous films</td>
<td>4.2 µm thick</td>
<td>4.0×10^{-17}</td>
<td>[53]</td>
</tr>
<tr>
<td>CVD films</td>
<td>2.2 µm thick</td>
<td>2.0×10^{-15}</td>
<td>[54]</td>
</tr>
<tr>
<td>Anatase single crystals</td>
<td>-</td>
<td>2.0×10^{-13}</td>
<td>[55]</td>
</tr>
<tr>
<td>Anatase (NMR measurements)</td>
<td>60-80</td>
<td>4.7×10^{-12}</td>
<td>[56]</td>
</tr>
<tr>
<td>Nano TiO$_2$(B)</td>
<td>10-20</td>
<td>3.9×10^{-16}</td>
<td>[57]</td>
</tr>
<tr>
<td>TiO$_2$ nanotubes</td>
<td>150 nm dia.</td>
<td>6.1×10^{-16}</td>
<td>[58]</td>
</tr>
<tr>
<td>C-coated TiO$_2$</td>
<td>60</td>
<td>4.6×10^{-13}</td>
<td>[59]</td>
</tr>
<tr>
<td>Anatase nanoparticles</td>
<td>20</td>
<td>8.5×10^{-13}</td>
<td>This work</td>
</tr>
</tbody>
</table>

Figure 8. (a) Cyclic voltammogram of TiO$_2$ as a function of the scan rate from 0.05 to 10 mV s$^{-1}$. (b) Plot of the current vs. square root of the scan rate for the oxidation and reduction peaks.

Table 1. Diffusion coefficient of Li^+ ions in TiO$_2$ host materials.

Discussion

The high performance of the anatase TiO$_2$ particles is linked to their small diameter of 20 nm. However, even if we have decreased the size of the particles to this nanometer range and
obtained particles that are single crystals without any impurity, we find that the problem of the cycling life, which is vital for Li-storage performance and a well-known limiting factor of TiO$_2$, has not been solved. The first idea to improve the electrochemical properties is to use porous particles to increase the effective surface area in contact with the electrolyte, and coat the particles with carbon. The beneficial effect of carbon coating of TiO$_2$ has been observed in many works (see [60] for a review). In particular, Fu et al. [61] reported improved electrochemical properties obtained with N-doped carbon coating of TiO$_2$ spherical particles, using ethylenediamine (C$_2$H$_6$N$_2$, EDA) as the N-doped carbon precursor. The beneficial effect of carbon coating nanoparticles of active electrode elements is a general property, that is not only observed in all the Li-ion batteries [3], but also been observed in Na-ion batteries [62-64]. Generally, this improvement comes from the fact that the intrinsic electrical conductivity of the particles is small, so that the coating by conductive carbon improves both the capacity and rate capability. In the particular case of TiO$_2$, however, another reason for the improvement of the cycling life with N-doped carbon coating [61] may be invoked: a synergetic effect of the increase of the conductivity and an increase of the surface stability by coating with N-doped carbon owing to the strong interaction of TiO$_2$ with ethylenediamine [65], plus nitridation of Ti atoms to form O-Ti-N bonds. The nitridation should be largely the dominant effect with respect to the EDA-TiO$_2$ interaction, because outstanding results have been obtained on other N-doped carbon coated TiO$_2$ without the EDA precursor (one-step synthesis by hydrolyzing tetrabutyl-titanate (TBT) mixed with urea and heated in a sealed autoclave at 550 °C for 5 h) [66].

The next question is to know if it is possible to improve the electrochemical properties by decreasing even more the particle size. For instance, Tan et al. [49] have recently reported that coating TiO$_2$ with a uniform and continuous nitrogen-doped carbon layer with thickness of 4±0.5 nm leads to higher discharge retention and better cycling performance. To answer this question, we can compare our results with prior works that have been published for particles 4 nm thick, obtained either by fragmentation of nanorods [67], or by a two-step room temperature synthesis process [68,69]. In one case [67], the electrochemical properties are better, as these particles delivered a capacity of 200 mAh g$^{-1}$ for 500 cycles at 1C rate. To the contrary, in the other case [68], the opposite is true, since the capacity is circa 155 mAh g$^{-1}$ at the 30th cycle at C/20 rate in the same voltage range as in Fig. 7, against 180 mAh g$^{-1}$ at C/10 rate according to Fig. 7. Nevertheless, the results in [68] were an improvement with respect to results prior to 2013, which the authors attributed to a modification in the lithium insertion mechanism that is no longer attributable to a two-phase reaction between the two-end
members \(\text{Li}_4\text{TiO}_2 \) and \(\text{Li}_{0.5\pm}\alpha\text{TiO}_2 \) when downsizing the particle; instead, the insertion mechanism would proceed through a complete solid solution all along the composition range [69]. Indeed, in this prior work, the voltage plateau characteristic of the two-phase behavior in Fig. 6 was replaced by a continuous slope between the end members. However, the results obtained on 4-nm thick particles in Ref. [67] do show the same plateau as in Fig. 6. Therefore, the shift of the insertion mechanism from two-phase to a complete solid solution is not an intrinsic property linked to the size of the particles. A possible explanation is that the surface layer of the particles in Ref. [68] is ill-crystallized. In the case of LiFePO\(_4\), for instance, we have determined that the amorphization of the surface layer also favors the solid-solution process, the two-phase behavior being recovered by heat treatment at circa 650 °C, accompanied with the re-crystallization of the surface layer during the carbon coating [70-72]. We believe the same disordered surface layer explains the results in Ref. [68]. In that case, however, the particle size that has been determined by the Scherrer formula has been underestimated, because the X-ray diffraction will probe only the crystallized part, i.e. the bulk part of radius 2 nm, to which the thickness of the more or less amorphous layer that is not probed by XRD should be added. If the thickness of the surface layer is about 2 nm, which is the typical size in LiFePO\(_4\), the thickness of the particles might be circa 8 nm, intermediate between 4 nm in Ref. [67] and 20 nm in the present work. In any case, the decrease of the electrochemical performance in Ref. [68] with respect to the present case, let alone with respect to [61], clearly shows that the size of the particle is not the only pertinent parameter, and the quality of the surface is crucial. In addition, electrochemical properties even better than in Ref. [67] have also been obtained with larger particles of size 9 nm in [66]. We also note that good results obtained on N-doped carbon coated TiO\(_2\) in [61] (even if the cyclability has been tested on only 60 cycles against 500 cycles in [67]) have been obtained with big spherical particles of size 550 nm. Therefore, even though the decrease of the size down to 4 nm may contribute to the outstanding performance in [67], the results obtained in the present work suggest that the main reason is a surface effect. In particular, the fragmentation of nanorods perpendicular to the direction allows to obtain a well-crystallized surface layer with an increased \((001)/(101)\) facet ratio.

