
HAL Id: hal-01694012
https://hal.sorbonne-universite.fr/hal-01694012

Submitted on 26 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classification of 3D objects by random extraction of
discriminant sub-parts for the study of the sub-soil in oil

prospecting
François Meunier, Christophe Marsala, Laurent Castanie

To cite this version:
François Meunier, Christophe Marsala, Laurent Castanie. Classification of 3D objects by random
extraction of discriminant sub-parts for the study of the sub-soil in oil prospecting. Advances in
Knowledge Discovery and Management, inPress. �hal-01694012�

https://hal.sorbonne-universite.fr/hal-01694012
https://hal.archives-ouvertes.fr


Classification of 3D objects by random
extraction of discriminant sub-parts
for the study of the sub-soil in oil prospecting

Francois Meunier, Christophe Marsala and Laurent Castanie

Abstract In this paper, we propose a new approach for the classification of 3D
objects inspired by the Time Series Shapelets of [Ye and Keogh, 2009].
The idea is to use discriminating sub-surfaces for the current classification in order
to take into account the local nature of the relevant elements. This allows the user to
have knowledge concerning the sub-parts that have been useful for determining the
belonging of an object to a class, and to get a better classification rate than current
state of the art methods.
The results obtained confirm the advantage of the random selection of candidate
characteristics for the pre-selection of attributes in supervised classification.

1 Introduction

1.1 Context

For the oil company Total, the geological study of a potentially rich in hydrocarbons
subsoil requires a thorough understanding of its structure.
To achieve that, the geologists create, from seismic images reconstructed by acoustic
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waves sent into the ground (Fig. 1), a 3D geo-model that is supposed to represent
the main layers and faults of the zone (Fig. 2). The geo-model, made of 3D surfaces
corresponding to the boundaries between the sedimentary layers, only describes the
geometrical structure of the subsoil.

Fig. 1 Seismic image rebuilt using acoustic waves data

Then, this one is, according to the phenomena found there, classified by the ge-
ologist according to the relevant sets to which it belongs. The sets we talk about
correspond to the presence or absence of a certain geological phenomenon, such as
faults (normal, inverse, ...) or interaction between different layers (subduction, ... ).
For a geologist, it is therefore necessary to determine the absence or presence of
local geological phenomena.

Today, this classification, like the rest of the study, is manually performed by an
experienced geologist who knows the area. This represents a significant workload,
which can be greatly facilitated by automation. Moreover, some geologists have
less experience, both in the trade itself and the people most useful to contact, which
results in a poor classification.
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Fig. 2 3D geo-model of the studied zone

1.2 Our goals

Over the past few years, supervised automated learning has offered new possibilities
to help classifying data of any type. Nevertheless, for 3D objects, current methods
do not allow, without any prior knowledge, to understand which sub-parts of an
object can be discriminating for the classification (describing the presence of the
studied phenomenon), and why.
This problem is frequently back when automatic learning, for which the resolution
is perceived from the the user’s point of view as a "black box" whose confidence
can be attributed to him only according to his past performances. The interest is
therefore trying to explain the result of classification to the user, so that the user can
actually validate the model and therefore the contribution of the latter.

The data to be categorized are complex by the number of points which compose
them, and logically integrate large quantities of information, exploitable but little
exploited.

The constraints of the system, and therefore the conditions of application of the
proposed method are as follows:

• Learning elements are 3D surfaces of irregular triangular meshes;
• Classification is based on the presence of phenomena and/or sets of local phe-

nomena;
• We place ourselves in traditional supervised learning, without any change in the

distribution law of the classes in the studied set.
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When processing complex elements, classifiers usually do not provide justifica-
tion allowing to understand their processes and results. Within the framework of the
supervised classification of 3D objects, the latter is very often carried out manually
by industrialists, who are anxious to understand the reasons that pushed them to a
particular choice for their studies.
This represents a significant workload, that automatizing the classification of these
3D objects would greatly facilitate, provided that they meet the constraints imposed
by the manufacturers in terms of comprehensibility.

Our work proposes to set up a supervised classification system of 3D objects with
explicit justification of the provided result.
Within this domain, current methods do not allow, without prior knowledge, to un-
derstand which sub-parts of an object could be discriminating in the context of the
presence of the phenomenon studied, and why they would be.

