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Abstract 

 

Anatase TiO2 nanoparticles were prepared by a simple sol-gel method at moderate 

temperature. X-ray powder diffraction (XRD) and Raman spectroscopy revealed the 

exclusive presence of anatase TiO2 without impurities such as rutile or brookite TiO2. 

Thermogravimetric analysis confirmed the formation of TiO2 at about 400 °C. Particles 

size of about 20 nm observed by transmission electron microscopy matches well with 

the dimension of crystallites calculated from XRD. The electrochemical tests of the sol-

gel prepared anatase TiO2 show promising results as electrode for lithium-ion batteries 

with a stable specific capacity of 174 mAh g
-1

 after 30 cycles at C/10 rate. The results 

show that improvement of the electrochemical properties of TiO2 to reach the 

performance required for use as an electrode for lithium-ion batteries require not only 

nano-sized porous particles, but also a morphology that prevents the self-aggregation of 

the particles during cycling. 

 

Keywords: TiO2 anatase; nanoparticles; Raman spectroscopy; electrode material; lithium-ion 

batteries. 
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Introduction 

 

Special attention was directed to rechargeable lithium batteries as important primary (non-

rechargeable) and secondary (rechargeable) electrochemical cells to power most of portable 

electronic devices such as cell phones, cameras, laptops, etc. Nowadays, lithium-ion batteries 

(LiBs) are regarded as electrochemical power sources in electric (EVs) and hybrid-electric 

(HEVs) vehicles due to their high energy and power densities, long cyclability and the 

absence of a memory effect [1,2].  

Current cathode materials of commercial lithium batteries are LiCoO2, LiFePO4 or 

LiMn2O4, while the graphite or carbonaceous materials are chosen as anode materials [3]. 

However, graphitic anode material cannot meet all the commercial requirements for important 

applications because limitation coming from some drawbacks such as initial capacity loss and 

structural modification during electrochemical cycling [4-6]. Consequently, scalable 

syntheses of low cost and new electrode materials delivering stable and high specific capacity 

are desirable. Actually, several transition-metal oxides are under investigation for this purpose 

such as NiO [7, 8], Co3O4 [8], CuO [8], Fe2O3 [9-12] and TiO2 [13-16]. 

Titanium dioxide (TiO2) has various applications in solar cells [17-21], photo-

electrochemical sensor [22], photo catalysis [23-26] and energy storage [27]. Nanostructured 

TiO2 as electrode materials for Li-ion batteries is recognized for its unique electrochemical 

properties. This oxide has outstanding properties such as high theoretical capacity (335 mAh 

g
-1

), low cost, high safety, low toxicity, good cycling life, convenient discharge potential 

(2.0 V), slight volume change (3–4%) during lithium intercalation and fast ionic transport 

especially in nano-structured form [28-30]. These advantages have discussed recently in [3]. 

Among the different polymorphs forms of TiO2, e.g. rutile (P42/mnm S.G.), anatase (I41/amd 

S.G.), brookite (Pbca S.G.), bronze TiO2-B (C2/m), ramdellite (Pbnm S.G.), etc. the anatase 

lattice can accommodate 0.5Li per formula unit with good insertion kinetics, while rutile and 

brookite frameworks can uptake few percents of Li
+
 ions during the insertion/deinsertion 

reaction [31,32]. 

It is well known that the decrease of the particle size from micron- to nano-scale can 

enhance the specific capacities and the rate capability due to the shorter pathway L for ions 

and electrons and an increase of the surface area A of the interface between electrode and 

electrolyte. Higher A diminishes the overpotential and increases the reaction at the interface, 

while smaller L favors the characteristic times  for kinetics in the proportion =L
2
/D

+
 with 

D
+
 the diffusion coefficient of ions [3,28]. The growth of nanosized TiO2 powders can be 
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obtained using different synthesis routes such as co-precipitation [33-36], sol-gel [13], 

emulsion [16] and hydrothermal methods [31]. 

In this work, we study the nanosized TiO2 material synthesized via sol-gel technique. The 

synthesized oxide was investigated by several tools such as X-ray diffraction (XRD), 

thermogravimetry analysis (TGA), Raman spectroscopy (RS) and transmission electron 

microscopy (TEM). Further electrochemical properties of anatase TiO2 were carried out by 

cyclic voltammetry, galvanostatic charge-discharge and cycling tests as electrode material in 

lithium-ion battery.  