Due to the high energy surface of TiO\(_2\), the nanoparticles show a tendency to self-aggregate during the charge-discharge process, and this is the main cause of the decay of the capacity upon cycling [73]. The best results have been obtained with special morphologies that avoid this irregular aggregation: one example is hollow nanostructures composed of nanosized primary building blocks [74]. The shell of the hollow structure was constructed by
nanoparticles with size of about 10–20 nm comparable to that of the particles in the present work. However, in virtue of the hollow structure and porosity of the shell, the self-aggregation was avoided. This electrode delivered a very stable discharge capacity of 150 mAh g\(^{-1}\) over 500 cycles that have been tested at 5C rate, despite the fact that it was rutile TiO\(_2\), the phase that has the highest thermodynamic stability, but also considered as a poor Li\(^+\)-insertion material compared with the anatase phase. Another successful morphology is a hierarchical structure of micro/nanoparticles constructed by ultra-fine nanowires with 3–8 nm width and several micrometers length \[75\]. A capacity of 207 mAh g\(^{-1}\) was obtained at 0.2C after 150 cycles, and was maintained at 140 mAh g\(^{-1}\) at 25C. The authors have attributed this performance to the fact that, in such a kind of hierarchical structure, the micrometer dimensions of the architectural skeleton effectively avoid aggregation of the nanostructured active materials.

Conclusion

TiO\(_2\) nanoparticles were prepared by a simple and cheap sol-gel method with subsequent annealing at moderate temperature of 400 °C for 1 h. X-ray diffraction and Raman spectroscopy show that the pure anatase phase was obtained without any rutile component. The nano morphology of the regular shaped particles, 20 nm in size, was observed by TEM and electron diffraction. The electrochemical measurements were carried out in the potential range 1-3 V vs. Li metal at C/10 rate and show a high reversible capacity of the anatase nanoparticles. An initial discharge capacity of 221 mAh g\(^{-1}\) was obtained that corresponds to insertion of 0.66 mol of Li per formula unit, while after 30 cycles, the charge and discharge capacity slightly decreased to 182 and 174 mAh g\(^{-1}\), respectively, providing a decreasing irreversible capacity of 8 mAh g\(^{-1}\). The results also suggest that a control of the crystallization of the surface layer and its protection by coating will be the strategy to optimize the performance of anatase TiO\(_2\) particles. The diffusion coefficients derived from the cycliv voltammetry measurements are 8.5×10\(^{-13}\) and 5.8×10\(^{-13}\) cm\(^2\) s\(^{-1}\) for oxidation (Li extraction) and reduction (Li insertion), respectively.

These results also suggest that a control of the crystallization of the surface layer and its porosity by appropriate coating of nanoparticles in a morphology that avoids the self-aggregation during cycling will be the strategy to optimize the performance of anatase TiO\(_2\) particles by increasing the cycle life. The present work suggests that further works should be pursued along this direction, and are more promising than the opposite attempt that can be recently found in the literature, i.e. coating other active materials with TiO\(_2\) films.
References

44. Cava RJ, Murphy DW, Zahurak S, Santoro A, Roth RS (1984) The crystal structures of the lithium-inserted metal oxides Li$_{0.5}$TiO$_2$ anatase, LiTi$_2$O$_4$. J Solid State Chem 53:64–75
60. Liu Y, Yang Y (2016) Recent progress of TiO$_2$-based anodes for Li ion batteries, J. Nanomaterials 2016:8123652

70. Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO$_4$ particles. Chem Mat 20:462-469