In this article, after a state of the art presented in Section 2, the proposed method
is described in Section 3, before Section 4 gives the experiments performed and
Section 5 the perspectives of this method.

2 State of the art

With the existing methods of supervised classification of 3D objects, it is nowadays
impossible to categorize 3D objects on the presence of local phenomena, while jus-
tifying the process and the predictions.
Methods derived from fields as varied as the processing of images or time series
show unexploited possibilities in the extraction of discriminant sub-parts, using de-
scriptors of 3D objects from the literature to characterize them.

The basic 3D model is a surface in a 3-dimensional space. We denote by P⊆ R3

the set of points on this surface. This is studied as a triangular mesh modeled as a
graph G = {S,V,T}, with S ⊆ P the vertices, V = {〈s1,s2〉‖,s1,s2 ∈ S} the edges
connecting the vertices and T = {(s1,s2,s3) |s1,s2,s3 ∈ S} the triangles of the mesh.
Subsequently, we consider the 3D model as a 3D surface such that M = {P,G}.

2.1 3D object descriptors

In the case of time series or images, it is possible to directly compare the data of
the extracted sub-parts (with Euclidean distance, for example). For 3D objects, it
is not possible to directly compare two entities of this same type because, in ad-
dition to having to establish an alignment according to translation, rotation, scale
and reflection, it is essential to take into account that sampling does not necessarily
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correspond from an extract to the other.
The computation of the minimum distance between each point of the first extract and
the structure of the second is only possible in the presence of elements of the same
extents. The study of 3D objects, described by non-regular meshes, therefore firstly
requires to extract descriptors that are intended to convert the data into a workable
form for learning and comparison. Approaches based on volume descriptors or ob-
ject skeletons do not apply to non-closed surfaces [Alexandre, 2012].

There are currently many methods for extracting descriptors from 3D objects
[Dang, 2014]. In addition to those that pass from 3D to 2D by cut or projection,
which do not adapt to our problem because of the too great loss of data, distinction
is generally done between local and global descriptors. The global descriptors are
not adapted to our study, because over the whole structure they lose the purely lo-
cal characteristics of the sub-parts that [Tabia, 2011] summarizes. Local descriptors
can be good means for comparing different retrieved extracts as they are applied
to small areas that potentially correspond to the discriminant sub-parts described in
Section 1. Indeed, one considers only the tendencies in the neighborhood of a point
of the mesh, which generally tends to use a histogram of distribution of values like
[Dang, 2014] if we want to describe an entire surface as does [Ankerst et al., 1999]
with the Shape Histogram, and [Rusu et al., 2008] with the PFH (Point Feature His-
togram).

Although these two sets of global and local methods can differ to define a non-
closed 3D surface, for our study, they must respect the following conditions:

• A good ability to represent a prototype of the concerned class (which is the local
phenomenon detected);

• Robustness with respect to the main geometric transformations like scale or ro-
tation;

• Being able to characterize a particular area within the 3D object;
• Being able to use it to justify the final classification.

2.2 Cloud scaling for pattern recognition

The aim is to find the best possible match between two clouds of different points
in appearance, but which are described as close objects (or quite similar ones). It is
done on sets of points, in order to recognize similar elements [Cotting et al., 2004].

Concretely, the principle of calibration can be seen [Mitra et al., 2004] as the
search for the two transformations R and T from R3 to R3 (rotation and translation)
between the clouds of points P and Q, minimizing the following relation:



6 Francois Meunier, Christophe Marsala and Laurent Castanie

ε(R, t) =
‖P‖

∑
i=1

d2(T ((R(pi)),ΦQ) (1)

Where d2(T ((R(pi)),ΦQ) is the distance between the point pi ∈ P and ΦQ (cor-
responding to the interpolation of the scatter of points to make it a surface) of
the cloud Q. The classical way to solve this equation often amounts to calculat-
ing the distance between the transformed point Rpi + t and its closest neighbor pi
of the cloud Q, yet this function is not convex, and the Iterative Closest Point meth-
ods of [Besl and McKay, 1992] and Random Sample Consensus (or RANSAC) of
[Fischler and Bolles, 1981] by gradient descent can only find a local solution (there-
fore approximated).
Moreover, the amount of exponentially increasing possibilities according to the
number of points (notably by rotations, translations, ...) makes these methods hardly
applicable to the detection of local phenomena.

