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a b s t r a c t

We introduce so-called single-index copulas. They are semi-parametric conditional copulas
whose parameter is an unknown link function of a univariate index only. We propose
estimates of this link function and of the finite-dimensional unknown parameter. The
asymptotic properties of the latter estimates are stated. Thanks to some properties of
conditional Kendall’s tau, we illustrate our technical conditions with several usual copula
families.

1. Introduction

Since Sklar’s theorem [42], copula modeling has emerged as a very active field of theoretical and applied research.
Applications in finance, insurance, biology, medicine, hydrology, etc., are legions. The origin of this success is the ability to
split specification/inference/testing of a (complex)multivariatemodel into two separate simpler problems: themanagement
of marginal distributions on one hand, and the modeling of the dependence structure (copula) on the other. See, e.g., the
books of Joe [23] or Nelsen [29] for an introduction to the field.

In practice, multivariate models often involve explanatory variables (also called covariates), particularly in econometrics
and financial risk management. To study the effect of these covariates on the underlying copulas, we immediately need the
concept of conditional copula [32]. Conditional copulas are a natural way of linking conditional marginal distributions to
get a multivariate conditional law and they have been applied extensively [33,34]. Recently, the rise of vine models [1] has
extended the scope and the importance of conditional copulas.

Until now,most conditional copulamodelswere parametric. Theymight specify, say, a functional link between the copula
parameters and an index β⊤z , z being the underlying vector of covariates; see, e.g., [5,24,32,37]. A fully nonparametric
approach has also been proposed in [15,17], which relies on kernel smoothing, local polynomials or other functional
estimation tools. As the number of covariates increases, however, such methods suffer from the well-known curse of
dimensionality, and they become unfeasible in practice.

In this paper, we propose an intermediate solution through a single-index assumption on the underlying copula
parameter. Therefore, only a finite-dimensional parameter and a univariate link function must be estimated, avoiding the
curse of dimensionality. Note that Acar et al. [3,4] and Abegaz et al. [2] have proposed another alternative through local
linear approximations of the link function between covariates and copula parameters. Nonetheless, the latter approach is
based on a linearization (thus approximative) procedure and the number of unknown parameters rises very quickly with
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the dimension of z . Moreover, Sabeti et al. [38] have recently introduced additive models for copula, and have adapted the
Bayesian-type estimation procedure proposed by Craiu and Sabeti [6]. Inference for single-index copula models has been
recently studied in [27] in a Bayesian framework.

1.1. The framework of single-index dependence functions

To fix ideas and notation, let us consider an iid sample of observations (X1, Z1), . . . , (Xn, Zn) in Rd
× Rp drawn from the

law of (X, Z). The vector X represents the endogenous vector, and Z is the vector of covariates. We are interested in the
evaluation of the law of X conditional on Z = z , for arbitrary vectors z . This conditional CDF is denoted F (·|z). For each
k ∈ {1, . . . , d}, the (marginal) law of Xk given Z = z is denoted Fk(·|z); these marginal distributions are assumed to be
continuous, for convenience. We introduce the unobserved random vector Uz = (U1,z , . . . ,Ud,z ), where Uk,z = Fk(Xk|z) for
each k ∈ {1, . . . , d}. To simplify notation, and when there is no ambiguity, Uz will often be denoted U . By definition, the law
of Uz knowing Z = z is the conditional copula of X knowing Z = z , denoted C(·|z).

First, we consider a parametric framework. A natural model specificationwould be to assume that, for any u ∈ [0, 1]d and
any z ∈ Rp, C(u|z) = Cθ (z)(u), where θ : Rp

→ Rq maps the vector of covariates to the (true) parameter of the conditional
copula knowing Z = z , and C = {Cθ : θ ∈ Θ ⊂ Rq

} denotes a parametric family of copulas. The copula density of Cθ is
assumed to exist and is denoted cθ . To simplify, this density is assumed to be continuous for every θ ∈ Θ , andΘ is taken to
be a compact subset.

Second, since the single-index assumption is related to the dependence function among the components of X , given the
covariates, this means there exists an unknown function ψ such that

θ (z) = ψ(β0, β
⊤

0 z), (1)

where the true parameterβ0 ∈ B, a compact subset inRm. The single-index relation (1) is assumed to be fulfilled in thewhole
paper. To identify the parameter β0, let us assume that the first component of β0, i.e., β0,1, is equal to 1, and the estimate
of β0,1 is always 1, obviously. Note that it is necessary to indicate the dependency of θ (z) on β0 explicitly in (1). Indeed,
given Z = z , we need to know the parameter value to be able to compute the index, and then to evaluate the underlying
conditional copula. Then, under Assumption (1), C(·|z) depends on (β, β⊤z) if the underlying parameter is assumed to be β .
This function will equivalently be denoted Cβ (·|β⊤z).

Example 1. Assume that the conditional copula of X given Z = z is a d-dimensional Gaussian copula CΣ . Knowing the true
parameter value is β0, its associated correlation matrix is

Σ = [1(i = j) + 1(i ̸= j)h(β0, β
⊤

0 z)]1≤i,j≤d,

for some unknown function h : Rm+1
→ (−1/(d − 1), 1).

We stress that Assumption (1) does not mean that C(·|z), the conditional copula of X knowing Z = z , is equal to the
conditional copula of X knowing β⊤

0 Z = β⊤

0 z , denoted C̃(·|β⊤

0 z). Indeed, in the former case, the relevant margins are the
CDFs F1(·|z), . . . , Fd(·|z) and in the latter case, we need to consider the CDFs F̃k(·|β⊤

0 z) : xk ↦→ Pr(Xk ≤ xk|β⊤

0 z). To avoid
any confusion, let us denote Ũβ = (F̃1(X1|β

⊤Z), . . . , F̃d(Xd|β
⊤Z)), and C̃(·|β⊤Z = y) is the copula of Ũβ knowing β⊤Z = y.

