E. Conway and E. Supercapacitors, Scientific Fundamentals and Technological Applications. (Kluwer Academic, 1999.

J. Qiu, L. Y. Chen, Y. Ito, J. L. Kang, X. W. Guo et al., An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene, Nanoscale, vol.27, issue.43, p.18551, 2016.
DOI : 10.1002/adma.201501832

I. Lin, F. Chen, C. Liu, H. Yang, F. Bi et al., Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage, Science, vol.7, issue.4, p.1508, 2015.
DOI : 10.1021/nn402102y

Q. Frackowiak, F. Abbas, and . Béguin, Carbon/carbon supercapacitors, Journal of Energy Chemistry, vol.22, issue.2, p.226, 2013.
DOI : 10.1016/S2095-4956(13)60028-5

Y. Simon and . Gogotsi, Materials for electrochemical capacitors, Nature Materials, vol.45, issue.11, p.845, 2008.
DOI : 10.1038/nmat2297

J. Li, T. Liu, and . Thundat, Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors, Nano Energy, vol.25, p.161, 2016.
DOI : 10.1016/j.nanoen.2016.04.036

A. S. Zhu, M. Childress, S. Karakaya, A. Dandeliya, Y. Srivastava et al., Defect-Engineered Graphene for High-Energy- and High-Power-Density Supercapacitor Devices, Advanced Materials, vol.3, issue.33, p.7185, 2016.
DOI : 10.1038/srep02273

P. Brandt, A. Isken, A. Lex-balducci, and . Balducci, Adiponitrile-based electrochemical double layer capacitor, Journal of Power Sources, vol.204, p.213, 2012.
DOI : 10.1016/j.jpowsour.2011.12.025

S. Ray, T. Dohm, C. Husch, K. A. Schütter, A. Persson et al., Insights into Bulk Electrolyte Effects on the Operative Voltage of Electrochemical Double-Layer Capacitors, The Journal of Physical Chemistry C, vol.120, issue.23, p.12325, 2016.
DOI : 10.1021/acs.jpcc.6b00891

S. Schütter, M. Passerini, A. Korth, and . Balducci, Cyano Ester as Solvent for High Voltage Electrochemical Double Layer Capacitors, Electrochimica Acta, vol.224, p.278, 2017.
DOI : 10.1016/j.electacta.2016.12.063

A. Kondrat and . Kornyshev, Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors?, Nanoscale Horizons, vol.162, issue.1, p.45, 2016.
DOI : 10.1016/j.electacta.2014.12.031

R. Macfarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett et al., Energy applications of ionic liquids, Energy Environ. Sci., vol.415, issue.1, p.232, 2014.
DOI : 10.1016/j.memsci.2012.05.072

URL : https://hal.archives-ouvertes.fr/hal-00979082

V. Fedorov and A. A. Kornyshev, Ionic Liquids at Electrified Interfaces, Chemical Reviews, vol.114, issue.5, p.2978, 2014.
DOI : 10.1021/cr400374x

URL : https://strathprints.strath.ac.uk/47256/3/Fedorov_Kornyshev_CR_2014_Ionic_liquids_at_electrified_interfaces.pdf

B. Salanne, K. Rotenberg, K. Naoi, P. Kaneko, C. P. Taberna et al., Efficient storage mechanisms for building better supercapacitors, Nature Energy, vol.5, issue.6, p.16070, 2016.
DOI : 10.1073/pnas.1307251110

URL : https://hal.archives-ouvertes.fr/hal-01480941

C. Forse, C. Merlet, J. M. Griffin, and C. P. Grey, New Perspectives on the Charging Mechanisms of Supercapacitors, Journal of the American Chemical Society, vol.138, issue.18, p.5731, 2016.
DOI : 10.1021/jacs.6b02115

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, p.1760, 2006.
DOI : 10.1126/science.1132195

J. Chmiola, C. Largeot, P. Taberna, P. Simon, and Y. Gogotsi, Desolvation of Ions in Subnanometer Pores and Its Effect on Capacitance and Double-Layer Theory, Angewandte Chemie International Edition, vol.201, issue.18, p.3392, 2008.
DOI : 10.1002/3527600655

C. Largeot, J. Portet, P. L. Chmiola, Y. Taberna, P. Gogotsi et al., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, Journal of the American Chemical Society, vol.130, issue.9, p.2730, 2008.
DOI : 10.1021/ja7106178

O. Ania, J. Pernak, F. Stefaniak, E. Raymundo-piero, and F. Bguin, Solvent-free ionic liquids as in situ probes for assessing the effect of ion size on the performance of electrical double layer capacitors, Carbon, vol.44, issue.14, p.3126, 2006.
DOI : 10.1016/j.carbon.2006.07.026