Finally, this set of processes considers point clouds in an unsupervised way and
thus can not distinguish what is to be retained from what is anecdotal within a par-
ticular supervised classification.

2.3 Distance / similarity between distribution histograms values

In order to compare two extracted sub-surfaces, the use of a local descriptor re-
quires the use of a distance. The computation of the descriptor provides a set of data
collected in a distribution histogram of values corresponding to each point of the
surface retained. Several types of distances between histograms can then be used:

• the measure of [Bhattacharyya, 1943],
• the distance of [Matusita, 1955],
• the Hellinger measure,
• the divergence of [Kullback and Leibler, 1951].

2.4 Time series shapelets

Proposed by [Refregier, 2001], the notion of "shapelets" was initially applied to im-
ages. The method is based on a linear decomposition of each image into series of ele-
mentary functions describing local sub-parts: these functions are called "shapelets".
Concretely, this makes it possible to obtain a simplified version of this data from
complex data by decomposing them into entities which are easier to study.

This method was subsequently adapted to time series for supervised classifica-
tion by [Ye and Keogh, 2009]. The principle is to extract the whole set of possible
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sub-parts of each element of the learning set and then to determine which ones di-
vide the best of all the elements, in order to maximize a particular indicator allowing
to judge the capacity of discrimination.
The classical entropy maximization method retained by [Ye and Keogh, 2009] con-
sists in computing the minimum distance between each candidate attribute and each
object.

Fig. 3 The Time Serie Shapelets - [Ye and Keogh, 2009]

Then, for each candidate, we order the objects according to the distance separat-
ing them from this candidate.
Finally, we evaluate the discriminating capacity of the candidates, and the most effi-
cient one when splitting the time series according to their classes are used to create
the attributes of learning 4.

This indicator, resulting from the methods of feature selection of which
[Chandrashekar and Sahin, 2014] studies the domain and [Renard et al., 2016] ap-
plies some methods to the time series, makes it possible to determine the most rel-
evant of the sub-parts. This evaluation is carried out by the information gain which
aims at measuring the dependence between 2 variables.

This information gain, or mutual information, is defined as follow:
Let Y be a discrete random variable, and p(y) its probability (which corresponds to
the proportion of elements of the class under consideration), we have the Shannon
entropy:

H(Y ) =−∑
y∈Y

p(y)log(p(y) (2)

The conditional entropy of Y with X is defined by:
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H(Y |X) =−∑
x∈X

∑
y∈Y

p(x,y) (3)

The gain of information (Mutual Information or MI) of variable Y is finally valid:

I(Y,X) = H(Y )−H(Y |X) (4)

This value is then used by testing each possible separation point between two
sub-parts, and the point maximizing the gain is kept (Fig. 4).

Fig. 4 Determining the most critical shapelets: ability to split all objects into 2 homogeneous sets
- [Ye and Keogh, 2009]

In the ideal case, all the elements of a certain class are on the same side of the
separation and are the only ones to be there.

[Lines et al., 2012] and [Hills et al., 2014] use the most discriminant shapelets
by computing the minimum distance that best matches the new elements to assert,
that is to say, the time series which are still not labeled.
Subsequently, these distances become the attributes used for learning and no longer
the decision tree directly. It becomes possible to reduce the problem to conventional
supervised learning, and thus to use other more efficient methods than the original
decision trees. The obvious advantage of the shapelet method applied to time series
is that it is possible to compare elements of very varied sizes and of which there is no
a priori knowledge (as would be the elementary functions of the original method).
It is no longer the elements in their entirety that can be useful, but the juxtaposition
of some of the sub-parts of the latter, with different characteristics, which together
make possible to deduce the classes of belonging.

In order to get some optimization in terms of computational time realized in
this domain, [Renard et al., 2015] uses a random extraction of these sub-parts in the
framework of the classification of time series. Due to the redundancy of discriminant
sub-parts in the targeted data, classification performance remains very good.