The conditional copulas C(·|z) and C̃(·|β⊤

0 z) are identical only when Z yields the same information as β⊤

0 Z to explain every
margin Xk, i.e., when Fk(·|z) = F̃k(·|β⊤

0 z) a.e. for every k [15].
Our single-index copula assumption (1) is relevant theoretically and empirically. Indeed, in general, covariates have

a different influence on the conditional margins and on the underlying conditional copula. See [4] for a discussion, and
empirical illustrations. Mainly for practical reasons, some authors assume that the conditional copula of X given Z = z does
not depend on z . This particular case is the so-called ‘‘simplifying assumption’’ (see, e.g., [9]), commonly used in vinemodels.

1.2. The M-estimate criterion

Single-index models are well-known in the world of semiparametric statistics. The theory of M-estimators was initiated
by the seminal papers of Klein and Spady [26] in the case of the so-called binary response model, and Ichimura [21] for
the general single-index regression model. Sherman [41] and Delecroix and Hristache [7] extended this approach. Härdle
et al. [18] andDelecroix et al. [8] discussed the choice of the bandwidth for the nonparametric estimation of the link function.
As an alternative, the so-called average derivative methodwas developed in parallel by Stoker [43], Powell et al. [35], Härdle
and Stoker [19], among others.

In this paper, we rely onM-estimators of single-indexmodels, but related to the parameter of the underlying copula only.
If we were able to observe a sample of the random vector U , say U1, . . . ,Un, then our ‘‘naive’’ estimator of β0 could be

β̂naive = argmax
β∈B

n∑
i=1

ln cψ̂(β,β⊤zi)
(Ui),

for some function ψ̂ that estimates ψ consistently.



Since we do not observe realizations of U , we have to replace the unknown vectors Ui by some estimates Ûi, given Zi,
providing a so-called pseudo-sample Û1, . . . , Ûn. Then, a natural idea is to define our estimator by

β̂ = argmax
β∈B

n∑
i=1

ω̂i,n ln cψ̂(β,β⊤zi)
(Ûi), (2)

for some sequence of trimming functions ω̂i,n. Typically, they are of the type ω̂i,n = 1(Ûi ∈ En, Zi ∈ Z), for some
non decreasing sequence of subsets En in [0, 1]d, and some Z ⊂ Rp. Such trimming functions are usually necessary to
approximate Ui by Ûi, uniformly for all i ∈ {1, . . . , n}. For technical reasons (see the remark below), we choose strictly
increasing trimmings on theU-side such that∪nEn = (0, 1)d. This choicemakes it necessary to control explicitly the behavior
of U close to the boundary of [0, 1]d. This pretty delicate task requires several regularity assumptions but the challenge has
already been met in the literature; see, e.g., [44]. Moreover, we set a fixed trimming for Z (i.e., Z ⊂ Rp strictly), because we
need uniformity with respect to the Zi, too. This will not create any bias, because the law of the U knowing Z ∈ Z is just
cψ(β0,β⊤

0 z)(u)1(z ∈ Z)/Pr(Z ∈ Z). Thus, this law depends on the true parameter β0. See Assumption 1.

Remark 1. Actually, fixed trimming functions for Ûi could be chosen instead, i.e., En = E ⊂ [a, 1 − a]d for some a > 0 and
every n. They would induce consistent estimates without having to impose regularity conditions on the copula density close
to the frontier of [0, 1]d. But the asymptotic behavior of β̂ would be more complex. Typically, it would be asymptotically
normal, but after removing an annoying bias that cannot be evaluated easily. Moreover, apart from a small loss of efficiency,
this would preclude modeling the tail dependence behavior, a feature that is important in many applications. That is why
we have chosen β̂ , as defined by (2).

The consistency and the asymptotic normality of our estimate β̂ are established in Sections 2 and3, respectively. To be able
to check some of our technical assumptions, we provide some useful results about conditional Kendall’s tau in Appendix C.
The paper concludes with a short simulation study reported in Section 4.

2. Consistency of the estimators

2.1. The convergence of single-index estimators

The first assumption is related to the trimming functions.

Assumption 1. Let us set En = [νn, 1−νn]
d for some positive sequence (νn), νn ∈ (0, 1/2), νn → 0. Moreover,Z is a compact

subset in Rp. The trimming functions are ωn : [0, 1]d × Rp
→ [0, 1], (u, z) ↦→ 1(u ∈ En, z ∈ Z).

We set ω̂i,n = ωn(Ûi, Zi). For the sake of completeness, we introduce ωi,n = ωn(Ui, Zi), the trimming function when Ui is
known, and ωi = ωi,∞ = 1(Zi ∈ Z). Typically, Z is chosen so that the density of Z with respect to the Lebesgue measure
exists and is bounded away from zero, i.e., infz∈Z fZ (z) ≥ f0 > 0. This will be assumed hereafter, even if this is not mandatory
at this stage.

Assumption 2. The parameter β0 is identifiable, i.e., two different parameters induce two different laws of UZ , knowing
Z ∈ Z . The function M : B → R, β ↦→ E{ln cψ(β,β⊤Z)(UZ ) | Z ∈ Z} is continuous and uniquely maximized at β = β0. There
exist a measurable function h and α > 1 such that, for every z ∈ Z ,

sup
β∈B

|ln cψ(β,β⊤z)(Uz )| ≤ h(Uz , z), with E{hα(UZ , Z) 1(Z ∈ Z)} < ∞. (3)

The latter assumption is usual for maximum likelihood estimation (MLE) purposes. In particular, the identifiability of β
implies that the particular case of a constant ψ function is not possible in our framework. In other words, θ (z) is varying
with z by assumption.

The limiting objective function (when n → ∞) is here

M(β) = E{ln cψ(β,β⊤zi)(Ui) | Zi ∈ Z},

which is maximized at β = β0. Obviously, all expectations E(·) have to be understood with respect to the true law of (X, Z)
that depends on β0 only. When the true parameter is β , we denote expectations by Eβ (·). Note that, due to our trimming
functions, we are dealing with a M-estimator of β instead of a usual MLE formally, at the cost of a (small) loss of efficiency.
The next assumption imposes the uniform weak (resp. strong) consistency of ψ̂ (resp. Ûi), our chosen estimator of ψ (resp.
Ui).