 

Experimental 

 

TiO2 nanoparticles were prepared by the sol-gel method according to the method desvribed by 

Deedar et al. [36], using titanium iso-propoxide (TIP) (C12H28O4Ti) as raw materials. The 

mixture of TIP (108 ml) and n-propanol (252.5 ml) was stirred for 5 min using a magnetic 

stirrer at 500 rpm. In the next step, HCl (2 ml) was added to n-propanol (25.5 ml) at the rate 

of 1 ml/min. (molar ratio of HCl/TIP was 0.2). After stirring for 30 min, 160.3 ml of the 

mixture was diluted in 25.3 ml of water at a rate of 1 ml/min. The molar ratio of H2O/TIP was 

4. Then, the mixture was stirred for 24 h at room temperature to form a gel, which was dried 

overnight. Subsequently, the gel was calcined at 400 °C for 1 h in a muffle-type furnace to 

obtain the nanosized TiO2 anatase particles. 

XRD patterns were collected using a Philips X’Pert apparatus equipped with a CuK X-

ray source ( = 1.54056 Å) in the 2θ range 10–80°. Raman scattering (RS) spectra were 

recorded using a LabRam Evolution HR (HORIBA) spectrometer equipped with a Nd:YAG 

laser (523 nm, 1 mW). The spectra were recorded using a backscattering geometry, and the 

laser power was kept below 25 mW to prevent the degradation of materials by the laser during 

data acquisition (spectral resolution of 2 cm
−1

). TGA measurements were carried out using a 

thermal gravimetric analyzer (Perkin Elmer, TGA 7 series) in the temperature range of 30–

1000 °C in air at a heating rate of 10 °C min
−1

. A JEOL, transmission electron microscope 

(TEM, JEM-1230, Japan) was used to investigate the structure and morphology of 

nanoparticles. 

TiO2 electrodes were prepared from a mixture 80% (w/w) of the active material, 10% 

(w/w) super C65 carbon (TIMCAL) and 10% (w/w) polyvinylidene fluoride (Solef PVdF 

6020 binder, Solvay), in N-methyl-2-pyrrolidone (NMP, Sigma-Aldrich) to get a slurry. 

Typical electrode with a thickness of 90 nm obtained by coating the slurry on Al foil at a 
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loading of ~7 mg cm
-2

 was dried over night at 80 °C; then discs were punched out with a 

diameter of 1.2 cm. Further drying for the electrode disks at 100 °C under vacuum was done 

and finally it was compacted with a pressure of 8 tons. The cell was assembled using two-

electrode Swagelok®- type test cells in an argon-filled glove box with lithium foil (Alfa 

Aesar) as anode, LP30 1mol L
-1

 LiPF6 in (1:1) ethylene carbonate (EC) and dimethyl 

carbonate (DMC) as electrolyte, and glass microfiber filters (Whatmann®-GF/D 70 mm Ø) as 

separator. A VMP3 multi-channel potentiostat (Bio-Logic, France) was used for the 

electrochemical tests of the electrodes at 25 °C in the voltage range of 1-3 V with 

galvanostatic cycling (C/10 rate) and cyclic voltammetry (CV) at 0.05 mV s
-1

 sweep rate. 

 

Results  

 

Structure and Morphology 

The XRD pattern of TiO2 calcined at 400 °C shown in Fig. 1 reveals the presence of 

characteristic peaks at 2θ values of 25.42, 37.89, 48.12, 54.04, 55.16 and 62.79°, 

corresponding to (101), (004), (200), (105), (211) and (204) crystal planes of the tetragonal 

phase of TiO2, space group I41/amd, respectively [31]. This result clarifies that TiO2 has 

exclusively grown in the anatase phase and it matches well with pattern of the database 

(JCPDS 21-1272). The rather broad peaks indicate the nano-sized character of the crystallites. 

No peak corresponding to rutile phase was observed. Rietveld refinement has been performed 

as follows. We start with the constraints that, at ideal stoichiometry, Ti ions occupy the 4a 

Wyckoff position while the oxygen anions occupy the 8e sites. The best fit (Fig. 1) was 

obtained with Rwp=11.43%, 2
=1.191, R(F

2
)=0.125 and the lattice parameters are determined 

as a=b=3.7864 Å and c=9.5142 Å. The average crystallite size of ~22 nm was calculated via 

the Scherrer's equation using the full-width at half-maximum (FWHM) of seven Bragg peaks. 