2.5 Conclusion of the state of the art

Current methods dealing with 3D objects try to describe them by projecting into
another representation space, often called a descriptor. These descriptors seek to
simplify the initial objects by placing them on a model of representation that leads
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to a significant loss of the quality of the data. This is all the more so since we are
dealing with elements whose discriminating parts are extracted from them.
The foreseeable result is that we are able to only consider some sub-parts of the
object to classify it. The other blocking point is that it is impossible for the user, in
this situation, to separate the useful parts from the other when trying to understand
the method.

Thus, with the existing methods of supervised classification for 3D objects, it is
not possible to categorize 3D objects on the presence of local phenomena, while
justifying the process and the predictions.
Nevertheless, some work in the classification of time series has solved this problem
by seeking to extract, for each classification, the most discriminating sub-parts.
Methods derived from fields as varied as the processing of images and time series
present unexploited possibilities in the extraction of discriminating sub-parts, using
descriptors of 3D objects of the literature allowing to characterize them.

It is on the basis of these concepts developed in the past years, where the random
selection of potential features is one of the extensions, that we propose a new method
answering the constraints cited above. This new approach is described in the next
section, before experiments confirm its relevance.

3 Proposed method

3.1 Main idea

The proposed method for the classification of 3D objects is at the crossroads of the
different domains presented in the previous section:

1. The shapelets, including the supervised classification of [Ye and Keogh, 2009]
for time series;

2. The 3D surface similarity computations by extraction of 3D object descriptors.

These techniques appear to be potentially complementary. Indeed, the window-
ing of [Lozano Vega, 2015] of an image (in the form of a rectangle or a square
extracted from this image) makes it possible to determine which part is the most in-
teresting to be observed in the context of a particular classification. The initial idea
of [Refregier, 2001] also makes it possible to test and extract the most discriminat-
ing sub-parts of a coherent set of data, within the desired classification.
Nevertheless, what is possible in the face of a mesh which can be drawn up as an
exhaustive list of possible candidates, since it is rectangular in shape and in a set
of predefined possible sizes, is problematic for irregular 3D meshes. Indeed, we are
confronted to an explosion of the computation time for the extraction and evaluation
of the very many candidates.



10 Francois Meunier, Christophe Marsala and Laurent Castanie

When [Renard et al., 2015] proposes a random search of potentially discriminat-
ing sub-parts for the classification of series Temporal, its results are hardly degraded.
Indeed, due to large quantities of data, the redundancy of the discriminant extracts
makes it possible not to decrease the performance of the prediction, when compared
to the exhaustive model. This idea has been adapted to our problem, although in our
case a much smaller share of the candidates as discriminant sub-part (the order of
magnitude is about 10−1% for the time series of this work) has been retained.

Thus, we propose to adapt to 3D objects what has been done with the time series
in classification, that is to say the selection of the discriminating sub-parts used to
calculate the learning attributes being performed randomly by selecting only one
extract of the set of possibilities.

3.2 Algorithm and methodology

• ∀Oi=1,...,n, we randomly extract m sub-surfaces (for each object Oi) that are
Si,1, ...Si,m.

• We consider a particular 3D object descriptor Desc, and a distance Dist (between
to values of descriptors). ∀i ∈ (1, ...,n) and ∀ j ∈ (1, ...,m), we compute the de-
scriptor Desc(Si, j), of the subsurface Si, j

Then, for each sub-surface Si, j to evaluate:

• ∀i′ ∈ (1, ...,n) 6= i and ∀ j′ ∈ (1, ...,m), we compute the proximity Prox(Si, j,Si′, j′)=
Dist(Desc(Si, j),Desc(Si′, j′)).

• Degrees corresponding to its nesting values for each of the objects O1, ...,On is :
∀i′ ∈ (1, ...,n).

Degree(Si, j,Oi′) = inf
l=1,...,m

(Prox(Si, j,Si′,l))

.

