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Abstract
Ultracold bosonic atoms trapped in a two-leg ladder pierced by amagnetic field provide aminimal
and quasi-one-dimensional instance to study the interplay between orbitalmagnetism and
interactions. Using time-dependentmatrix-product-state simulations, we investigate the properties
of the so-called ‘Meissner’ and ‘vortex’ phases which appear in such a system, focusing on the
experimentally accessible observables.We discuss how to experimentallymonitor the phase
transition, and show that the response to themodulation of the density imbalance between the two
legs of the ladder is qualitatively different in the two phases.We argue that this technique can be used
as a tool formany-body spectroscopy, allowing us to quantitativelymeasure the spin gap in the
Meissner phase.Wefinally discuss its experimental implementation.

1. Introduction

Orbitalmagnetism (OM) encompasses a host of phenomena that arise in the systems of charged particles subject
to an appliedmagnetic field. Because the Bohr–van Leeuwen theorem forbids its appearance in an ensemble of
classical particles [1, 2], OMhas been a trademark of quantummechanics since its early days. In the case of
electrons in solids, for instance, theOMeffects include Landau diamagnetism [3] and the integer and fractional
quantumHall effects [4, 5].

Flux ladders (FLs) composed of two (ormore) coupled one-dimensional subparts with amagnetic field
perpendicular to the ladder plane are among the simplest setups inwhichOMcan appear. FLs are quasi-one-
dimensional, and thus still amenable to efficient theoretical treatment in the presence of interactions, either
using bosonization [6] or numericalmethods based onmatrix-product states (MPS) [7, 8]. Establishing the
connectionwith two-dimensional physics for studying FLs is one of themajormotivations of this researchfield.

Bosonic two-leg FLs have been particularly well studied, in part due to the simplicity of themodel, and in
part because of the recent experimental realization of ultracold atoms in suitably designed optical lattices [9].
Using the bosonization technique, the pioneering work of [10] predicts the appearance of vortex (V) and
Meissner (M) phases paralleling the phenomenology of superconductors. TheV phase is characterized by a
nonvanishing inter-leg (‘transverse’) current, and theMphase is characterized by the vanishing transverse
current. For strong interactions and commensurate densities, a phase transition between aMott-insulator (MI)
and a superfluid (SF) also appears [11]. According to thesefield-theory treatments of the low-energy part of the
model, two-leg ladders generally feature two excitation branches, related to ‘charge’ (or ‘density’)degrees of
freedomon the one hand, and to ‘spin’ degrees of freedomon the other [10, 11]. TheMI phases then correspond
to the opening of a charge gap, and theMphases to the opening of a spin gap. All four situations obtained by
combining these two classifications—V-SF,M-SF, V-MI andM-MI—are possible. Numerical studies of the
microscopicmodels of interacting bosonic FLs have confirmed the existence of these four phases andmore,
revealing an extraordinarily rich phenomenology [12–33]. For instance, it has been proposed recently that the
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precursors of the physics of the fractional quantumHall effect—and in particular of the Laughlinwave functions
—might appear in experimentally relevant bosonic FLs [19, 24, 34, 35].

Experimentally, the realization of a bosonic FL belongs to amore general effort to realize effective gauge
potentials coupled to ultracold atoms in spite of their electrical neutrality [36, 37]. The experiment in [9] creates
a one-dimensional array of isolated ladders with a totalflux per plaquette of 2pF = induced by combining
laser-assisted hoppingwith a periodic spatialmodulation of the lattice. In this experiment, each site of the ladder
is in reality a one-dimensional bosonic gas withmany atoms, with the result that the interaction energy per atom
is veryweak compared to the inter- and intra-leg tunneling energies. Recently, the role of interactions in bosonic
FLswas experimentally investigated for two particles [38].

The experiment of [39] exploits the concept of ‘synthetic dimension’. Each leg of the ladder can be
represented by internal (spin) states of the atom, and themagnetic flux is due toRaman transitions coupling the
internal states. The idea of synthetic dimension has been recently generalized tomomentum space lattices [40].
Importantly, in the synthetic dimension approach, the two legs are not separated in space, but fully overlapping.
As a result, the interactions are short-ranging in real space, but have an almost infinite range along the synthetic
dimension. Thismakes the interactingmodels using the synthetic dimension approach quite different from
models with short-range interactions [41, 42].

Fermionic flux ladders can also be explored experimentally with ultracold atoms using similar approaches to
the bosonic case [43–46]. Theoretical studies have highlighted the presence of fractional charge excitations and
predicted a host of novel phases ofmatter (such as charge-, bond- and density- waves or orbital
antiferromagnets) leading to amore complex phenomenology thanV-Mcompetition in the bosonic case
[47–49]. Triggered by interest in the quantumHall effect, analogues of the chiralmodeswhich characterize both
integer and fractional phases have been discussed [24, 34, 42, 50–55].

In this article, we propose an experimentally feasiblemethod to distinguish theMandVphases in the
bosonic FL and to characterize their low-energy excitation spectrum. It is known that theMandVphases can be
distinguished qualitatively by time-of-flightmethods [9, 31, 32, 45, 56, 57].We show that they also respond
differently to a periodic ‘spin’modulation, andwe interpret our results as ameasure of the spin gap in theM
phase.We support our claims by presenting numerical simulations performed both in the dilute noninteracting
limit and in the dense interacting case. This extends previous work studying dynamical protocols to probe
bosonic or fermionic systems in one dimension [58–63]. Finally, we showhow to adapt the proposal of [64],
initially designed to realize two-dimensional systemswith an effectivemagnetic flux, to the realization of FLwith
strong on-site interactions. This scheme is well suited to the spectroscopicmethod probing the spin gap,
althoughwe note that themethod can also be used in other implementations of bosonic FL.