Assumption 3.

sup
z∈Z

sup
β∈B

|ψ̂(β, β⊤z) − ψ(β, β⊤z)| = oP (1). (4)



Moreover, the pseudo-observation Ûi,k belongs to (0, 1) for all k ∈ {1, . . . , d} and i ∈ {1, . . . , n}, and there exists a
deterministic sequence (δn), δn = o(νn), such that

lim sup
n→∞

max
i∈{1,...,n}

|Ûi − Ui| 1(Zi ∈ Z)/δn ≤ 1 a.e. (5)

In particular, (5) implies that maxi∈{1,...,n}|Ûi − Ui| 1(Zi ∈ Z) = OP (δn). These assumptions have to be checked for any
particular single-index model and for any particular estimate of the marginal CDFs.

Now, we recall the definition of reproducing U-shaped functions, as introduced in Tsukahara [44]. This concept is usual
for the semi-parametric inference of copula models. Here, it will be necessary to obtain the consistency of β̂ (Theorem 1).

Definition 1.

(a) A function f : (0, 1) → (0,∞) is called U-shaped if it is symmetric about 1/2 and decreasing on (0, 1/2].
(b) For β ∈ (0, 1) and a U-shaped function r , define

rβ (u) =

{
r(βu) if 0 < u ≤ 1/2,
r{1 − β(1 − u)} if 1/2 < u ≤ 1.

If, for every β > 0 in a neighborhood of 0, there exists a constant Aβ such that rβ < Aβ r on (0, 1), then r is called a
reproducing U-shaped function.

(c) We denote by R the set of univariate reproducing U-shaped functions. The set Rd is the set of functions r : (0, 1)d →

R+, r(u) =
∏d

k=1rk(uk), and rk ∈ R for every k. Moreover, rβ (u) =
∏d

k=1rk,β (uk).

Typically, the usual functions in R are of the type r(u) = Cru−a(1 − u)−a, for some positive constants a and Cr .

Assumption 4. There exist functions r , r̃1, . . . , r̃d in Rd such that, for every u ∈ (0, 1)d,

sup
θ∈Θ

|∇θ ln cθ (u)| ≤ r(u), E{r(UZ )1(Z ∈ Z)} < ∞,

∀k∈{1,...,d} sup
θ∈Θ

⏐⏐∂uk ln cθ (u)
⏐⏐ ≤ r̃k(u), max

k∈{1,...,d}
E{Uk(1 − Uk)r̃k(UZ )1(Z ∈ Z)} < ∞.

The latter conditions onmoments are easily satisfied for most copula models. They are close to those of Assumption (A.1)
in [44]. The following result is proved in Appendix B.1.

Theorem 1. Under Assumptions 1–4, the estimator β̂ given by (2) tends to β0 in probability when n → ∞.

Until now, we have not specified how we estimate the link function ψ and the pseudo-observations Ûi. This will be the
subject of the next two subsections.

2.2. Estimation of the link function ψ

For inferencepurposes,weneed a relationship between the link functionψ and somequantities that canbe estimated em-
pirically. Typically, there are twopossibilities in practice: for any (β, z) ∈ Rm

×Z and for someknown ‘‘explicit’’ functionalΨ ,

ψ(β, β⊤z) = Ψ {Cβ (·|β⊤z)}, (6)

ψ(β, β⊤z) = Ψ {Hβ (·|β⊤z)}, (7)

where Hβ (·|y) denotes the CDF of (X, Z) conditional on β⊤Z = y and given β . These relations define two classes of functions
ψ . In this paper, we assume thatψ belongs to one of the two latter classes of functions, called (A1) and (A2). Note that (A1) is
a subset of (A2), due to Sklar’s theorem. Both situations are distinguished for pedagogical reasons (see the discussion about
Kendall’s tau below).

In numerous practical situations, Assumptions (6) and (7) are simply moment-like conditions, as in the GMMmethodol-
ogy: there is a map g : Rm̄

→ Rq, with m̄ ≥ m, such that

θ (z) = g{m1(β0, β
⊤

0 z), . . . ,mm̄(β0, β
⊤

0 z)},

wherem1(β, y), . . . ,mm̄(β, y) ∈ R are ‘‘moment’’ relations based on the underlying distributions. In case (6), these moment
relations are directly linked to conditional copulas, viz.

mk(β, y) = Eβ{χk(UZ , β
⊤Z)|β⊤Z = y} = Eβ [Eβ{χk(UZ , y)|Z}|β⊤Z = y]

= Eβ

{∫
χk(u, y) C(du|Z)|β⊤Z = y

}
=

∫
χk(u, y) Cβ (du|β⊤Z = y), (8)

for some known functions χ1, . . . , χm̄.



In case (7), there exist some ‘‘moments’’mk(β, y) ∈ R based on the underlying distribution of (X, Z) given β⊤Z = y, viz.

mk(β, y) = Eβ{χk(X, Z)|β⊤Z = y} =

∫
χk(x, z)Hβ (dx, dz|β⊤Z = y).

During the estimation procedure, the latter moments mk, or more generally the CDFs Cβ (·|β⊤z) and Hβ (·|β⊤z) in (6)
and (7), will be replaced by some empirical counterparts. The formalism of (A2) behaves nicer than (A1), because it is simpler
toworkwith the observations (Xi, Zi) directly rather thanwith vectorsUi (i.e., some iid realizations of the randomvectorUZ ).
Indeed, since UZ cannot be observed, the latter quantities Ui have to be estimated too, adding another level of complexity.

Example 2 (Spearman’s Rho). Anatural candidate for amoment is given bymk(β, β⊤z) = ρ(β, β⊤z), amultivariate extension
of the usual Spearman’s rho, defined by

ρ(β, y) =

∫ ⎧⎨⎩Cβ (u|β⊤Z = y) −

d∏
j=1

uj

⎫⎬⎭ du.

Through a d-dimensional integration by parts, this moment can be verified to be of the type (8). Therefore, we work in (A1).
Other definitions of Spearman’s rho are possible with an arbitrary dimension d: see, e.g., [39]. Note that when d = 2, ρ(β, y)
is simply the correlation between F1(X1|Z) and F2(X2|Z) given β⊤Z . Therefore, it can be estimated relatively easily, at least
when the dimension of Z is ‘‘reasonable’’.