The thermogravimetric analysis (TGA) of precursor and as-prepared TiO2 is displayed in 

Fig. 2. For the precursor about 22.3% weight loss was observed till 450 °C and the profile was 

flat above this temperature. It means that the residual water and organic residues were 

eliminated below 400 °C. The weight loss between room temperature and 200 °C is mainly 

due to removal of alcohol and adsorbed water. The weight loss between 200 and 400 °C is 

attributed to the elimination of organic materials and formation of pure TiO2 nanoparticles 

[38] as confirmed by our TGA data (Fig. 2). The sample prepared at 400 °C for 1 hour shows 

only a slight weight loss (2.3%) below 450 °C due to surface water followed by almost no 
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weight loss, which indicates a high thermal stability of the TiO2 anatase nanoparticles up to 

1000 °C.  

 

 

Figure 1. Rietveld refinement of XRD pattern of TiO2 nanoparticles heat treated at 400 C. 

The Bragg lines are indexed in the tetragonal structure (space group I41/amd). 

 

 

Figure 2. Thermogravimetric analysis of the precursor and the sol-gel as-prepared anatase 

TiO2 nanoparticles. 

 

To confirm the high purity of the TiO2 anatase nanoparticles, the Raman spectrum (RS), 

which is a sensitive tool, was carried out to give a better insight into the structure of 

synthesized TiO2 nanoparticles (Fig. 3). The space group of the tetragonal anatase is I41/amd 

and the local symmetry is D2d [39]; The group factor analysis provides six basic Raman-active 

modes with the representation as A1g + 2B1g + 3Eg in contrast to four active modes 
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A1g+B1g+B2g+Eg for the rutile phase [40,41]. The RS spectrum shown in Fig. 3 evidences the 

typical features of the TiO2 anatase with the bands at 144 (Eg), 197 (Eg), 399 (B1g), 513 (A1g), 

519 (B1g) and 639 cm
-1

 (Eg). Thus, a good agreement is observed between RS and XRD data, 

which confirms the high purity TiO2 anatase phase prepared by the sol-gel synthesis at 

moderate temperature. 

 

Figure 3. Raman spectrum of the as prepared anatase TiO2 recorded with the 514.5 nm 

excitation wavelength. 

 

Figure 4 displays the TEM image (a), the electron diffraction diagrams (b) and the 

HRTEM image (scale=20 nm) (c) of TiO2 powder prepared at 400 °C. The nanoparticles of 

regular shape are well dispersed with slight agglomeration. Each grain has an average particle 

size of about 20 nm, which is consistent with the dimension of crystallites calculated from 

XRD. The electron diffraction patterns show the nanometer sized character of TiO2 particles. 

 

     

Figure 4. (a) TEM image and (b) electron diffraction diagram of anatase TiO2 nanoparticles 

heat treated at 400 °C. (c) HRTEM image (scale=20 nm). 
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Electrochemical properties 

The electrochemical performance of TiO2 was evaluated in half-cell configuration 

(Li//TiO2) in the potential range 1-3 V vs. Li
+
/Li

0
 at room temperature. The cyclic 

voltammetry test for the first five cycles is displayed in Fig. 5. The cell was first discharged to 

enable insertion of lithium ions into the TiO2 crystal lattice, resulting in a reduction of 

titanium ions. Sharp peaks at ~1.70 and ~2.02 V were observed during cathodic and anodic 

reaction, respectively. The separation of anodic and cathodic peaks is ubiquitous in crystalline 

anatase electrodes. These peaks are assigned to the reduction of Ti
4+

 to Ti
3+

 during the 

discharge and subsequent oxidation to +4 during charge, which indicates the excellent 

reversibility of the anatase TiO2 as an insertion host. Electrochemical lithium 

insertion/extraction can be expressed by the following insertion-deinsertion reaction: TiO2 + 

xLi
+
 + xe

−
↔ LixTiO2 [42]. However, in the subsequent cycles, small deviations in the peak 

positions are noted, possibly due to some stress in the TiO2 crystal lattice. 

