]. M. Pinzani, Liver cirrhosis, Best Practice & Research Clinical Gastroenterology, vol.25, issue.2, pp.281-290, 2007.
DOI : 10.1016/j.bpg.2011.02.009

Y. Iwakiri, Vascular pathobiology in chronic liver disease and cirrhosis -current status and future directionsCentral and systemic haemodynamic effects of terlipressin in portal hypertensive patientsHyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension, J. Hepatol. Liver Am J Physiol, vol.61, issue.244 1, pp.912-924, 1983.

X. Li, Computational hemodynamics of portal vein hypertension in hepatic cirrhosis patients, Bio-Medical Materials and Engineering, vol.26, issue.s1, pp.233-243, 2015.
DOI : 10.3233/BME-151310

C. Van-steenkiste, Vascular corrosion casting: analyzing wall shear stress in the portal vein and vascular abnormalities in portal hypertensive and cirrhotic rodents, Laboratory Investigation, vol.291, issue.11, pp.1558-1572, 2010.
DOI : 10.1114/1.1349703

C. Debbaut, Perfusion Characteristics of the Human Hepatic Microcirculation Based on Three-Dimensional Reconstructions and Computational Fluid Dynamic Analysis, Journal of Biomechanical Engineering, vol.51, issue.1, p.11003, 2012.
DOI : 10.1007/s10439-010-9957-x

C. Debbaut, A 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion, Computer Methods in Biomechanics and Biomedical Engineering, vol.27, issue.3, pp.1295-1310, 2014.
DOI : 10.1002/hep.510270427

G. Peeters, A Multilevel Modeling Framework to Study Hepatic Perfusion Characteristics in Case of Liver Cirrhosis, Journal of Biomechanical Engineering, vol.137, issue.5, p.51007, 2015.
DOI : 10.1115/1.4029280

W. Laleman, A stable model of cirrhotic portal hypertension in the rat: thioacetamide revisited, European Journal of Clinical Investigation, vol.96, issue.4, pp.242-249, 2006.
DOI : 10.1053/jhep.2002.31432

C. Debbaut, Modeling the Impact of Partial Hepatectomy on the Hepatic Hemodynamics Using a Rat Model, IEEE Transactions on Biomedical Engineering, vol.59, issue.12, pp.3293-3303, 2012.
DOI : 10.1109/TBME.2012.2199108

C. Audebert, Partial hepatectomy hemodynamics changes: Experimental data explained by closed-loop lumped modeling, Journal of Biomechanics, vol.50, pp.202-208, 2017.
DOI : 10.1016/j.jbiomech.2016.11.037

URL : https://hal.archives-ouvertes.fr/hal-01404771

G. Peeters, A multilevel framework to reconstruct anatomical 3D models of the hepatic vasculature in rat livers, Journal of Anatomy, vol.5, issue.5 Pt 1, pp.471-483, 2017.
DOI : 10.1002/hep.1840050427

C. Sanger, Intrahepatic Vascular Anatomy in Rats and Mice???Variations and Surgical Implications, PLOS ONE, vol.25, issue.4, p.141798, 2015.
DOI : 10.1371/journal.pone.0141798.s001

S. Hammad, Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis, Archives of Toxicology, vol.56, issue.4, pp.1161-1183, 2014.
DOI : 10.4081/ejh.2012.e41

URL : https://hal.archives-ouvertes.fr/hal-01110657

A. Friebel, TiQuant: software for tissue analysis, quantification and surface reconstruction: Fig. 1., Bioinformatics, vol.31, issue.19, pp.3234-3236, 2015.
DOI : 10.1002/hep.27136

URL : https://academic.oup.com/bioinformatics/article-pdf/31/19/3234/17086273/btv346.pdf

G. Peeters, Quantitative analysis of hepatic macro- and microvascular alterations during cirrhogenesis in the??rat, Journal of Anatomy, vol.4, p.2017
DOI : 10.1111/j.1600-0676.1984.tb00907.x

D. Fernandez-munoz, Systemic and splanchnic hemodynamic disturbances in conscious rats with experimental liver cirrhosis without ascites, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.249, issue.3, pp.316-320, 1985.
DOI : 10.1152/ajpgi.1985.249.3.G316

M. Niederberger, Comparison of vascular nitric oxide production and systemic hemodynamics in cirrhosis versus prehepatic portal hypertension in rats, Hepatology, vol.24, issue.4, pp.947-951, 1996.
DOI : 10.1002/hep.510240432

P. Pacher, Measurement of cardiac function using pressure???volume conductance catheter technique in mice and rats, Nature Protocols, vol.43, issue.9, pp.1422-1434, 2008.
DOI : 10.1016/j.ymeth.2007.05.009

B. Davies and T. Morris, Physiological parameters in laboratory animals and humans, Pharmaceutical Research, vol.10, issue.7, pp.1093-1095, 1993.
DOI : 10.1023/A:1018943613122

J. Trebicka, Role of ??3-adrenoceptors for intrahepatic resistance and portal hypertension in liver cirrhosis, Hepatology, vol.257, issue.6, pp.1924-1935, 2009.
DOI : 10.1097/00000542-198412000-00010

P. J. Blanco and R. A. Feijoo, A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications, Medical Engineering & Physics, vol.35, issue.5, pp.652-667, 2013.
DOI : 10.1016/j.medengphy.2012.07.011