Example 3 (Kendall’s Tau). To fix ideas, assume d = 2. The Kendall’s tau of X conditional on Z = z appears in several papers
in the literature; see, e.g., [47]. Under the single-index assumption, it is written here

τ (β, β⊤z) = −1 + 4
∫

C(u|z)C(du|z) = −1 + 4
∫

Cβ (u|β⊤z)Cβ (du|β⊤z). (9)

Then, managing Kendall’s tau, we work in (A1) usually. The parameter β and then ψ(β, β⊤z) can be estimated empirically,
replacing Cβ (·|β⊤z) by an empirical counterpart in the previous integral.

If (X, Z) and (Y , Z) denote independent copies knowing Z , note that

Eβ{1(X1 > Y1, X2 > Y2)|β⊤Z = y} = Eβ [Eβ [1 {F1(X1|Z) > F1(Y1|Z), F2(X2|Z) > F2(Y2|Z)} |Z]|β⊤Z = y]

= Eβ

{∫
C(u|Z) C(du|Z)|β⊤Z = y

}
=

∫
Cβ (u|y) Cβ (du| y).

This implies that the Kendall’s tau of X given β⊤Z = y is τ (β, y), under (1). Incidentally, we have proved that

τ (β, β⊤z) = −1 + 4
∫

C̃β (u|y) C̃β (du|y), (10)

where C̃(·|y) is the conditional copula of X knowing β⊤

0 Z = y. Moreover, since

Eβ{1(X1 > Y1, X2 > Y2)|β⊤Z = y} =

∫
Hβ (x,∞|β⊤Z = y)Hβ (dx,∞|β⊤Z = y),

we identify a functional of Hβ as in (A2), and then

τ (β, β⊤z) = −1 + 4
∫

Hβ (x,+∞|β⊤z)Hβ (dx,+∞|β⊤z). (11)

In other terms, Kendall’s tau belongs to the two classes (A1) and (A2) simultaneously. Both relations (10) and (11) are
very useful in practice. Indeed, the estimation of Hβ (·|y) or C̃β (·|y) is less demanding than the nonparametric estimation of
Cβ (·|β⊤z): an empirical counterpart ofHβ (x|y) or C̃β (u|y) does not suffer from the curse of dimensionality because it requires
only conditioning subsets in R, contrary to Cβ (u|y) that involves conditioning with respect to z ∈ Rp to manage its marginal
laws.

In dimension d, many Kendall’s tau can be built. Logically, these Kendall’s taumay be associated to any couple of variables
(Xi, Xj) with i, j ∈ {1, . . . , d} and i ̸= j. Or they can be defined formally as in (9), with d-dimension integrals, or even
d′-dimension integrals, d′ < d if we focus on some sub-vectors of X . Globally, all such quantities are linear function of∫
C(uI , 1Ī |z) C(duI , 1Ī |z), where I is a subset of {1, . . . , d} and Ī is its complement. Obviously, uI , 1Ī denotes a d-dimensional

vector whose components are uk when k ∈ I , and are equal to 1 otherwise. These dependence measures are candidates
to yield convenient moments. Note the two usual generalizations of Kendall’s tau in dimension d: the first one has been
proposed by Joe [22] as

τd(z) =
1

2d − 1

{
−1 + 2d

∫
C(u|z)C(du|z)

}
, (12)



and the second one has been introduced by Kendall and Babington Smith [25] as the average value of Kendall’s tau over all
possible couples (Xk, Xℓ) with k, ℓ ∈ {1, . . . , d} and k ̸= ℓ. See Genest et al. [16] for details and complementary results. In
every case, the same arguments as above apply, providing straightforward d-dimensional extensions of (10) and (11). As a
consequence, such generalized Kendall’s tau belong to the two classes (A1) and (A2) simultaneously and can be written as
functionals of C̃β itself.

Now, let us specify our estimator ψ̂ . The simplest solutionwe adopt is to invoke kernel-type regression functions. In (A1),
we can replace simply the conditional copula Cβ (·|β⊤Z = y) by a consistent estimator Ĉ(·|β⊤Z = y). Several candidates exist
in the literature. Historically, Fermanian and Wegkamp [15] studied a nearest-neighbor estimator of conditional copulas.
Gijbels et al. [17] proposed other nonparametric estimates, including Nadaraya–Watson, Gaßer–Müller, etc.

In the class (A2), for every β ∈ B and y ∈ R, set ψ̂(β, y) = Ψ {Ĥβ (·|y)}, where

Ĥβ (x, z|y) =

n∑
j=1

wβ,j,n(y)1(Xj ≤ x, Zj ≤ z), (13)

wβ,j,n(y) = K
(
β⊤Zj − y

hn

)/ n∑
ℓ=1

K
(
β⊤Zℓ − y

hn

)
,

for some kernel function K : R → R and some bandwidth sequence (hn), hn > 0. Hereafter, we remove the latter sub-index
n, i.e., h = hn simply for any bandwidth.

To satisfy Condition (4), we have to rely on the functional link between the parameterψ and the underlying distributions,
as evaluated in (6) and/or (7). This depends on the regularity of the corresponding functionalsΨ and on the uniform distance
between the conditional empirical CDFs and true ones.

For instance, assume in (A2) that Ψ is Lipschitz, as in the case of Spearman’s rho and Kendall’s tau, with a Lipschitz
constant λ (at least when β ∈ B and z ∈ Z , and then β⊤z belongs to a real compact subset). For such couples (β, z), we have

|ψ̂(β, β⊤z) − ψ(β, β⊤z)| ≤ λ∥Ĥβ (·|β⊤z) − Hβ (·|β⊤z)∥∞.