The article is organized as follows. In section 2, we introduce themodel, and in section 3we briefly discuss
some aspects of its phase diagram. In section 4, we present our theory for spin-gap spectroscopy and the
numerical simulations supporting our statements. In section 5, we discuss a possible experimental
implementation of bosonic FL using state-dependent lattices and laser-induced tunneling, and discuss how the
proposedmeasurement could be carried out.Wefinally draw our conclusions in section 6, and provide some
technical details in the appendices.

2.Model andnotations

Weconsider a gas of interacting bosonic atoms loaded into an optical lattice at zero temperature. The system is a
FL composed of two coupled one-dimensional systems immersed in a (possibly synthetic)magnetic field. A
sketch of the ladder is shown infigure 1, where j andm identify the longitudinal and transverse directions of the
ladder respectively. Such a system can bemodeled by the following tight-bindingHamiltonian including the
interactions [10]:
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) annihilates (creates) a boson on site j and on legm, n b bj m j m j m, , ,=ˆ ˆ ˆ†

is the local density operator
on legm, J and Ĵ denote the tunneling amplitude between the twonearest-neighbor (NN) sites in the
longitudinal and transverse direction, respectively, andΦ is themagnetic flux per plaquette. The inter-particle
interaction is taken into account by the Bose–Hubbard on-site interactionU, whichwe take to be equal for both
legs.We denote by L the total number of rungs of the ladder, and consider open boundary conditions (OBC).
The total number of particlesN defines the particle density per rung n through n=N/L.
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In theHamiltonian in equation (1), the gaugeflux is set in such away that the tunnelingmatrix elements on
the transverse links of the ladder are complex, and the longitudinal ones are real.Wewill refer to this choice as
the experimental gauge (ex). It is convenient tomake theHamiltonian in equation (1) translationally invariant,
swapping the gaugefluxwith the longitudinal links, by using the unitary transformation d bej m

jm
j m,

i
,= - Fˆ ˆ . The

transformedHamiltonian reads
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where n b b d dj m j m j m j m j m, , , , ,= =ˆ ˆ ˆ ˆ ˆ† †
. The choice of the gauge, as in equation (2), will be referred to as the condensed-

matter gauge (cm). In the following, if not explicit, we use J as the reference energy scale.
For noninteracting bosons (U = 0), theHamiltonian in equation (2) can be diagonalized inmomentum

space by introducing the operators d L dek m j
kj

j m,
1 2 i

,= å-ˆ ˆ . The two energy bands are given by

E k J k J k J2 cos cos 2 4 sin sin 22 2 2 2= - F  F + ^( ) ( ) ( ) ( ) ( ) . The structure of the lower band E k-( ) changes
with Ĵ orΦ.When Ĵ exceeds a critical value J J2 sin 2 tan 2c, = F F^ ( ) ( ), the lower energy band has one
minimumat k=0.When J J c,<^ ^ , the lower band features two symmetricminima at k k J,M=  F ^( ). In the
former case, the system is in theMeissner phase (M), whereas it is in the vortex phase (V) in the latter. By tuning
Ĵ and/orΦ, the system can undergo anM-Vphase transition [18]. This transition persists for nonzero repulsive
interactions, but the critical value J c,^ (which depends onU n, , F in general) can be stronglymodified by
interactions [28, 31].

3.Momentumdistribution functions and the phase diagramof interacting bosonicflux
ladders

Wenumerically study the properties of a bosonic FLwith repulsive interactions (U 0> ) using anMPS-based
algorithm [8]. The ground state (GS) of the system is found after a local variational search in theMPS space. At
finiteU, we keep d 3loc = states for the localHilbert space (see appendix A for details and a critical discussion).

According to bosonization, theMphase is distinguished from theVphase by the presence of a gap appearing
in the spin sector of the low-energy theory [10, 21] (hereafter denoted as the ‘spin gap’). As a consequence, the
two phases also differ in the so-called central charge c, which in this context, roughly speaking gives half the
number of gaplessmodes [6].When the particle density is less than unity, n 1< (which is the situation thatwill
be studied in this article), the charge sector is always gapless (noMI phase). The spin sector is gapped in theM
phase (thus c= 1 if n 1< ), and gapless in theVphase (thus c = 2 if n 1< ).Monitoring the change of cwith the
variations of parameters J n, ,F^ allows one to track theM-Vphase transition (see appendix A).MPSmethods
arewell-suited to extract the entanglement entropy fromwhich the central charge is deduced [65].

Another possibility would be the direct numerical computation of the spin gap that distinguishes the two
phases. Such ameasurement is typically performed in the ladder ormore generalmodels with two decoupled
species, where the number of particles for each species is a conserved quantity [66, 67]. In our situation, however,
the spin gap cannot be accessed directly: only the total number of particles is a conserved quantity when Ĵ andΦ
are both nonzero. As a result, there is no quantumnumber associatedwith the spin sector (outside of the low-
energy sector). Thismakes the computation of the spin gap unfeasible in practice. In the next section, we
propose a spectroscopicmethod that can be used to estimate the spin gap.

Figure 1.A schematic representation of the two-leg ladder. Here, J is the tunneling amplitude between nearest-neighbor sites in the
longitudinal direction j, Ĵ is the tunneling amplitude in the transverse directionm,Φ is the gauge flux piercing each plaquette, andU
is the on-site interaction strength, which is taken to be equal for both legs.
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Webegin by reviewing amethod to study the phase diagram [20, 23, 28, 31, 32], which can be easily
implemented in experiments [9].We focus on themomentumdistribution functions (MDF), both leg-resolved
and the total. Time-of-flightmeasurements readily give access to the totalMDF; in some experimental schemes,
such as the one discussed in section 5, it is even possible tomeasure it for a specific leg. The leg-resolvedMDF in
the experimental gauge is defined as

n k b b
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where the expectation value is computed over theGS of theHamiltonian in equation (1). Since theMDF is
periodic with the period 2p, we restrict themomentum variable to k :p pÎ -[ ). By using the unitary
transformation introduced before, theMDF in the experimental and in the condensed-matter gauge are simply
related by amomentum shift, i.e. n k n k mm m

cm ex= - F( ) ( )( ) ( ) . The totalMDFs are accordingly
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In the condensed-matter gauge, theMDFdisplays one peak centered at k = 0 for theMphase, and two
symmetric peaks at k kM=  for theVphase, reminiscent of the single or doubleminimumof the lower energy
bandwhenU = 0 [32]. Infigure 2we report theMDF for J J 1.50=^ (panel (c)) and J J 1.75=^ (panel (d))
for several values ofU and n 1 2= . For sufficiently low values of Ĵ , the two-peak structure of theMDF is
observed for allU. For large enough Ĵ , the V-Mphase transition occurs whenU is increased beyond a critical
value; in this case, we see the emergence of a third peak at k = 0, which eventually dominates theMDFwhen one
enters theMphase.