This matching degree or belonging degree of a subsurface to an object makes
it possible to establish a form of proximity between the studied sub-surface and
each object. It is on the basis of these values that the relevance score of each
of the sub-surfaces is evaluated in order to select only the most discriminating
ones. For the evaluation of the suitability of the subsurface from the degrees, and
although[Ye and Keogh, 2009] uses the method of gaining information to evaluate
still turns out that another method of selection of attributes is more adapted.
[Lines et al., 2012] proposes the use of the formula f-stat, more efficient for evalu-
ating the discriminating character of a sub-part than the classical method. If we add
a lower calculation time, this formula seems to be more appropriate.

For a subsurface Si, j, in a C classes problem, we have:
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f-stat(Si, j) =

1
C−1

C

∑
cl=1

(D̄cl− D̄)2

1
m−C

C

∑
cl=1

∑
d∈Dcl

(d− D̄cl)
2

(5)

with C > 1 the number of classes, m the number of sub-parts (m > C), D̄cl the
average of the degrees between 3D objects of class cl and Si, j, and D̄ the average of
degrees between 3D objects of all classes and Si, j.

Subsequently, the first k candidates according to this criterion will be used for the
calculation of the attributes, k being experimentally around 1% of the total number
of extracts.
It makes sense (and the results confirm) not to use more attributes than half of the
number of sub-parts extracted from each 3D object. This can be explained fairly
easily by the fact that if we put as many attribute sub-parts as extracts of a 3D ob-
ject, then the attributes will lack choice in the selection of the closest extract when
computing distance between object and candidate shapelet.

Once the most relevant sub-surfaces are extracted, they are used to carry out the
learning on a traditional supervised classification model (the degrees between the
element and each sub-surface gives the attribute vector), and, on the other hand,
perform the same procedure for the prediction of new objects.
This results in Algorithm 1, called 3DRESC for 3D Random Extraction of Sub-parts
for Classification.

4 Experiments

The algorithm is adapted to a classification context of large 3D structures whose el-
ements allowing the latter are only sub-parts, it is rather complicated to find a public
dataset corresponding to our needs.
Indeed, the supervised classification of 3D objects generally answers the need for
classifying closed objects, which belong as a whole to a class, whereas our objective
was to detect local phenomena without knowing their shape or position within 3D
structures.

Then, the choice of the computation of similarity between sub-parts (in order to
calculate the distance between a candidate and a 3D object) is quite greedy in com-
putation time. Still in the experimental state, it has not yet been optimized but this
will be the subject of a future development.

Finally, and probably the essential point, our method aims at helping the user to
understand the classification: the central element is therefore no longer the classifi-
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Algorithm 1: 3DRESC
1 Input:
2 Ob jects : 3D objects ; Classes : corresponding classes ; k : number of expected attributes ;

sizes : sizes of the extracts ; numbers : number of extracted sub-parts for each size ;
3 Output:
4 SubParts : List of discriminant 3D objects sub-parts;
5 Begin
6 i← 0;
7 for Ob ject in Ob jects do
8 i← i+1;
9 j← 0;

10 candidates← Extraction(Ob ject,sizes,numbers);
11 for candidate in candidates do
12 j← j+1;
13 DescOb ject3D[i][ j]←ComputeDescriptor(candidate);
14 ob j1← 0;
15 for Ob ject1 in Ob jects do
16 ob j1← ob j1+1;
17 ob j2← 0;
18 for Ob ject2 in Ob jects do
19 ob j2← ob j2+1;
20 if Ob ject1 different from Ob ject2 then
21 Distances←min(ComputeDistances(DescOb ject3D[ob j1],
22 DescOb ject3D[ob j2]));
23 Gain←ComputeGain(Distances,Classes);
24 ListGain[i]←max(Gain);
25 ListGain← Ordonate(ListGain);
26 SubParts← ListGain[1, ...,k];
27 End

cation itself (and therefore the prediction rate the ultimate objective), but the ability
to provide an explanation for the given classification. We have tested our algorithm
with free data from Princeton Shape Benchmark 1 (PSB), whose main advantage
is to come from crawlers who have retrieved objects from multiple already existing
datasets. The classifier used once the attributes are recovered is the random forests
of the Python scikit-learn package. The tests are performed on a processor Intel
Core i7 vPro with 16 GB of RAM. The sample comprises 40, 60 or 100 objects
according to the experiment, divided into 2 classes of the same size. The objects
themselves have very variable sizes, ranging from 250 points to about 5000 points.
No standardization has been made, the small number of objects selected and the
large standard deviation of objects’ size (1946) logically reduces the results of the
prediction.