 

Figure 5. Cyclic voltammogram of TiO2 in half-cell cycled in the range 1-3 V vs. Li
+
/Li

0
 at 

sweep rate of 0.05 mV s
-1

. 

 

Figure 6 shows the galvanostatic charge–discharge curves of TiO2 in the potential range 

1.0–3.0 V at a 0.1C rate (C rate was calculated on the basis of 1C=335 mAh g
-1

). An initial 

discharge capacity of 221 mAh g
-1

 corresponds to insertion of 0.66 mol of Li per formula unit. 

In the first charge, the cell delivered a reversible capacity of 189 mAh g
-1

 (0.56 mol of Li 

from the theoretical capacity). Although anatase TiO2 exhibits a theoretical specific capacity 

of 335 mAh g
-1

, the practical capacity attainable is twice smaller, because of the strong Li-Li 

repulsion in the LixTiO2 framework at greater degree of insertion, i.e. x>0.5 [43]. The 

irreversible capacity in the first cycle is estimated to be ~32 mAh g
-1

, which corresponds to~ 
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0.1 mol of lithium. After 30 cycles, the charge and discharge capacity slightly decreased to 

182 and 174 mAh g
-1

, respectively, providing a decreasing irreversible capacity of 8 mAh g
-1

. 

The discharge plateau related to the beginning of lithium insertion is observed at ~1.76 V and 

the charge plateau starts at ~1.9 V for the Li deinsertion. These potentials are similar to those 

reported in the literature (~1.75 and ~1.88 V, respectively). This behavior matches well with 

the redox peak mentioned above in the cyclic voltammogram. The electrochemical 

performance of our sample is comparable with that of the literature. For instance, Rai et al. 

[28] reported a discharge and charge capacity of ~214 and ~154 mAh g
-1

, respectively, for 

TiO2 nanoparticles (<10 nm) cycled at 0.06C. However, it was reported that during Li 

insertion, the symmetry of the anatase unit cell decreases and its original tetragonal (I41/amd) 

structure transforms into the orthorhombic (Pmn21) space group [44]. This phase transition 

occurs in the regime of deep discharge along with a spontaneous phase separation of a 

lithium-poor (Li0.01TiO2) and a lithium-rich (Li0.5TiO2) phase [45]. Note that (a) the decrease 

of the irreversible capacity (32 against 8 mAh g
-1

) means no phase transition but a usual 

electrochemical behavior, (b) the voltage profile of the active electrode material annealed at 

400 °C displays only a small polarization Vch-Vdis = 120 mV due to the good crystallinity of 

particles and (c) the small particle size (L = 20 nm) allows quick Li-ion insertion-deinsertion 

due to the short distance for Li
+
 transport. The rate capability and cycling performance of 20-

nm sized TiO2 particles are presented in Fig. 7. The rate capability has been tested at the 2
nd

 

cycle in the C-rate range from C/20 to 50C as displayed by the modified Peukert plot (Fig. 

7a). As commonly observed for electrode materials, the decay of the discharge capacity 

follows a semi-logarithmic law as the current passed through the cell increases. After tests at 

high C-rate of 10C (corresponding to a full discharge in 6 min), the capacity ~125 mAh g
-1

 is 

delivered after the 2
nd

 cycle and a capacity of 45 mAh g
-1

 at 30C rate, which gives evidence of 

the electrochemical reversibility and structural stability of the samples. Figure 7b presents the 

discharge capacity as a function of the cycle number for cycling between 1 and 3 V at a C/10 

rate. The cell showed a very stable cycling after capacity fading in the initial few cycles. The 

capacity retention of about 82.5% was obtained after 30 cycles. Note that the capacity fading 

in the initial cycle is due to cell formation (growth of the SEI). 
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Figure 6. Charge and discharge curves of TiO2 operated at C/10 rate in the potential range 1-3 

V vs. Li
+
/Li

0
 at room temperature. Cycle numbers are given in the graph. 