T. Endo, T. Maeda, Y. J. Takeda, K. Kim, H. Koshiba et al., Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes, Journal of The Electrochemical Society, vol.5, issue.8, p.910, 2001.
DOI : 10.1016/S0968-5677(98)00017-0

T. Kirchner, V. Kirchner, M. V. Ivanistsev, and . Fedorov, Electrical double layer in ionic liquids: Structural transitions from multilayer to monolayer structure at the interface, Electrochimica Acta, vol.110, p.762, 2013.
DOI : 10.1016/j.electacta.2013.05.049

K. Breitsprecher, C. Szuttor, and . Holm, Electrode Models for Ionic Liquid-Based Capacitors, The Journal of Physical Chemistry C, vol.119, issue.39, p.22445, 2015.
DOI : 10.1021/acs.jpcc.5b06046

M. V. Ivanistsev, R. M. Fedorov, and . Lynden-bell, Screening of Ion???Graphene Electrode Interactions by Ionic Liquids: The Effects of Liquid Structure, The Journal of Physical Chemistry C, vol.118, issue.11, p.5841, 2014.
DOI : 10.1021/jp4120783

J. Méndez-morales, M. Carrete, O. Pérez-rodríguez, L. J. Cabeza, R. M. Gallego et al., Molecular dynamics simulations of the structure of the graphene???ionic liquid/alkali salt mixtures interface, Phys. Chem. Chem. Phys., vol.126, issue.26, p.13271, 2014.
DOI : 10.1063/1.2408420

J. Wu, V. Huang, B. G. Meunier, R. Sumpter, and . Qiao, Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores, ACS Nano, vol.5, issue.11, p.9044, 2011.
DOI : 10.1021/nn203260w

H. J. Shim and . Kim, Nanoporous Carbon Supercapacitors in an Ionic Liquid: A Computer Simulation Study, ACS Nano, vol.4, issue.4, p.2345, 2010.
DOI : 10.1021/nn901916m

J. Xing, O. Vatamanu, D. Borodin, and . Bedrov, On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores, The Journal of Physical Chemistry Letters, vol.4, issue.1, p.132, 2013.
DOI : 10.1021/jz301782f

J. Vatamanu and D. Bedrov, Capacitive Energy Storage: Current and Future Challenges, The Journal of Physical Chemistry Letters, vol.6, issue.18, p.3594, 2015.
DOI : 10.1021/acs.jpclett.5b01199

B. Merlet, P. A. Rotenberg, P. Madden, P. Taberna, Y. Simon et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nature Materials, vol.84, issue.4, p.306, 2012.
DOI : 10.1103/PhysRevB.84.155114

URL : https://hal.archives-ouvertes.fr/hal-01153072

A. A. Kondrat and . Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes, Journal of Physics: Condensed Matter, vol.23, issue.2, p.22201, 2011.
DOI : 10.1088/0953-8984/23/2/022201

N. Kondrat, M. V. Georgi, A. A. Fedorov, and . Kornyshev, A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations, Physical Chemistry Chemical Physics, vol.32, issue.23, p.11359, 2011.
DOI : 10.1080/08927020500486627

Z. Vatamanu, D. Hu, and . Bedrov, Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes, The Journal of Physical Chemistry Letters, vol.4, issue.17, p.2829, 2013.
DOI : 10.1021/jz401472c

P. T. Feng and . Cummings, Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size, The Journal of Physical Chemistry Letters, vol.2, issue.22, p.2859, 2011.
DOI : 10.1021/jz201312e

M. Breitsprecher, S. Abele, C. Kondrat, and . Holm, The effect of finite pore length on ion structure and charging, The Journal of Chemical Physics, vol.147, issue.10, p.104708, 2017.
DOI : 10.1088/0953-8984/26/28/284114

C. R. Kondrat, V. Prez, Y. Presser, A. A. Gogotsi, and . Kornyshev, Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors, Energy & Environmental Science, vol.144, issue.4, p.6474, 2012.
DOI : 10.1016/S0167-2991(02)80225-7

S. Stoller, Y. Park, J. Zhu, R. An, and . Ruoff, Graphene-Based Ultracapacitors, Nano Letters, vol.8, issue.10, p.3498, 2008.
DOI : 10.1021/nl802558y

J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter et al., Ultrathin Planar Graphene Supercapacitors, Nano Letters, vol.11, issue.4, p.1423, 2011.
DOI : 10.1021/nl200225j

M. R. Han, F. Funk, Y. Shen, Y. Chen, C. J. Li et al., Scalable Holey Graphene Synthesis and Dense Electrode Fabrication toward High-Performance Ultracapacitors, ACS Nano, vol.8, issue.8, p.8255, 2014.
DOI : 10.1021/nn502635y

-. Tsai, R. Lin, S. Murali, L. L. Zhang, J. K. Mcdonough et al., Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from ???50 to 80??C, Nano Energy, vol.2, issue.3, p.403, 2013.
DOI : 10.1016/j.nanoen.2012.11.006