Experiments carried out with descriptors of the literature are done under the same
conditions as those used for the proposed method, namely the same libraries and the

1 http : //shape.cs.princeton.edu/benchmark/ accessed 29/09/2016
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same extraction of descriptors (depending on whether it is extracted from sub-parts
or the object as a whole).

4.1 Choice of the descriptor and the computation of similarity

Starting from local descriptors, which give the local tendency around each point, we
recover an histogram of values distribution. It is using this normalized histogram,
whose size is constant whatever that of the original subsurface, that the distance is
calculated. By extracting 200 sub-surfaces of size each time by cross-validation (by
learning about 75% and testing on 25% at each iteration) on 60 objects (subdivided
into 2 classes of the same sizes), the performances of the 3D object descriptors,
that is to say the Heat Kernel Signature [Sun et al., 2009] (HKS), the Point Feature
Histogram (PFH), and the Unique Shape Context (USC), are in Table 1.

3D object Kullback-Leibler Bhattacharyya Hellinger Matusita Computation
descriptor divergence measure distance distance time (seconds)
HKS 0.89±0.13 0.85±0.13 0.86±0.07 0.90±0.12 1208
PFH 0.79±0.16 0.75±0.14 0.60±0.08 0.71±0.12 1098
USC 0.86±0.11 0.85±0.15 0.84±0.13 0.87±0.11 1152

Table 1 Compared performances between 3D object descriptors

As columns of Table 1, we find the method used for calculating the distance be-
tween the sub-parts, as well as the calculation time, and in rows the descriptors from
which these distances are calculated.
Moreover, it also mentions the standard deviation of the cross-validation realized.
The slight differences in computation time only depend on the implementation of
the descriptor algorithms, and the order of magnitude remains the same. Best results
are those of the HKS, although the USC is following it. With the dataset that is ours,
it appeared that Matusita’s distance, combined with this same HKS, seems to form
the best combination.

For our future experiments, we therefore choose as 3D object descriptor the HKS
and as distance between these descriptors, the distance of Matusita. It is neverthe-
less observed that any 3D object descriptor can be used to describe the extracted
sub-surfaces, and thus that the true comparison must take place between a global
descriptor and our method using the same descriptor for each of the extracted sub-
parts.
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4.2 The choice of the number of extracts

By reusing the HKS descriptor chosen previously, a learning set of 40 and 100 ob-
jects, 2 classes of the same size but randomly drawn from the PSB, results are given
in Table 2.

Number of Number of extracted Classification Computation
of 3D objects sub-parts (per object) rate time (seconds)
40 25 0.65±0.15 122

50 0.75±0.16 237
100 0.81±0.14 468
200 0.87±0.10 831
300 0.89±0.11 1469
400 0.92±0.08 2160
HKS global 0.85±0.08 1020

100 25 0.59±0.28 230
50 0.71±0.29 396
100 0.78±0.18 902
200 0.87±0.16 1728
300 0.90±0.14 2645
400 0.91±0.13 3587
HKS global 0.82±0.11 2285

Table 2 Compared performances : accuracy for 40 and 100 objects

The first column of Table 2 indicates the number of extracted sub-surfaces and
their sizes.
For example, for the first line, 40 sub-surfaces were for each object extracted, with
sizes of 20, 40, 60 and 80 points connected. As for the comparison between descrip-
tors, the good classification rates of the 2nd column are completed by the standard
deviation of the cross-validation. The last line presents the results of a global clas-
sification method using the histograms of the HKS of the set of points as attributes.