 

For comparison, the capacity retention of the nanotubes is 81%, and that of nano-rods is 

only 40% after 30 cycles [46]. Therefore, the nanoparticles in the present work have reached 

the same cyclability as the nanotubes, with the advantage that the nanoparticles have been 

synthesized by a scalable and simple sol-gel synthesis process. We also note that anatase is a 

better photocatalyst than rutile TiO2 [47], so that the sol-gel synthesis of anatase TiO2 has also 

important applications in this context, as the sol-gel process is also efficient to synthesize thin 

films [48]. The drawback of the catalytic surface of TiO2 is that its catalyst sites have side 

reactions with the organic electrolytes. The fact that our nanoparticles have irreversible 

capacity loss similar to other nano-structures surfaces such as nanotubes or nanorods using 

similar electrolytes suggest that it is a general property of this transition metal oxide linked to 

this catalytic property of the high energy sites at the surface. In particular, Ti-OH units are 

known to be highly catalytic toward counter-ion (PF6
-
). This drawback may be overcome by 

coating the TiO2 anode material with a protective layer. For instance, Tan et al. [49] have 

recently reported that coating TiO2 with a uniform and continuous nitrogen-doped carbon 

layer with thickness of 4±0.5 nm leads to higher discharge retention and better cycling 

performance.  
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Figure 7. (a) Modified Peukert plot of 20-nm sized TiO2 particles carried out at the 2
nd

 cycle. 

(b) Cycling performance of anatase TiO2 nanoparticles operated at C/10 in the potential range 

1-3 V vs. Li metal at room temperature. 

 

The diffusion coefficient DLi of Li
+
 ions in anatase TiO2 nanoparticles has been 

investigated using cyclic voltammetry at different scan rates (Fig. 8a). The relation between 

the current Ip and the scan rate  is expressed by the Randles equation [50]: 

2121
21

49580 /
,

/
/

*. 


redox
Li

p
RT

nFD
nFACI 








 ,   (1) 

where F, R and T are the usual constants, A the surface area of the electrode, C* the 

concentration of Li
+
 ions (C*=23.6 mol dm

-3
 assuming a composition Li0.5TiO2), n the 

number of electrons and  the transfer constant (=0.5). DLi derived from the plots in Fig. 8b 

are 8.5×10
−13

 and 5.8×10
−13

 cm
2
 s

-1
 for oxidation (Li extraction) and reduction (Li insertion) 

respectively. These values provide a characteristic time t=L
2
/π DLi for intercalation of the 

particles equal to 1 h. Several authors reported the diffusion coefficient of Li
+
 ions in anatase 

TiO2 nanoparticles as insertion host materials [51-59]. There is general agreement for overall 

diffusion process dominated by the bulk diffusion, which is considered as rate limiting. The 

diffusion coefficients evaluated using different techniques: chronoamperometry [51,54,55], 

galvanostatic titration [52], cyclic voltammetry [53,57,58], NMR [56] and EIS [59] appeared 

to be in the range 10
-16

-10
-12

 cm
2
 s

-1
. Our results are in good agreement with those of Kavan et 

al. [55], who reported a higher DLi for the de-insertion process. This difference in the rate of 

the insertion/de-insertion process has been attributed to the lattice relaxation during the 

accommodation of Li
+
 ions in the anatase framework. Cantao et al. [52] reported the 
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logarithmic variation of DLi with the film thickness; the highest diffusion coefficient was 

obtained for the thicker film. Table 2 summarized the DLi values of the literature.  

 

 

Figure 8. (a) Cyclic voltammogram of TiO2 as a function of the scan rate from 0.05 to 10 mV 

s
-1

. (b) Plot of the current vs. square root of the scan rate for the oxidation and reduction 

peaks. 

 

Table 1. Diffusion coefficient of Li
+
 ions in TiO2 host materials. 

Material Particle size  

(nm) 

Diffusion coefficient 

(cm
2
 s

-1
) 

Reference 

Anatase thin films 

TiO2 thin films 

Anatase nanoporous films 

CVD films 

Anatase single crystals 

Anatase (NMR measurements) 

Nano TiO2(B) 

TiO2 nanotubes 

C-coated TiO2 

Anatase nanoparticles  

1.55 µm thick 

25 

4.2 µm thick 

2.2 µm thick 

- 

60-80 

10-20 

150 nm dia. 