To go beyond these qualitative features and to quantitatively distinguishMandVphases, we define the
imbalance ratio (IR)
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The IR takes the values n0 1d< < in theVphase and n1 0d- < < in theMphase.We propose finding the
transition points by imposing the condition n 0d = . The IR provides a simple and experimentally accessible
observable to distinguishV andMphases, although it is not an order parameter in the sense of Landau theory. A
more rigorous numerical characterization of the two phases is provided in appendix A, wherewe show that for

Figure 2.The phase diagram in theU J2( ) versus J J^ plane. (a)Weuse n 1 4= , L=72 and 0.8 pF = . The points on the critical
line (yellow line) are found by imposing n 0d = . The green points identify theVphase, whereas the red points identify theMphase.
(b)The same analysis as in panel (a) but using n 1 2= and L=24. In the latter case, we have to use smaller values of L because of the
higher numerical complexity. The critical line is shifted towards smaller values of Ĵ . To increase the numerical accuracy, we compute
the critical line using L=48 (magenta line), which overlaps the one obtained using L=24 (yellow line). (c)–(d)The data for n kcm ( )( )

for the phase diagram in panel (b), using L=48, for (c) J J 1.50=^ , (d) J J 1.75=^ .
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n 1 2= , the transition point identified by n 0d = is very close to the point where the central charge introduced
earlier changes from c = 2 to c = 1 [21]. Bymonitoring the variations of the IRwith a control parameter, for
instance Ĵ , we can obtain a qualitative phase diagram for theHamiltonian in equation (1), and analyze how the
presence of the interactions affects the critical point at which theV-Mphase transition occurs. A similar analysis
was discussed in [31].

The phase diagram in theU- Ĵ plane for afixed flux per plaquette of 0.8 pF = is shown infigure 2(a) for
n 1 4= and (b) for n 1 2= . Red points correspond to n 0d < (Mphase), green points correspond to n 0d >
(Vphase), and the yellow line represents the critical line separating the two phases.Wefirst focus on the case
with n 1 4= (figure 2(a)). Repulsive interactionsU 0> shift the critical value of Ĵ with respect to the
noninteracting case J U J0 5.9c, =^ ( ) [18].Wefind that J U n,c,^ ( ) is amonotonous and decreasing function
ofU, with J n J, 3.8c, ¥^ ( ) for hard-core bosons (U  ¥) and 0.8pF = . For a larger particle density, the
shift of J U n,c,^ ( ) is expected to be enhanced further with respect to the n 1 4= case. The numerical
simulation confirms this expectation, as we show infigure 2(b) for n 1 2= .

4. Spin gap spectroscopy

In the previous section, we characterized theMandVphases by looking at theMDF. In this section, we study the
response of the bosonic ladder to a periodic imbalance of the particle number on the two legs, andwe show that
the systemdisplays different responses in theMandVphases.We interpret ourmethod as a spectroscopic tool
that detects andmeasures the presence of the spin gap in theMphase predicted by bosonization.

4.1.Model and observables

Weconsider theHamiltonian H0
exˆ ( )

in equation (1), and add a time-periodic perturbation V F t Ns=ˆ ( ) ˆ
proportional to the population difference between the two legs (hereafter denoted as spin imbalance),
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where N nm j j m,= åˆ ˆ is the particle number per leg, with F t t tsin1d w= Q( ) ( ) ( ), and tQ( ) is the unit step
function.Here, we denote by 1d andω the amplitude and frequency of themodulation, respectively. The total
Hamiltonian is thus
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Inwhat follows, to ease the notation, the superscripts denoting the experimental gauge in theHamiltonian in
equation (6)will be omitted.

We consider the time evolution of themean energy, E t t H t t= áY Y ñ( ) ( )∣ ˆ ( )∣ ( ) , where tY ñ∣ ( ) is the time-
evolved state starting from theGS of the bosonic ladder.We define the energy absorption rate (EAR) as
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Within linear response theory, the EARper unit frequency probes the imaginary part of the response function,
i.e. Im N Ns s
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is the response function in real time.Here N t Ne es
H t

s
H ti i0 0 = -ˆ ( ) ˆˆ ˆ is the number imbalance expressed in the

interaction picture with respect to H0
ˆ . Notice that bymeans of equation (7), the EAR can be experimentally

accessed bymeasuring the total spin imbalance in time t N tsáY Y ñ( )∣ ˆ ∣ ( ) (see section 5).
If we denote by EsD the value of the spin gap, the spectroscopicmethod that identifies it should consist of a

periodicmodulation of the systemwhich is sensitive to its presence, so that the systemdoes not absorb energy as
long as Esw < D , and energy absorption can only occur for Esw > D .We thus expect Im 0N Ns s

c w =-[ ( )] if
Esw < D and Im 0N Ns s

c w >-[ ( )] otherwise.
To compute the response in time to themodulation in equation (6), wefirst compute theGS bymeans of the

variationalMPS-based algorithmdiscussed in section 2. The time-evolved state, tY ñ∣ ( ) is computed by using the
time-evolving block decimation (TEBD) algorithm [8, 68, 69]with a fourth-order Trotter expansion [70, 71]
and a time step dt (during the time evolution, wefix themaximumbond link D tmax, used to describe theMPS
state at time t).