On the first hand, the more the extract sizes are varied, the more the number of
these extracts increases, the better the classification. The confidence for the predic-
tions is rather limited, this is due to the random selection of the sub-parts which
makes the method slightly less stable than a deterministic one would be.
On the other hand, the proposed method is faster than the global one, since it only
considers some of the parts of the object. What is more, the comparison can be re-
produced with any descriptor, insofar as a way to define a 3D object can be adapted
to our context.
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Fig. 5 Comparison of classification rate according to the number of extracts per object
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4.3 Comparison with other methods of supervised classification for
3D objects

By way of indication, here is a comparison of the most used methods with our
proposition, although these techniques don’t allow the user to understand results
and processes (Table 3).
This time, tests are performed with 60 objects from two classes of the same size of
the PSB.
We chose to use 200 extracts per object, which was a good compromise between the
execution time and the accuracy of the classification, if we refer to Fig. 5.

3D object classification method Classification accuracy Computation time (seconds)
Spherical harmonics 0.71±0.09 1205
Shape Histogram [Ankerst et al., 1999] 0.74±0.07 952
Extended Gaussian image [Horn, 1984] 0.83±0.10 1452
Gaussian Euclidean Distance Transform 0.88±0.08 1356
[Kazhdan et al., 2003]
Hough 3D and SURF [Knopp et al., 2010] 0.87±0.06 1325
Global USC 0.83±0.08 1244
Global PFH 0.78±0.10 1546
Global HKS 0.84±0.07 1253
Our method 0.89±0.12 1152

Table 3 Compared performances between 3D object classification methods with Princeton Shape
Benchmark

We notice that our method gets results which are globally better than those from
the literature, for a same order of magnitude computation time, although it is only a
simple classification (2 classes) on a restricted number of 3D objects (60).

4.4 Interpretation of discriminant sub-parts

The principal contribution of our method, insofar as its results are a bit better than
those from the literature, is to be able to make it possible to understand the proposed
classification by the exhibition of the sub-parts that have been chosen for being the
most relevant ones. In our example, it was a question of classifying 3D objects
between 2 categories, which were on one hand inanimate objects, and on the other
hand heads or busts of a human body.

The 2 first extracts such as those in Fig. 7 correspond to human anatomy (proba-
bly the curved part of the back of a head). The last one is the column of a building,
something we can’t find on a human body, and so is pertinent to discriminate these
2 classes.
These elements allow to display some of the sub-parts that have made it possible
to create the attributes of the object and therefore the extracts which are the most
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Fig. 6 3D objects to classify : the first one are from the visages’ class, and the rest from the
building’s

Fig. 7 3D objects discriminant sub-parts : the 2 first ones are curves of a head, the last one is the
column of a building
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representative of the classification. By this mean, we expect to convince the experts
that the choice of the classifier is justified, and so that this classifier may be used for
their work.

5 Conclusion and perspectives

In this paper, we proposed a new method for classifying 3D objects with a justifica-
tion of the method and results by exhibiting the most discriminating elements.

Although the classification rate results for comparing to other techniques only
correspond to a part of the true objective of this algorithm (to show the user dis-
criminating sub-parts to help him to understand the classification ).
However, the proposition we do is at least as good (in fact slightly better) than the
more traditional methods, although the randomness seems to slightly decrease the
stability.
The first visualization experiments are promising, but require confirmation of a pre-
production in the targeted trade in order to meet the needs of geologists.
Moreover, some choices of parameters of the algorithm, that is to say the number of
sub-parts per object, the size of these sub-parts, the number of sub-parts selected for
learning, have been chosen only by successive empirical tests on different data sets,
and by giving our confidence to previous publications.
In the end, we will of course try to automate these choice of parameters.

Continuing on this axis of research involves questioning the set of values given
to the parameters. Indeed, the real data the algorithm is going to be confronted to
will tend to make reconsider some decisions that can be arbitrary, such as the choice
of the size of the extracted sub-parts (applied to the problem) and their number. This
could be the initial knowledge required for the classification, although automatizing
is possible in the medium term.
By the crossing of the techniques used for time series and image processing, our
method aims at helping an expert to better understand the key areas of a 3D object
in order to understand the set studied.

In addition to this direct application, we can easily see the possibility of reusing
the method proposed in this article for the automated processing of point clouds to
help, for example, a robot recognizing objects.
Moreover, in order to adapt this model to more common situations of classification
of 3D structures, trying to adapt it to cases of partially "hidden" objects would be
appropriate too, thus allowing to also use it in computer vision.
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