60 

20 

3.8 × 10
−13 

5.0 × 10
−13 

4.0 × 10
−17 

2.0 × 10
−15 

2.0 × 10
−13 

4.7 × 10
−12 

3.9 × 10
−16 

6.1 × 10
−16 

4.6 × 10
−13 

8.5 × 10
−13

 

[51] 

[52] 

[53] 

[54] 

[55] 

[56] 

[57] 

[58] 

[59] 

This work 

 

Discussion 

The high performance of the anatase TiO2 particles is linked to their small diameter of 20 nm. 

However, even if we have decreased the size of the particles to this nanometer range and 
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obtained particles that are single crystals without any impurity, we find that the problem of 

the cycling life, which is vital for Li-storage performance and a well-known limiting factor of 

TiO2, has not been solved. The first idea to improve the electrochemical properties is to use 

porous particles to increase the effective surface area in contact with the electrolyte, and coat 

the particles with carbon. The beneficial effect of carbon coating of TiO2 has been observed in 

many works (see [60] for a review). In particular, Fu et al. [61] reported improved 

electrochemical properties obtained with N-doped carbon coating of TiO2 spherical particles, 

using ethylenediamine (C2H6N2, EDA) as the N-doped carbon precursor. The beneficial effect 

of carbon coating nanoparticles of active electrode elements is a general property, that is not 

only observed in all the Li-ion batteries [3], but also been observed in Na-ion batteries [62-

64]. Generally, this improvement comes from the fact that the intrinsic electrical conductivity 

of the particles is small, so that the coating by conductive carbon improves both the capacity 

and rate capability. In the particular case of TiO2, however, another reason for the 

improvement of the cycling life with N-doped carbon coating [61] may be invoked: a 

synergetic effect of the increase of the conductivity and an increase of the surface stability by 

coating with N-doped carbon owing to the strong interaction of TiO2 with ethylenediamine 

[65], plus nitridation of Ti atoms to form O-Ti-N bonds. The nitridation should be largely the 

dominant effect with respect to the EDA-TiO2 interaction, because outstanding results have 

been obtained on other N-doped carbon coated TiO2 without the EDA precursor (one-step 

synthesis by hydrolyzing tetrabutyl-titanate (TBT) mixed with urea and heated in a sealed 

autoclave at 550 °C for 5 h) [66]. 

The next question is to know if it is possible to improve the electrochemical properties 

by decreasing even more the particle size. For instance, Tan et al. [49] have recently reported 

that coating TiO2 with a uniform and continuous nitrogen-doped carbon layer with thickness 

of 4±0.5 nm leads to higher discharge retention and better cycling performance. To answer 

this question, we can compare our results with prior works that have been published for 

particles 4 nm thick, obtained either by fragmentation of nanorods [67], or by a two-step room 

temperature synthesis process [68,69]. In one case [67], the electrochemical properties are 

better, as these particles delivered a capacity of 200 mAh g
-1

 for 500 cycles at 1C rate. To the 

contrary, in the other case [68], the opposite is true, since the capacity is circa 155 mAh g
-1

 at 

the 30th cycle at C/20 rate in the same voltage range as in Fig. 7, against 180 mAh g
-1

 at C/10 

rate according to Fig. 7. Nevertheless, the results in [68] were an improvement with respect to 

results prior to 2013, which the authors attributed to a modification in the lithium insertion 

mechanism that is no longer attributable to a two-phase reaction between the two-end 
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members LiεTiO2 and Li0.5±αTiO2 when downsizing the particle; instead, the insertion 

mechanism would proceed through a complete solid solution all along the composition range 

[69]. Indeed, in this prior work, the voltage plateau characteristic of the two-phase behavior in 

Fig. 6 was replaced by a continuous slope between the end members. However, the results 

obtained on 4-nm thick particles in Ref. [67] do show the same plateau as in Fig. 6. Therefore, 

the shift of the insertion mechanism from two-phase to a complete solid solution is not an 

intrinsic property linked to the size of the particles. A possible explanation is that the surface 

layer of the particles in Ref. [68] is ill-crystallized. In the case of LiFePO4, for instance, we 

have determined that the amorphization of the surface layer also favors the solid-solution 

process, the two-phase behavior being recovered by heat treatment at circa 650 °C, 

accompanied with the re-crystallization of the surface layer during the carbon coating [70-72]. 