4.2. Results for dilute gases
Wefirst analyze a very dilute gas (n 1 )where the interaction effects areweak and the physics is expected to be
close to the free case, for which the critical line is analytically known [18].We focus on the limit of hard-core
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bosons (U  ¥). Unlike the equilibrium results presented in section 4.1, the increased numerical complexity
of simulating the time evolution forces us to restrict ourselves to smaller values of the system size,
namely L=24.

The results are shown in figure 3, for L=24, n 1 12= and different values ofΦ. The amplitude of the
densitymodulation is J0.41d = , andwe use different values ofω, depending on the value ofΦ. During the time
evolution, the time-dependentHamiltonian in equation (6) is taken as constant within eachTrotter step.
Therefore, the time step dthas to be chosen small enough to ensure the reliability of this approximation for all
values ofω that we consider.We have verified that we can choose the time step t Jd 10 2 = - in the Trotter
expansion (see also appendix B for a deeper discussion). Infigure 3(a), we show the relative energy variation,

E t E t E 0D = -( ) ( ) ( ) for the two typical cases. In theMphase (J J 7.0=^ ), there is no net energy absorption
for sufficiently smallω, whereas the system absorbs energy for allω in theVphase (J J 2.0=^ ). The EAR is
extracted from the slope of E tD ( ) represented by the black dashed line. To remove the fast oscillations of E tD ( )
and extract the long-time linear trend, we performM linear fits to E tD ( ) using different ranges of t. Accordingly,

Figure 3.The energy absorption for dilute bosons (n 1 12 1=  ). This observablemonitors the response to amodulation of the
spin imbalancewith an amplitude of J0.41d = and a frequency ofω as shown in the legends. (a)Relative energy variation,

E t E t E 0D = -( ) ( ) ( ) in the Vphase (J J 2.0=^ , magenta full line) and in theMphase (J J 7.0=^ , blue full line) for 0.80pF = .
The energy absorption rate (EAR)per unit frequency and its error bars are extracted from a linearfit to E tD ( ) (black dashed line, see
text for details). (b)–(e)EARper unit frequency e w w˙ ( ) as a function of Ĵ for (b) 0.16pF = , (c) 0.24pF = , (d) 0.64pF =
and (e) 0.80pF = . The insets in (b)–(f) show the noninteracting phase diagram (U = 0) for reference. TheV-Mphase transition
for noninteracting bosons is indicated by themagenta arrows in themain plots. (f)The EARper unit frequency as a function ofω for

0.24pF = in theV (magenta data) and in theMphase (blue data). For all plots reported here, the simulations were done for hard-
core bosons using L=24 andN=2.
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we obtain a set of values for the EARper unit frequency, q q
M

1e w w ={˙ ( ) } , fromwhichwe compute themean value

M q
M

q
1

1e w w e w w= å-
=˙ ( ) ˙ ( ) , and the standard deviation, M q

M
q

1
1

2s e w w e w w= å -e
-

= [˙ ( ) ˙ ( ) ]˙ .We take

the latter as ameasure of the uncertainty on the determined slope.
Infigures 3(b)–(e), we show the EARper unit frequency as a function of Ĵ for four different values ofΦ. In

the insets, we show the noninteracting phase diagram (U = 0), where the red solid line corresponds to the
critical line J U 0c, =^ ( ), and the black dashed line indicates the line at whichwe cut the phase diagram. The
behavior of the EARper unit frequency is in agreementwith the opening of the spin gap at the expected value of
J c,^ . The system absorbs energy in theVphase (J J c,^ ^ ), whereas the energy absorption ceases as theV-M
phase transition takes place (J J c,^ ^ ).

When J 0=^ , the relation N H, 0s 0 =[ ˆ ˆ ] holds, implying that N t N, 0s s =[ ˆ ( ) ˆ ] and 0N Ns s
c w =- ( ) from

equation (8). This is consistent with the curve plotted infigure 3(e), which tends to 0 for low values of Ĵ . Similar
behavior is also expected for the values ofΦ used infigures 3(b)–(d), but the considered value of Ĵ was not small
enough to highlight it.

Aswe previously stated, in the presence of a spin gap, the system is only expected to absorb energy if
Esw > D . Infigure 3(f), we show the EARper unit frequency as a function ofω for 0.24pF = , both in theV

phase (J J 0.1=^ ) and in theMphase (J J 0.5=^ ). For lowmodulation frequencies, we observe that the
system can absorb energy in theV phase for values ofmodulation frequency down to J10 2 w ~ - . In
contrast, in theMphase, energy absorption starts from afinite frequency threshold, the value of which can be
considered as a qualitative estimate of the spin gap. For high frequenciesω, one observes a drop in the response
in both phases, as expected from the general behavior of the susceptibility c w( ) [6].

4.3. Results for strongly interacting gases
Wenowmove to the discussion of the strongly correlated case. To approach this regime, we consider hard-core
bosons (U  ¥) and a higher density with respect to the case in section 4.2. Previously, in section 2, we showed
how the presence of interactions shifts the critical point for theV-Mphase transition. Herewe demonstrate that
this shift is also detected by the periodicmodulation of the density imbalance. For concreteness, we focus on

n 1 4= and 0.8 pF = , as for the data infigure 2(a).
The numerical results are shown infigure 4. Infigure 4(a), we plot E tD ( ) for different values of J J^ using

J0.41d = and J10 2 w = - . Infigure 4(b), we display the EARper unit frequency as a function of J J^ for the
same set of data.We use the same smoothing procedure as in the previous section 4.2. The EARper unit
frequency vanishes for J J5.0^ , and becomes nonzerowhen J J4.0=^ and below. In section 2, we estimated
the critical value for theV-M transition, J J 3.8c,^  , which is slightly lower than the observed threshold for
energy absorption. This quantitative discrepancymay be due both to the finite-size effects, and to the fact that
w is possibly larger than the spin gap for J J 4.0=^ .