Assuming Ĥβ is given by (13) and applying Corollary 3 in Einmahl and Mason [14], we obtain

max
i∈{1,...,n}

|ψ̂(β, β⊤Zi) − ψ(β, β⊤Zi)|ωi,n ≤ λ max
i∈{1,...,n}

∥Ĥβ (·|β⊤Zi) − Hβ (·|β⊤Zi)∥x∞ωi,n → 0,

a.e. and uniformly with respect to β ∈ B. This is sufficient to satisfy (4).
More generally, in (A2) and if Ψ is Hadamard differentiable, there exist continuous linear maps Ψ̇i such that

ψ̂(β, β⊤Zi) − ψ(β, β⊤Zi) = Ψ {Ĥβ (·|β⊤Zi)} − Ψ {Hβ (·|β⊤Zi)}

= Ψ̇i{(Ĥ − H)β (·|β⊤Zi)} + o{∥(Ĥ − H)β (·|β⊤Zi)∥}.

Under some additional conditions (particularly on the Ψ̇i), we typically get the uniformity of the latter identity with respect
to Zi ∈ Z . But, thanks to Theorem 3 in [14], there exists a sequence of positive numbers (an), an → 0, such that

an sup
β∈B

sup
z∈Z

∥(Ĥ − H)β (·|β⊤z)∥∞ → 0

a.e. when n → 0. The latter result is true uniformly with respect to bandwidth sequences (hn) such that nhn/ln n ≫ 1 and
hn → 0. Therefore, (4) is usually satisfied when Ψ is Hadamard differentiable.

Note that the uniform consistency of the conditional copula function, simultaneously with respect to its argument and
the conditioning value, is not available in the literature. Therefore, checking Condition (4) with (A1) is more difficult than
with (A2).

2.3. The choice of the pseudo-observations Û

By assumption, β is the index of the underlying dependence functions (copulas) only. Therefore, Ûi does not depend on
β . Now, let us discuss the possible choices for Û1, . . . ,Un, in particular to satisfy (5). Actually, in Section 3, we consider a
generic class of estimates such that, for all k ∈ {1, . . . , d},

F̂k(x|z) − Fk(x|z) =
1
n

n∑
j=1

ak,n(Xj, Zj, x, z) + rn(x, z), (14)

for some sequence rn(x, z) that tends to zero sufficiently quickly uniformly in probability, and for some particular functions
ak,n. Then, we set Ûi,k = F̂k(Xi,k|Zi) for all i ∈ {1, . . . , n} and k ∈ {1, . . . , d}.

A lot of estimators of Fk may be built and satisfy (14). A first example of such estimates is given by parametric marginal
conditional distributions: for every x and z , Fk(x|z) = Gk,θk(z)(x), for some family of CDFs Gk = {Gk,θk : θk ∈ Θk}. Since
this model is parametric, the function θk depends on a vector of parameters ηk ∈ Rmk . With a slight abuse of notations, set



θk(z) = θk(z, ηk), and θk(·, η) is known for every η. Assume we have found a consistent and asymptotically normal estimate
η̂k, and set F̂k(x|z) = Gk,θk(z,η̂k)(x). This implies Ûi,k = Gk,θk(zi,η̂k)(Xi,k).

Clearly, for every i ∈ {1, . . . , n}, there exists θ∗

k,i and η
∗

k such that

|Ûi,k − Ui,k| ≤ |∇θGk,θ∗
k,i
(Xi,k)| × |∂2θk(Zi, η

∗

k )| × |η̂k − ηk|,

where |θk(Zi, ηk) − θ∗

k,i| ≤ |θk(Zi, η̂k) − θk(Zi, ηk)| and |ηk − η∗

k | ≤ |η̂k − ηk|. Typically, if supθk |∇θGk,θk (Xi,k)| and
supηk |∂2θk(Zi, ηk)| are bounded in probability, the condition (5) is satisfied, evenwithout trimming.Moreover, in a lot of usual
cases (M-estimates, for instance), it can be checked by a limited expansion that the functions F̂k(x|z) satisfy (14). Typically,
for asymptotically normal estimators, we have nrn(x, z) = OP (1), and this result may be uniform under some conditions of
regularity concerning G and θk. Such a choice of conditional margins induces the estimator we label β̂ (1).

A second candidate is obtained by nonparametric estimates of conditional expectations. A usual kernel-based nonpara-
metric estimator of F (·|z) on Rd is given by

F̂ (x|z) =

n∑
j=1

wj,n(z)1(Xj ≤ x),

with the weights

wj,n(z) = K (Zj − z, h)
/ n∑

ℓ=1

K (Zℓ − z, h) , (15)

where K is a multivariate kernel and h = (h1, . . . , hp) is a p-vector of bandwidths hk > 0. To simplify, we can restrict
ourselves to products of p univariate kernels Kk:

K (Zj − z, h) =
1

h1 · · · hp

p∏
k=1

Kk

(
Zj,k − zk

hk

)
. (16)

Therefore, some nonparametric estimators of every marginal conditional CDF Fk(x|z) are obtained by setting F̂k(x|z) =

F̂ (x,∞(−k)|z). Themarginal ‘‘unfeasible’’ observations areUi,k = Fk(Xi,k|Zi), and their estimated versions are Ûi,k = F̂k(Xi,k|Zi).
In this case, it can be verified that (14) is satisfied, even if F̂ (x|z) suffers from the curse of dimensionality along the z
dimension; see Lemma 4 in Appendix A. As a consequence of this lemma, Condition (5) is satisfied for the nonparametric
versions on Ûi and for a wide range of bandwidths. Let us denote the associated estimator by β̂ (2).

Alternatively, it could be assumed that some conditional distributions Fk(·|Z) are given by particular single-indexmodels,
but with some parameter βk ∈ Rmk that are different from β . If the latter index βk is estimated consistently by β̂k, then we
can adapt easily the previous nonparametric kernel estimator: for any real number y,

F̂k,β̂k (x|y) =

n∑
j=1

wβ̂k,j,n(y)1(Xj,k ≤ x),

where

wβ̂k,j,n(y) = K

(
β̂⊤

k Zj − y
h

)/ n∑
ℓ=1

K

(
β̂⊤

k Zℓ − y
h

)
,

for some kernel function K : R → R and some bandwidth h > 0. Obviously, F̂k,β̂k (x|y) yields a nonparametric estimator
of the CDF Fk,βk (x|y). In this case, Uk,z = Fk(Xk|β

⊤

k z). To deal with pseudo-observations, we set Ui,k,βk = Fk,βk (Xi,k|β
⊤

k Zi),
and Ûi,k = F̂k,β̂k (Xi,k|β̂

⊤

k Zi). For some conditions of regularity, (14) can be verified; see, e.g., Du and Akritas [12] for such a
representation in the more general case of censored data. When all margins are assumed single-index, let us denote by β̂ (3)

the corresponding β estimator.
Now, let us verify the conditions of Theorem 1, particularly Assumption 3, in some particular cases.