H. Suga and K. Sagawa, Instantaneous Pressure-Volume Relationships and Their Ratio in the Excised, Supported Canine Left Ventricle, Circulation Research, vol.35, issue.1, pp.117-126, 1974.
DOI : 10.1161/01.RES.35.1.117

C. Audebert, Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling, Computer Methods in Applied Mechanics and Engineering, vol.314, pp.102-125, 2017.
DOI : 10.1016/j.cma.2016.07.009

URL : https://hal.archives-ouvertes.fr/hal-01347500

F. Liang and H. Liu, A Closed-Loop Lumped Parameter Computational Model for Human Cardiovascular System, JSME International Journal Series C, vol.48, issue.4, pp.484-493, 2005.
DOI : 10.1299/jsmec.48.484

P. Segers, Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model, Journal of Engineering Mathematics, vol.47, issue.3/4, pp.185-199, 2003.
DOI : 10.1023/B:ENGI.0000007975.27377.9c

E. Kung, A Simulation Protocol for Exercise Physiology in Fontan Patients Using a Closed Loop Lumped-Parameter Model, Journal of Biomechanical Engineering, vol.136, issue.8, p.81007, 2014.
DOI : 10.1115/1.4027271

]. Y. Shi, Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System, BioMedical Engineering OnLine, vol.10, issue.1, pp.10-33, 2011.
DOI : 10.1111/j.1525-1594.2008.00628.x

P. N. Martins and P. Neuhaus, Surgical anatomy of the liver, hepatic vasculature and bile ducts in the rat, Liver International, vol.4, issue.20, pp.384-392, 2007.
DOI : 10.1053/gast.1996.v110.pm8613073

A. C. Hindmarsh, SUNDIALS, ACM Transactions on Mathematical Software, vol.31, issue.3, pp.363-396, 2005.
DOI : 10.1145/1089014.1089020

A. C. Hindmarsh, User Documentation for ida v3, 2017.

L. Blendis and F. Wong, The hyperdynamic circulation in cirrhosis, Pharmacology & Therapeutics, vol.89, issue.3, pp.221-231, 2001.
DOI : 10.1016/S0163-7258(01)00124-3

S. Møller and J. H. Henriksen, The Systemic Circulation in Cirrhosis, Ascites and renal dysfunction in liver disease, pp.137-155, 2005.
DOI : 10.1002/9780470987476.ch11

C. C. Chan, Hemodynamic Assessment of the Development of Portal-Systemic Collaterals in Portal Hypertensive Rats, Digestive Diseases and Sciences, vol.68, issue.2, pp.417-424, 2011.
DOI : 10.1016/S1726-4901(09)70144-3

J. F. Halvorsen and A. O. Myking, The Porto-Systemic Collateral Pattern in the Rat, European Surgical Research, vol.6, issue.3, pp.183-195, 1974.
DOI : 10.1159/000127720

W. W. Lautt, Regulatory processes interacting to maintain hepatic blood flow constancy: Vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstriction, Hepatology Research, vol.274, issue.11, pp.891-903, 2007.
DOI : 10.1053/jlts.2003.50128

D. R. Monbaliu, Flow competition between hepatic arterial and portal venous flow during hypothermic machine perfusion preservation of porcine livers, The International Journal of Artificial Organs, vol.35, issue.2, pp.119-131, 2012.
DOI : 10.5301/ijao.5000038

S. Gaiani, Prevalence of spontaneous hepatofugal portal flow in liver cirrhosis, Gastroenterology, vol.100, issue.1, pp.160-167, 1991.
DOI : 10.1016/0016-5085(91)90596-D

S. A. Gaskari, Therapy Insight: cirrhotic cardiomyopathy, Nature Clinical Practice Gastroenterology & Hepatology, vol.100, issue.Suppl, pp.329-337, 2006.
DOI : 10.1111/j.1572-0241.2005.41060.x

N. Mcavoy, Differential visceral blood flow in the hyperdynamic circulation of patients with liver cirrhosis, Alimentary Pharmacology & Therapeutics, vol.39, issue.9, pp.947-954, 2016.
DOI : 10.1111/apt.12721

S. Pant, Inverse problems in reduced order models of cardiovascular haemodynamics: aspects of data assimilation and heart rate variability, Journal of The Royal Society Interface, vol.445, issue.126, p.20160513, 2017.
DOI : 10.1007/s00424-002-0931-9

URL : https://hal.archives-ouvertes.fr/hal-01413446

S. K. Venkatesh, Magnetic resonance elastography of liver: Technique, analysis, and clinical applications, Journal of Magnetic Resonance Imaging, vol.62, issue.Suppl 10, pp.544-555, 2013.
DOI : 10.2214/AJR.09.2601

S. Hoehme, Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration, Proceedings of the National Academy of Sciences, vol.13, issue.6, pp.10371-10376, 2010.
DOI : 10.1016/S1084952102001301

A. R. Pries and T. W. Secomb, Microvascular blood viscosity in vivo and the endothelial surface layer, American Journal of Physiology-Heart and Circulatory Physiology, vol.289, issue.6, pp.2657-2664, 2005.
DOI : 10.1073/pnas.1332808100

A. Monescillo, Influence of portal hypertension and its early decompression by TIPS placement on the outcome of variceal bleeding, Hepatology, vol.171, issue.4, pp.793-801, 2004.
DOI : 10.1016/0016-5085(92)90185-2