In panels (c) and (d), we show the same analysis for a larger value ofω, namely J10 1 w = - . For

J J 4.0^ , the system absorbs energy until saturation starts to take place. Instead, for J J 4.0^ , energy
absorption is suppressed. Unlike the data in panels (a) and (b), we also see nonzero energy absorption for
J J 5.0, 6.0=^ .We ascribe this fact to the larger value of w, possibly overcoming the value of the spin gap. The
numerical complexity of the problemprevents us fromusing lower values ofω, as the required simulation times
t are beyond our numerical possibilities. For amore critical discussion of the numerical data, see appendix B.

To conclude, our results are compatible with the opening of a spin gap around J J 4.0^  , which is in
qualitative agreementwith the phase diagrampresented in section 2 for hard-core bosons and n 1 4= .We
thus conclude that the protocol we propose provides an experimentally accessible way of detecting and
measuring the spin gap in the bosonic ladder all theway from theweakly to the strongly interacting regime.

4.4.Discussion
Weconclude this sectionwith a discussion of the choice of the perturbation used to probe the system.
Modulating the spin imbalance Ns

ˆ is a natural choice to probe the properties of the system in the spin sector
from an experimental perspective (see section 5). As pointed out in section 4.1, both theMandVphases are
gapless, and thus the choice of themodulation is crucial for distinguishing them, since a generic onewill, in
principle, be sensitive to the presence of gapless excitations and thus lead to absorption in both cases.

To display a counter-example, we show an additional calculationwhere the perturbation leads to energy
absorption irrespective of whether the system is in theMorV phase. Instead of the spin density (equation (6)),
we perturb the systemusing the perturbation V F t s=ˆ ( ) ˆ , where the longitudinal spin-current operator s̂ is
defined as
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In equation (9), j m,̂ is the current operator on the link between site j and j 1+ , and on legm:

J b bi H.c. . 10j m j m j m, , 1, = - -+ˆ ( ˆ ˆ ) ( )
†

The results of the simulation are shown infigure 5.We use the same systemparameters as infigure 3(c). The blue
points correspond to the data for e w w˙ ( ) , as a function of Ĵ , when the system ismodulated by using Ns

ˆ ,

Figure 4.Energy absorption for hard-core bosonswith n 1 4= . (a)Energy absorption E tD ( ), and (b) the EARper unit frequency for
amodulation frequency J10 2 w = - . Themagenta arrow indicates the estimated position of theM-Vphase transition for hard-
core bosons, J J 3.8c,^  (see appendix B). (c), (d)The energy absorption and EARper unit frequency for J10 1 w = - . In this
case, we see a less sharp decrease in the energy absorption for J J 4.0^ . For all plots, the spin imbalance ismodulatedwith an
amplitude of J0.41d = andwe use L=24 andN=6. The data at J J 1.0, 2.0=^ in panels (a) and (b) is obtained using a bond
length D 300tmax, = , whereas the other data is taken using D 200tmax, = . For panels (c) and (d), we use D 350tmax, = .

Figure 5.The EARper unit frequency e w w˙ ( ) as a function of Ĵ for a dilute gas (n 1 12= ) at 0.24 pF = ; other parameters are as
in figure 3(c). The blue or red points are obtained bymodulating the spin imbalance Ns

ˆ or the spin current s̂ , respectively. The
magenta vertical dashed linemarks theM-V transition point J c,^ for noninteracting bosons. The spin current is insensitive to the
opening of the spin gap, and energy absorption takes placewith roughly equal strength in bothMandVphases.

8

New J. Phys. 20 (2018) 015004 MCStrinati et al



whereas the red point corresponds to e w w˙ ( ) when s̂ is used instead. Aswe show in thefigure, whenwe
perturb the systemusing s̂ , energy absorption takes place both in theV and in theMphase. Thus, the choice of
using the spin current as a perturbation does not allow us to probe the spin gap, unlike the case inwhich the spin
density is used.

5. Experimental realization using laser-induced tunneling

As discussed in the introduction,most experimental realizations of bosonicflux ladders with cold atoms do not
strictly realize the situation described by theHamiltonian in equation (1) due to different interaction terms. In
the approach of [9], the interaction energy per atom is veryweak due to the large number of atoms per site, and
in [39], interactions are long-range in the synthetic (spin) dimension. The bosonic FLwith strong, short-range
interactions, but for only two particles, has also been investigated [38]. Here, we discuss an alternative
experimental realization that follows from the proposal of [64] for realizing theHarper–HofstadterHamiltonian
in a square optical lattice. This scheme naturally realizes a bosonic FLwith short-range (on-site) interactions and
lowfilling around or below one atomper site.

Wefirst review the scheme described in [64].We consider an atomic species with two long-lived internal
states connected by an ultra-narrow optical transition as used in optical atomic clocks [72]. This can be realized,
e.g. using the singlet 1S0=gGS and ametastable 3P0=e state in group-II or Ytterbium atoms. The atoms are
trapped in two dimensions by a strong confining potential along z, and in the x−y plane by a state-dependent
square optical lattice that traps atoms in different sublattices depending on their internal state (see figure 6 and
[64, 73]). The y lattice of period dy is chosen to trap atoms in both internal states identically. The x potential is
formed by the sumof a short lattice with spacing dx,V x V x dcosx x x, 0,

2
SL p f= +m m( ) ( ), with g e,m = and

with 1 = +m for g and−1 for e, and of a long latticewith spacing d2 x,W x W x dcos 2 x W
2 p f= +m m( ) ( ), with a

well-controlled relative phase Wf [74]. By suitably choosing the depths of the x lattices, one can suppress the
standard tunneling along xwithin each sublattice g or e.