We believe the same disordered surface layer explains the results in Ref. [68]. In that case, 

however, the particle size that has been determined by the Scherrer formula has been 

underestimated, because the X-ray diffraction will probe only the crystallized part, i.e. the 

bulk part of radius 2 nm, to which the thickness of the more or less amorphous layer that is 

not probed by XRD should be added. If the thickness of the surface layer is about 2 nm, 

which is the typical size in LiFePO4, the thickness of the particles might be circa 8 nm, 

intermediate between 4 nm in Ref. [67] and 20 nm in the present work. In any case, the 

decrease of the electrochemical performance in Ref. [68] with respect to the present case, let 

alone with respect to [61], clearly shows that the size of the particle is not the only pertinent 

parameter, and the quality of the surface is crucial. In addition, electrochemical properties 

even better than in Ref. [67] have also been obtained with larger particles of size 9 nm in [66]. 

We also note that good results obtained on N-doped carbon coated TiO2 in [61] (even if the 

cyclability has been tested on only 60 cycles against 500 cycles in [67]) have been obtained 

with big spherical particles of size 550 nm. Therefore, even though the decrease of the size 

down to 4 nm may contribute to the outstanding performance in [67], the results obtained in 

the present work suggest that the main reason is a surface effect. In particular, the 

fragmentation of nanorods perpendicular to the direction allows to obtain a well-crystallized 

surface layer with an increased (001)/(101) facet ratio.  

Due to the high energy surface of TiO2, the nanoparticles show a tendency to self-

aggregate during the charge-discharge process, and this is the main cause of the decay of the 

capacity upon cycling [73]. The best results have been obtained with special morphologies 

that avoid this irregular aggregation: one example is hollow nanostructures composed of 

nanosized primary building blocks [74]. The shell of the hollow structure was constructed by 
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nanoparticles with size of about 10–20 nm comparable to that of the particles in the present 

work. However, in virtue of the hollow structure and porosity of the shell, the self-aggregation 

was avoided. This electrode delivered a very stable discharge capacity of 150 mAh g
-1

 over 

500 cycles that have been tested at 5C rate, despite the fact that it was rutile TiO2, the phase 

that has the highest thermodynamic stability, but also considered as a poor Li
+
-insertion 

material compared with the anatase phase. Another successful morphology is a hierarchical 

structure of micro/nanoparticles constructed by ultra-fine nanowires with 3–8 nm width and 

several micrometers length [75]. A capacity of 207 mAh g
-1

 was obtained at 0.2C after 150 

cycles, and was maintained at 140 mAh g
-1

 at 25C. The authors have attributed this 

performance to the fact that, in such a kind of hierarchical structure, the micrometer 

dimensions of the architectural skeleton effectively avoid aggregation of the nanostructured 

active materials. 

 

Conclusion 

TiO2 nanoparticles were prepared by a simple and cheap sol-gel method with subsequent 

annealing at moderate temperature of 400 °C for 1 h. X-ray diffraction and Raman 

spectroscopy show that the pure anatase phase was obtained without any rutile component. 

The nano morphology of the regular shaped particles, 20 nm in size, was observed by TEM 

and electron diffraction. The electrochemical measurements were carried out in the potential 

range 1-3 V vs. Li metal at C/10 rate and show a high reversible capacity of the anatase 

nanoparticles. An initial discharge capacity of 221 mAh g
-1

 was obtained that corresponds to 

insertion of 0.66 mol of Li per formula unit, while after 30 cycles, the charge and discharge 

capacity slightly decreased to 182 and 174 mAh g
-1

, respectively, providing a decreasing 

irreversible capacity of 8 mAh g
-1

. The results also suggest that a control of the crystallization 

of the surface layer and its protection by coating will be the strategy to optimize the 

performance of anatase TiO2 particles. The diffusion coefficients derived from the cycliv 

voltammetry measurements are 8.5×10
−13

 and 5.8×10
−13

 cm
2
 s

-1
 for oxidation (Li extraction) 

and reduction (Li insertion), respectively. 

These results also suggest that a control of the crystallization of the surface layer and its 

porosity by appropriate coating of nanoparticles in a morphology that avoids the self-

aggregation during cycling will be the strategy to optimize the performance of anatase TiO2 

particles by increasing the cycle life. The present work suggests that further works should be 

pursued along this direction, and are more promising than the opposite attempt that can be 

recently found in the literature, i.e. coating other active materials with TiO2 films.  
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