2.4. Examples

Let us illustrate the previous ideas with a few standard copula models.

Example 4 (The Gaussian Copula). For every u and z and with usual notations, given β0, the underlying copula is

Cβ0 (u|Z = z) = ΦΣ(z){Φ
−1(u1), . . . ,Φ−1(ud)},

where the correlation matrix Σ(z) = [θk,ℓ(z)]1≤k,ℓ≤d depends on the index β⊤

0 z only. With our previous notations,
Σ(z) = ψ(β0, β

⊤

0 z). It is well-known that every component θk,ℓ(z) of Σ(z) is a function of the conditional Kendall’s tau



that is associated to (Xk, Xℓ), knowing β⊤

0 Z = β⊤

0 z , viz. θk,ℓ(z) = sin{πτk,ℓ(β0, β
⊤

0 z)/2}. The latter quantity can be estimated
by standard nonparametric techniques, and then

Σ̂(z) = ψ̂(β, β⊤z) =

[
sin
{π
2
τ̂k,ℓ(β, β⊤z)

}]
.

Even if the latter estimated matrix Σ̂(z) may not be positive definite, this is not required for proving the consistency of β̂ .
At the opposite, it will be necessary to obtain its asymptotic normality and some estimates of its limiting law (see below).
To be specific, we can choose

τ̂k,ℓ(β, y) = −1 + 4
∫

Ĉk,ℓ(u, v|β⊤Z = y) Ĉk,ℓ(du, dv|β⊤Z = y),

for some estimator Ĉk,ℓ(·|β⊤Z = y) of the conditional copula of (Xk, Xl) given β⊤Z = y. Alternatively, we can invoke an
asymptotically equivalent estimator

τ̂k,ℓ(β, β⊤z) = −1 + 4
n∑

i=1

n∑
j=1

wi,h(β⊤z)wj,h(β⊤z)1(Xk,i < Xk,j, Xl,i < Xl,j),

for some weights, for instance the standard Nadaraya–Watson kernel

wi,h(y) = K
(
y − β⊤Zi

h

)/ n∑
ℓ=1

K
(
y − β⊤Zℓ

h

)
.

See [17] for alternative weights and estimators.

Once we have stated ψ̂ , it remains to set the marginal CDFs Û1, . . . , Ûd to be able to compute our estimator β̂ . To fix
ideas, we rely on the standard univariate kernel-based conditional distributions, as given in (15): Ûi,k = F̂ (Xi,k|Zi) and our
estimator is then β̂ (2).

Concerning Assumption 2, the only thing to be checked is (3). This is guaranteed when the random matrix Σ−1(Z) is
staying ‘‘under control’’, e.g., when all eigenvalues ofΣ(Z) are uniformly bounded from below almost surely. It is sufficient
to assume that

sup
z∈Z

sup
β∈B

λmin{ψ(β, β⊤z)} ≥ λ > 0, (17)

where λmin(Σ) denotes the smallest eigenvalue of any nonnegative matrixΣ . In this case, it is easy to bound the log-density
of X (conditional on Z) from above, and to satisfy (3).

Assumption 3 is the trickiest. In Lemma 12, some sufficient conditions are given to satisfy (4). It remains to verify (5).
We can apply our Lemma 4: under its conditions and if all the bandwidths we consider in Ûi behave as the same power of n,
say n−π (the usual case), there exists a constant C such that, with probability 1,

lim sup
n

max
i≤n

|Ûi − Ui| 1(Zi ∈ Z)/δn ≤ C, where δn =

√
ln(n)n−(1−pπ )/2

+ n−πs.

Note that, for consistency purposes, we can choose any π such that π < 1/p, and νn can be chosen arbitrarily as long as we
have νn ≫ δn, and then the condition (5) is satisfied.

Assumption 4 is satisfied for the Gaussian copula, as in most usual copula families. In our case and under (17), we choose

r(u) ∝

d∑
k=1

{Φ−1(uk)}2 and r̃k(u) ∝ Φ−1(uk)
d∑

ℓ=1,ℓ̸=k

{Φ−1(uℓ)} × {φ ◦Φ−1(uk)}−1.

Therefore, the estimator β̂ (2) is consistent under the Gaussian copula framework.

Example 5 (The Clayton Copula). The Clayton copula is often useful in finance, because it induces left-tail dependence, a
common feature of asset returns. When the values of its parameter are strictly positive, the conditional Clayton copula is
written, for all u ∈ (0, 1)d,

C(u|z) =

(
d∑

k=1

u−θ (z)
k − d + 1

)−1/θ (z)

,

with θ (z) = ψ(β, β⊤z) under the single-index assumption. As with the Gaussian copula model, we can evaluate ψ̂ with
conditional Kendall’s tau, because of their one-to-onemapping. Indeed, invoking Example 1 inGenest et al. [16], the Kendall’s
tau for a Clayton model is equal to

τd =
1

2d−1 − 1

{
−1 + 2d

d−1∏
k=0

(
1 + kθ
2 + kθ

)}
.



It is easy to check that the latter mapping between τ and θ is one-to-one. The density of the Clayton copula with parameter
θ > 0 is given by

ln cθ (u|z) =

d−1∑
k=1

ln(1 + kθ ) − (θ + 1)
d∑

k=1

ln(uk) −

(
1
θ

+ d
)
ln

(
d∑

k=1

u−θ
k − 1

)
.

Assume that there exist θ and θ such that, for every z ∈ Z and every β ∈ B, θ ≤ ψ(β, β⊤z) ≤ θ . Then Assumption 2 is
satisfied. Indeed, note that

0 ≤ ln

(
d∑

k=1

u−θ
k − d + 1

)
≤

d∑
k=1

ln(du−θ
k ) ≤ d ln(d) − θ

d∑
k=1

ln (uk) .