A laser of wavevector kL is then used to coherently couple states g and e, thereby inducing hopping between
the g and e sublattices. This laser-assisted tunneling process [75, 76] is described by a tight-bindingHamiltonian
of the form(1)with

k d

2
, 11

L y

p
F =

·
( )

where dd ey y y= . For Ytterbium atoms, for instance, d 380y  nmand k2 578Lp  nm, leading to a
maximumvalue of 0.66maxF  when the coupling laser propagates along y. The value ofΦ can be tuned
between 0 and maxF by changing the propagation direction of the laser. A calculation of the band structure leads
to laser-induced tunneling energies of J h 100 Hz~^ forV E8x0, r,x= andW V x0,m  , where E h 3r,x  kHz
is the recoil energy associatedwith the period-dx lattice [64]. Note that Ĵ is proportional to the power of the
coupling laser, and that the intra-leg tunneling J is tunable independently by changing the depth of the y lattice.

The simultaneous presence of the superlattice and laser coupling enlarges the unit cell to d2 x, in general,
with four nonequivalent sites per unit cell (two associatedwith g and twowith e). This corresponds to four
different types of g−e ‘links’ and to four different transition frequencies, which are nondegenerate for a generic

Figure 6.Apossible experimental realization following [64]. (a)A sketch of the laser arrangement; (b) a spin-dependent lattice
realizing a collection of disconnected two-leg ladders.
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Wf . By a suitable choice of Wf , two of these links can bemade degenerate [64]. Connecting all neighboring
lattice sites to resonant laser-assisted tunneling then requires three different transition frequencies

W,1 1 w w  / (whereW is related to the amplitudesW W,e g). Choosing aW that is large enough compared to
the laser-induced tunneling energies Ĵ ensures that a given laser frequency only enables tunneling for the links
where it is resonant (typically one can chooseW h 8 kHz~ andW J 80~^ ). This setup leads to a two-
dimensionalHofstadter optical lattice with a uniform fluxΦ through each unit cell. This fully connected
Hofstadter lattice can be reduced in a straightforwardmanner to an array of two-leg ladders by removing every
other frequency W1 w  / (seefigure 6(b)). Similarly, three-leg ladders can be realized by removing only one
frequency, for instance W1 w + / .

Focusing nowon the two-leg ladder geometry, each leg of the ladders is associatedwith a different internal
state g 1 2º + or e 1 2º - . In this situation, time-of-flight and state-dependent imaging (see e.g. [77]) gives
access to the leg-resolvedMDF. Furthermore, nonzero detuning eg1 1d w w= - of the coupling laser from the

atomic resonance egw generates a term Nsµ ˆ , as desired for the spectroscopy protocol presented in section 4.
Frequencymodulation of 1w is straightforward to implement using acousto- or electro-opticalmodulators, and
energy absorption can be detected bymonitoring the changes of theMDF.

6. Conclusions

In this article, we have investigated the properties of bosonicflux ladders from the dilute to the strongly
correlated regime. For particle densities n 1< , the phase transition from aMeissner to a vortex phase is
qualitatively unchanged, but quantitatively strongly affected by interactions.With the help of numerical
simulations, we have shown that this phase transition can be observed by recording themomentum
distribution, and that its precise location is well identified by the ‘imbalance ratio’ characterizing themulti- or
single-peak character of themomentumdistribution.

Moreover, we have discussed a spectroscopicmethod that employs a periodicmodulation of the spin
imbalance between the two legs as a probe of the excitation spectrum.Gapped spin-like excitations in the
Meissner phase prevent energy absorption below a certain frequency threshold, whichwe identifiedwith the
spin gap; in contrast, energy absorption occurs at all frequencies in the vortex phase. As such,monitoring the
energy absorbed versus themodulation frequency allows one tomeasure not only the location of the phase
transition, but also the value of the spin gap.

The characterization of the low-energy properties of a quantummany-body system is as important as the
characterization of the state itself. Sincewe have shown that the protocols discussed in this article arewithin the
reach of state-of-the art experiments, we believe that our workwillmotivate further interest in the study of the
low-energy properties of complex quantumphases, by indicating an effective procedure to be applied in
nontrivial cases where gapped and gapless excitations of a different nature coexist.
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AppendixA.Numerical analysis of the phase diagram

In this appendix, we discuss our results on the phase diagramobtained infigure 2. For sufficiently large L, the
phase transition from theV to theMphase can be numerically detected by computing the central charge, which
is extracted from the entanglement entropy (EE). The EE is defined by S Tr logr r= -ℓ( ) [ ˆ ( ˆ )]ℓ ℓ , r̂ℓ being the
reduced densitymatrix of a bipartition of a chain of lengthℓ. In the case ofOBC, the leading behavior of the EE
computed on theGS is predicted to be [65]

S s
c L
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where s1 is a nonuniversal value and c is the central charge, which gives the number of gaplessmodes in the
system. Thus, for n 1< , one predicts c=2 in theVphase, and c=1 in theMphase, where the spin sector is
gapped [21].

Analysis of the EE and of the central charge for the data of the phase diagram infigure 2(b), with n 1 2= , is
reported infigure A1. In panels (a) and (b), we show the EE for different values ofU J2( ) as in the legends, across
theV-Mphase transition (see figure 2(b), magenta line).We perform afit with equation (A.1) (black dashed lines
infigure 2(b)) to extract the central charge. Close to theV-Mphase transition, equation (A.1) fails to describe the
behavior of the EE, but sufficiently far away from the transition point the fit agrees well with the numerical data.
Such EE behavior has also been observed in othermodels [34, 55, 78–80], and is ascribed to the fact that in the
vicinity of the phase transition, the low-energy excitations becomemassive because of the presence of a gapped
low-energy spectrum, and the leading order of S ℓ( ) is not described by equation (A.1) anymore.