URL : https://hal.archives-ouvertes.fr/hal-01154261

S. Zhu, M. D. Murali, K. J. Stoller, W. Ganesh, P. J. Cai et al., Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, vol.81, issue.6, p.1537, 2011.
DOI : 10.1063/1.1516635

X. Rafiee, H. Mi, H. V. Gullapalli, F. Thomas, Y. Yavari et al., Wetting transparency of graphene, Nature Materials, vol.24, issue.3, p.217, 2012.
DOI : 10.1002/adfm.201101302

F. Qiao, S. Yan, S. Xia, P. Yin, and . Ma, ] + Benzene at Several Temperatures and Pressures: Determined by the Falling-Ball Method, Journal of Chemical & Engineering Data, vol.56, issue.5, p.2379, 2011.
DOI : 10.1021/je1012444

S. Feng, J. S. Li, V. Atchison, P. T. Presser, and . Cummings, Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature, The Journal of Physical Chemistry C, vol.117, issue.18, p.9178, 2013.
DOI : 10.1021/jp403547k

L. Vatamanu, W. Xing, D. Libc, and . Bedrov, Influence of temperature on the capacitance of ionic liquid electrolytes on charged surfaces, Physical Chemistry Chemical Physics, vol.154, issue.11, p.5174, 2014.
DOI : 10.1039/C1FD00088H

W. Cole and J. R. Klein, The interaction between noble gases and the basal plane surface of graphite, Surface Science, vol.124, issue.2-3, p.547, 1983.
DOI : 10.1016/0039-6028(83)90808-7

M. R. Han, Y. Funk, Y. Chen, C. J. Li, J. Campbell et al., Scalable Holey Graphene Synthesis and Dense Electrode Fabrication toward High-Performance Ultracapacitors, ACS Nano, vol.8, issue.8, p.8255, 2014.
DOI : 10.1021/nn502635y

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode, The Journal of Chemical Physics, vol.73, issue.8, p.84704, 2007.
DOI : 10.1063/1.447150

C. Merlet, B. Péan, P. A. Rotenberg, P. Madden, M. Simon et al., Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?, The Journal of Physical Chemistry Letters, vol.4, issue.2, p.264, 2012.
DOI : 10.1021/jz3019226

URL : https://hal.archives-ouvertes.fr/hal-00854038

I. Siepmann and M. Sprik, Influence of surface topology and electrostatic potential on water/electrode systems, The Journal of Chemical Physics, vol.36, issue.211, p.511, 1995.
DOI : 10.1103/PhysRevLett.66.2352

B. Pean, C. Daffos, B. Merlet, P. Rotenberg, P. Taberna et al., Single Electrode Capacitances of Porous Carbons in Neat Ionic Liquid Electrolyte at 100??C: A Combined Experimental and Modeling Approach, Journal of the Electrochemical Society, vol.162, issue.5, p.5091, 2015.
DOI : 10.1149/2.0151505jes

URL : https://hal.archives-ouvertes.fr/hal-01121362

M. Vatamanu, D. Vatamanu, and . Bedrov, Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes, ACS Nano, vol.9, issue.6, p.5999, 2015.
DOI : 10.1021/acsnano.5b00945

M. Duarte, B. Salanne, M. A. Rotenberg, L. J. Bizeto, and . Siqueira, Structure of tetraalkylammonium ionic liquids in the interlayer of modified montmorillonite, Journal of Physics: Condensed Matter, vol.26, issue.28, p.284107, 2014.
DOI : 10.1088/0953-8984/26/28/284107

URL : https://hal.archives-ouvertes.fr/hal-01078966

Y. Simon and . Gogotsi, Capacitive Energy Storage in Nanostructured Carbon???Electrolyte Systems, Accounts of Chemical Research, vol.46, issue.5, p.1094, 2013.
DOI : 10.1021/ar200306b

T. Futamura, Y. Iiyama, Y. Takasaki, M. J. Gogotsi, M. Biggs et al., Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores, Nature Materials, vol.220, issue.12, p.1225, 2017.
DOI : 10.1007/s00214-012-1129-7

K. Burt, B. Breitsprecher, P. Daffos, P. Taberna, G. Simon et al., Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off between the Concentration and the Separability of the Ions, The Journal of Physical Chemistry Letters, vol.7, issue.19, p.4015, 2016.
DOI : 10.1021/acs.jpclett.6b01787

URL : https://hal.archives-ouvertes.fr/hal-01494252

W. Coles, M. Mishin, S. Perkin, M. V. Fedorov, and V. B. Ivanistsev, The nanostructure of a lithium glyme solvate ionic liquid at electrified interfaces, Physical Chemistry Chemical Physics, vol.13, issue.2, p.11004, 2017.
DOI : 10.1021/cm000949k