Letting V denote a U(0, 1) random variable, we have

E[ln{Fk(Xk|Z)}] = EZ
[
EXk|Z [ln{Fk(Xk|Z)}|Z]

]
= EZ

{
EXk|Z [ln V )

}
= (−1),

and (3) follows.
Assumption 3 is satisfied with the same arguments as for the Gaussian copula. Assumption 4 can be verified relatively

easily. Concerning ∇θ ln cθ (u|z), the relevant reproducing U-shaped function is given by the product of the functions
rk(u) ∝ − ln(uk)1(uk ∈ (0, 1/2]) − ln(1 − uk)1(uk ∈ (1/2, 1)) with k ∈ {1, . . . , d}. To see this, use the following inequality:
for every u ∈ (0, 1)d,

|
∑d

k=1 u
−θ
k ln uk|∑d

k=1 u
−θ
k − d + 1

≤
maxk u−θ

k
∑d

k=1|ln uk|∑d
k=1 u

−θ
k − d + 1

≤ −

d∑
k=1

ln uk.

To manage ∇uk ln cθ (u|z), the relevant reproducing U-shaped function is obtained by replacing rk above by r̄k(u) ∝ u−1
k (1 −

uk)−1. Assumption 4 follows by setting r̃k(u) = r̄k(uk)
∏

l̸=krl(ul).

Example 6 (The Gumbel Copula). The d-dimensional Gumbel copula is given by

Cθ (u) = exp

⎧⎨⎩−

(
d∑

k=1

|ln uk|
θ

)−1/θ
⎫⎬⎭ ,

for some parameter θ > 1. It exhibits right-tail dependence.

Its Kendall’s tau in dimension d, as defined by (12) has been calculated by Genest et al. [16] as

τd =
1

2d − 1

⎡⎣−1 + 2d
∑

Cm⃗
(m − 1)!
(d − 1)!

(
1
2θ

)m−1 d∏
q=1

{q−1∏
ℓ=1

(k − 1/θ )

}mq
⎤⎦ ,

where m⃗ = (m1, . . . ,md) with m = m1 + · · · + md, and the summation is taken over all d-uplets of integers such that
m1 + 2m2 + · · · + dmd = d. For every m⃗, Cm⃗ denotes a positive constant. Note that(

1
θ

)m−1 d∏
q=1

{q−1∏
ℓ=1

(k − 1/θ )

}mq

=

(
1
θ

)d−1 d∏
q=2

{q−1∏
ℓ=1

(kθ − 1)

}mq

= χm⃗(θ ),

and

(lnχm⃗)′(θ ) ∝ −(d − 1) +

d∑
q=2

q−1∑
k=1

kmq

k − 1/θ
> −(d − 1) +

d∑
q=2

q−1∑
k=1

mq = 0.

Therefore, every function χm⃗ above is invertible, and the mapping between θ and τ is one-to-one, as usual. We can use the
empirical (conditional) Kendall’s tau to evaluate the under parameter θ (or θ (z) more generally).

The Gumbel copula density is a linear combination of the functions

cj(u) = Cθ (u)

(
d∑

k=1

|ln uk|
θ

)j/θ−d d∏
k=1

|ln uk|
θ−1

uk
,

for some j ∈ {1, . . . , d}. In the single-index model, θ is a function of z . Assume that θ (z) belongs to a fixed interval
[θ, θ ] ⊂ (1,+∞) almost everywhere. Therefore, the density cθ (z) of a Gumbel copula satisfies

cθ (z)(u) ≤ K0 × C(u) max
θ∈{θ,θ}

⎧⎨⎩
(

d∑
k=1

|ln uk|
θ

)j/θ−d d∏
k=1

|ln uk|
θ−1

uk

⎫⎬⎭ ,



for every u ∈ (0, 1)d and some constant K0. By taking the logarithmof the previous right-hand side, it is easy to check that (3),
and then Assumption 2, are satisfied.

Assumption 3 is satisfied with the same arguments as above. After lengthy calculations, we can check Assumption 4 too,
by noticing that

sup
θ∈[θ,θ ]

|∂ukcθ (u)| ≤ K1 × hk(u)Cθ (u)/u2
k = r̃k(u),

for some constant K1 and some slowly varying functions hk (deduced from the powers of the functions uℓ ↦→ ln uℓ with ℓ ∈

{1, . . . , d}). The function r̃k belongs toRd since Cθ (u) behaves as uk when uk tends to zero. Therefore E{Uk(1−Uk)r̃k(U )} < ∞.

3. Asymptotic normality of the estimators

3.1. Notations and assumptions

For convenience, set ψi = ψ(β0, β
⊤

0 Zi) and ψ̂i = ψ̂(β0, β
⊤

0 Zi).

Assumption 5. For every z ∈ Z , assume that ψz : B → Θ, β ↦→ ψ(β, β⊤z) is three times continuously differentiable.
Moreover, set ln c : (0, 1)d × Θ → R, (u, θ ) ↦→ ln cθ (u). Assume that ∇u∇

2
θ ln cθ (u) exists on (0, 1)d × Θ . Assume that

β ↦→ M(β) is twice continuously differentiable. Its Hessian matrix at point β0 is denotedΣ = ∇
2
βM(β0), and is invertible.

Such conditions of regularity are standard and can be easily checked most often. Simple calculations yield

Σ =
1

Pr(Z ∈ Z)
E
[{

∇θ (ln cθ )|θ=ψi (Ui)∇2
βψ(β, β⊤Zi) + ∇

2
θ (ln cθ )|θ=ψi (Ui)∇βψi∇

⊤

βψi
}
1(Zi ∈ Z)

]
.

Assumption 6. Assume that, for k ∈ {0, 1, 2},

sup
β∈B,z∈Z

⏐⏐⏐∇k
βψ̂(β, β⊤z) − ∇

k
βψ(β, β⊤z)

⏐⏐⏐ = oP (1), (18)

sup
z∈Z

|ψ̂(β0, β
⊤

0 z) − ψ(β0, β
⊤

0 z)| = OP (η1n),

sup
z∈Z

|∇βψ̂(β, β⊤z)|β=β0 − ∇βψ(β, β⊤z)|β=β0 | = OP (η2n),

with δ1−αn ηjn = o(n−1/2), for j ∈ {1, 2}, η21n = o(n−1/2), and η1nη2n = o(n−1/2).