We show the central charge as a function ofU J2( ), for the same set of data, in panels (c) and (d).We ascribe
the fact that we do notfit c=1 or c=2 exactly tofinite-size effects. Because of the oscillatory behavior of the EE
and of the choice ofOBC, tofit the EE and compute the values of c for each value ofU J2( ), we repeat the fitNc

times, introducing a cut-off Lcwhichwe vary from Lc= 1 to Lc=Nc. For each repetition of the fit, we only
include points in the range L L L:c cÎ -ℓ [ ].We accordingly obtain a set of values for the central charge,
cL L

N
1c c

c
={ } , fromwhichwe estimate themean value as c N cc L

N
L

1
1c

c
c

= å-
=¯ , and the uncertainty bymeans of the

standard deviation N c cc c L
N

L
1

1
2

c
c

c
s = å --

= ( ¯) . Aswe see from thefigure, the phase transition from theV

phase to theMphase is identified by the jump of the central charge. Furthermore, sufficiently far away from the
V-M transition point, the fitted values of c are in agreementwith the expected values predicted by bosonization.
We conclude by noting that the transition points estimated from the IR infigure 2 are in agreementwith the one
estimated from the numerically determined central charge, the latter being known to signal theM-Vphase
transition [21].

The numerical simulations atfiniteU are performed by truncating the localHilbert space on each site j and
legm, whichwe denote by j m, .We define by r j m,ñ∣ the local Fock space such that rspanj m j m r

d
, , 0

1loc = ñ =
-{∣ } ,

where d dim j mloc ,= ( ). Let r rr
j m

j m
,

, = ñ áˆ ∣ ∣( )
be the local projector over the state r j m,ñ∣ . The local density

operator is then n rj m r
d

r
j m

, 0
1 ,

loc = å =
-ˆ ˆ ( )

. The suitable choice for dloc depends on the values ofU J2 ;( ) we can

Figure A1.Analysis of the EE for the phase diagram infigure 2 for n 1 2= .We show (a) the EE for J J 1.75=^ and (b) for
J J 2.00=^ , for different values ofU/J across theV-Mphase transition. The phase transition is detected from the sudden change of
the EE. Such a change is well reflected by the central charge, which is shown as a function ofU J2( ) for (c) J J 1.75=^ and (d)
J J 2.00=^ . The uncertainties are estimated as explained in the text. Sufficiently far away from the transition point, the values of c
that wefit are in agreementwith the expected ones. The transition points estimated from the jump of the central charge are in
agreement withwhat we found infigure 2(b) by looking at the IR (magenta dotted line).
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keep up to dloc states for j m, if the probability offinding d 1loc - particles on the site j of legm is small with

respect to the local density, i.e. nd
j m
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,
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, for all j andm, where the expectation value is computed on the

GS of the system. Thus, we choose to verify that L L nj d
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for allm. In our numerical

simulations, we see that this condition is fulfilled using d 3loc = , for all the values ofU J2( ) that we use, sincewe
verify that L L nj d

j m
j j m

1
1

, 1
,loc

 å á ñ å á ñ-
-

-ˆ ˆ( )
, for allm, where 3 10 2 = ´ - is a small numerical factor.

We nowdiscuss the numerical estimation of the critical point for hard-core bosons at n 1 4= and
0.8pF = .We have chosenU  ¥ to simulate longer chains (L = 96) and reduce finite-size effects while

having a sufficiently lownumerical complexity.We compute the totalMDF in the condensed-matter gauge and
the EE, fromwhichwe extract the central charge. The result is shown infigure A2. Deep in theVphase, theMDF
displays two symmetric peakswith respect to k=0. As theV-Mphase transition is approached, additional
peaks around k=0 start to appear, and one peak eventually dominates when one enters theMphase. The phase
transition is also signaled by the jump of the central charge, which drops from c=2 in theV phase to c=1 in
theMphase. The EE and central charge display the same behavior as in the previous case, and are analyzed in the
sameway.Wefinally estimate J n J, 3.8c, ¥^ ( ) from the behavior of the central charge, which agrees with the
valuewe estimate bymeasuring the IR (figure 2(a)).

Appendix B.Details of the time-dependent numerical calculations

In this appendix, we discuss the effect of afinite value of the bond link Dmax,t and of the time step dt in the
numerical calculation using the TEBD algorithm. In order to ensure the reliability of our data for long times, the
value of D tmax, must be large enough to take into account the increasing amount of entanglement in the system,
which is particularly important for the deepV phase.Wefirst focus on the data in panels (a) and (b), which is
taken using J10 2 w = - , with D 300tmax, = (for J J 1.0, 2.0=^ ) and D 200tmax, = (for J J 3.0^ ). In our
simulations, we see that the bond linkDt starts to saturate to D tmax, in the sites around L 2 after a timewhich is
smaller than the total simulation time.

In order to see how this fact affects our E tD ( ) data, we compare the results for E tD ( ) by using D 200tmax, =
and D 300tmax, = . The result is shown infigure B1. In particular, we separately show E tD ( ) in theVphase
(figure B1(a)) and in theMphase (figure B1(b)). The data at D 200tmax, = and D 300tmax, = are shownusing
solid and dashed lines respectively. As is evident from the figure, the curves with D 200tmax, = become
significantly different in the deepVphase (J J 1.0, 2.0=^ ) from the curves computed using D 300tmax, = for
timeswhich are between t J500= / and t J750 = / , i.e. afterDthas saturated to D 200tmax, = on almost all
sites of the chain. Indeed, in theV phase, wherewe have c=2, we see that the saturation of the bond link to
D 200tmax, = starts after t J160  , for J J 1.0, 2.0=^ , and after t J370 = for J J 3.0=^ . Instead, in
theMphase, wherewe have c=1, the bond link increases in timewith a smaller rate with respect to the data in
theVphase: for the data at J J 4.0=^ , we start to see the saturation of the bond link to D 200tmax, = after

Figure A2.Analysis of theV-Mphase transition on theU J  ¥ line of the phase diagram infigure 2(a).We simulateHCBs using
n 1 4= and L=96.We show (a) the totalMDF in the condensed-matter gauge for different values of J J^ across theV-Mphase
transition, and (b) the central charge as a function of J J^ , computed as explained in the text.We see that the totalMDFbecomes
single-peaked around J J 3.8^  (see alsofigure 2(a)). Accordingly, the central charge drops down to c=1 around the same value of
J J^ , where themagenta dotted line indicates the value of J Jc,^ found by looking at the IR. As infigure A1, the critical value agrees
with the one estimated via the IR. Also, the behavior of the EE fails to be described by equation (A.1) (not shown) close to the transition
point, and thus the values of c that we fit deviate from the expected ones. Instead, sufficiently far away from the phase transition, the
values of c that wefit are in agreement with the expected values (c = 2 in the Vphase and c = 1 in theMphase).
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t J1500  , whereasDtnever saturates for J J 4.0>^ . Thus, from this analysis, we see that we need to use at
least D 300tmax, = for the data at J J 1.0, 2.0=^ , whereas we can use D 200tmax, = for the others.

We perform the same analysis for the data infigure 4(c), which is taken at J10 1 w = - . In this case, we can
simulate shorter timeswith respect to the case infigure 4(a). This allows us to use larger values of the bond link,
whichwe choose as D 350tmax, = . In order to see the effect of the finite value of D tmax, , we then compare the data
of E tD ( )with the data computed using D 300tmax, = . The result is shown infigure B2. In this case, we observe
thatDt starts to saturate to D 350tmax, = already at t J25 = in theV phase. The fact theDt grows in timewith
a larger rate with respect to the case infigure B1 is due to the larger value ofω that we use.

As infigure B1, the data in theMphase (figure B2(b)) is less sensitive to the bond link difference with respect
to the data in theVphase because of the smaller amount of entanglement. Aswe found for the data infigure B1,
we see here that the different values of D tmax, during the TEBD algorithmdo not drastically affect the qualitative
behavior of E tD ( ), and thus of the EAR, at least for the times considered for thefits.

Aswe pointed out in section 4.2, the time step dt also has to be properly chosen in order to ensure the correct
convergence of the TEBD algorithm. In our algorithm, during the time evolution and for each Trotter step, the
Hamiltonian is taken to be constantwithin the time interval dt. Since theHamiltonian depends explicitly on
time through the function F(t) (see equation (6)), it is important to check the validity of this approximation for
the choice t Jd 10 2 = - , specifically in the large-ω limit considered in the data infigure 3(f). To do so, we
compared the results of the simulations infigure 3(f)with the results of a simulationwith the same parameters
but using t Jd 10 3 = - .We found that t J t J J, d 10 , d 10 102 3 4  e w w e w w= - =- - -∣˙ ( ) ˙ ( ) ∣
even for the largest values ofω that we consider (not shown), where t, de w w˙ ( ) indicates the data series of the
EARper unit frequency taken using the time step dt. Therefore, the choice of t Jd 10 2 = - in the fourth-order
Trotter expansion is sufficient to ensure the correct convergence of the TEBD algorithm.

Figure B1.The numerical data of E tD ( ) for the data in figure 4(a).We show E tD ( ) for (a) J J 1.0=^ (red lines), J J 2.0=^ (blue
lines) and J J 3.0=^ (magenta lines), and (b) J J 4.0=^ (green lines), J J 5.0=^ (grey lines) and J J 6.0=^ (black lines). Solid
lines are taken using D 200tmax, = , whereas dashed lines are takenwith D 300tmax, = .

Figure B2.The numerical data of E tD ( ) for the data in figure 4(c).We show E tD ( ) for (a) J J 1.0=^ (red lines), J J 2.0=^ (blue
lines) and J J 3.0=^ (magenta lines), and (b) J J 4.0=^ (green lines), J J 5.0=^ (grey lines) and J J 6.0=^ (black lines). Solid
lines are taken using D 350tmax, = , whereas dashed lines are takenwith D 300tmax, = .
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AppendixC. Additional data in the interacting regime

Wenow extend the discussion carried out infigures 3(e) and 4(d). In the former case (L = 24 andN = 2), we
showed that energy absorption starts to be suppressedwhen J J 6.0^  , in agreement with the analytical result
for free bosons J U J0 5.9c, =^ ( ) [18], whereas in the latter case (L= 24 andN = 6), the suppression of
energy absorptionwas observed approximately from J J 4.0^  . This result is in agreementwith the critical
point J J3.8c,^  that we numerically estimated infigure A2, in the case of a long chain (L = 96) atfilling
n 1 4= . In order to pinpoint the reliability of this numerical data and ensure that the shift of the critical point
estimated by the spectroscopicmethod, whichwe observe infigure 3(e) tofigure 4(d), is not an artifact due to the
finite-size effect, here we show additional numerical data, simulating hard-core bosonswith the same
parameters as infigures 3(e) and 4(d), but using a different value of the density, n 1 6= (i.e.N = 4
with L = 24).

The data of the EARper unit frequency as a function of J J^ is shown infigure C1(a): the energy absorption
is nonzero for J J 4.0^ , and it starts to be suppressed between J J4.0^  and J J5.0^  , suggesting that the
spin gap opens between these two values of J J^ . Aswe did for n 1 4= , we compare this result with the
behavior of the central charge (figureC1(b)), computing simulated hard-core bosons at n 1 6= and L=96.
As is evident from the figure, the central charge drops fromvalues which are close to c=2 (vortex phase) to
values close to c=1 (Meissner phase) between J J4.5=^ and J J5.0=^ , in agreementwith the value
estimated by looking at the EARper unit frequency in panel (a). In light of these results, together with the results
discussed in the previous appendices, we are confident about the reliability of the computed energy change

E tD ( ) and EAR e w˙ ( ).
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