The latter assumption requires that the rate of uniformweak consistency of ψ̂ (and some of its derivatives) is sufficiently
quick. For the clarity of these developments, some additional technical assumptions have been postponed into Appendix B.2.
They are related to the regularity of the underlying model distributions/functions and some of their estimates. Broadly
speaking, the key point is to check Assumption 6 in practice.

3.2. Main results

Now, let us state the main theoretical result, that will be key to obtain the asymptotic normality of β̂ .

Theorem 2. Under Assumptions 1 to 12,

β̂ − β0 = −
Σ−1

n

n∑
i=1

ωi,n∇θ ln cθ |θ=ψi (Ûi)∇βψ(β, β⊤Zi)|β=β0 + oP (n−1/2).

The proof of Theorem 2 is given in Appendix B.2. Invoking a few additional assumptions (see Appendix B.3), we finally
obtain the asymptotic normality of β̂ .

Corollary 3. Under Assumptions 1 to 16, we have n1/2
{Σ (β̂ − β0) + bn} ⇝ N (0, S) as n → ∞, where S = E(ω1M1M⊤

1 ),
and

M1 =
∇θ cθ
cθ |θ=ψ1

(U1)∇βψ(β, β⊤Z1)|β=β0 + ∇u∇θ (ln cθ )|θ=ψ(β0,β⊤
0 Z1)(U1)W (Z1,X1)∇βψ(β, β⊤Z1)|β=β0 ,

for some d-dimensional random vector W (Z1,X1) that is defined in Assumption 15 of Appendix B.3, and

bn = E{(ω1,n − ωi)M1} = E{1(U1 ∈ [0, 1]d En, Z1 ∈ Z)M1}.



Moreover, if

E
[
∇u∇θ (ln cθ )|θ=ψ(β0,β⊤

0 Z1)(U1)W (Z1,X1)∇βψ(β, β⊤Z1)|β=β0

×
{
1(|Uk,1 − νn| < δn) + 1(|1 − Uk,1 − νn| < δn)

} ]
= o(n−1/2), (19)

for every k ∈ {1, . . . , d}, then n1/2bn = o(1) and n1/2(β̂ − β0) ⇝ N (0,Σ−1SΣ−1) as n → ∞.

This result is proved in Appendix B.2. Note that the bias bn cannot be removed in general, even if E(ai,j) = 0. Indeed,
the trimming part E{(ωi,n − ωi)Mi} is typically of order δn and has no reason to be o(n−1/2). To remove the asymptotic bias,
we need (19). The latter condition is easily satisfied with purely parametric or nonparametric estimates, becauseW (Z,X) is
zero or most often negligible in such cases; see the discussion of Assumption 15 in Appendix B.3).

The asymptotic variance of β̂ in Corollary 3 can be estimated easily in most cases. Indeed, set

∀k∈{0,1,2,} ∀i∈{1,...,n} ∇
k
βψ̌i = ∇

k
βψ̂(β, β⊤Zi)|β=β̂ .

We can consistently estimateΣ by

Σ̂ =
1

nPrn(Z ∈ Z)

n∑
i=1

{
∇θ (ln cθ )|θ=ψ̌i

(Ûi)∇2
βψ̌i + ∇

2
θ (ln cθ )|θ=ψ̌i

(Ûi)∇βψ̌i∇β⊤ ψ̌i

}
1(Zi ∈ Z),

where Prn(Z ∈ Z) is the empirical probability of observing Z inZ . Note that Σ̂ is not definite positive in general. Nonetheless,
several techniques exist to build definite positive approximations of any symmetric matrix; see, e.g., [20,36]. Moreover,
estimate S by the definite positive matrix Ŝ = n−1∑n

i=1ω̂i,nM̂iM̂⊤

i , where

M̂i = ∇θ (ln cθ )|θ=ψ̌i
(Ûi)∇βψ̌i + ∇u∇θ (ln cθ )|θ=ψ̌i

(Ûi).Ŵ (Zi,Xi)∇βψ̌i,

for some functions Ŵ that consistently estimate W . It is difficult to specify Ŵ because its analytic expression depends on
the selected definition of the pseudo-observations Ûi. Nonetheless, note that we can set Ŵ = 0 when the Ûi are obtained
through kernel-based estimates; see Appendix B.3.

It is possible to verify that the conditions above (1 to 16) apply to get the asymptotic normality of β̂ in the case of the
copula families in Section 2.4; see Appendix B.4.

4. A short simulation study

To investigate the finite-sample behavior of our estimate β̂ , we consider the following simulation setting. Let Z ∈ R4 be a
random vector with independent margins that are U(0, 1). The conditional (marginal) distributions of X1 and X2 given Z = z
are respectively taken as

X1|Z = z ∼ N (α⊤z, 1), X2|Z = z ∼ N (α⊤z, 1),

with α = (0.2,−0.3, 0.1, 0.1)⊤. Concerning the conditional copula model, the dependence structure of (X1, X2) given
Z = z is a Clayton copula of parameter β⊤

0 z. We recall that a Clayton copula with a parameter θ > 0 is defined as
Cθ (u, v) = (u−θ

+ v−θ
− 1)−1/θ . Set β0 = (β0,1, β0,2, β0,3, β0,4) = (1, 0.7, 1.2, 0.8)⊤.We then assume

θ (z) = ψ(β0, β
⊤

0 z) =
β⊤

0 z/3.7
1 − β⊤

0 z/7.4
·

Therefore, the values of the randomparameter θ (Z) belong to (0, 2). The corresponding values of the conditional Kendall’s tau
coefficient (which depends of Z) lies between 0 and 1/2. Under our simulation scheme (independent covariates Z uniformly
distributed over (0, 1)), this leads to an average value of 1/4 for τ (β0, β

⊤

0 Z). The sample size is n = 1000. We consider
1000 replications of this simulation scheme. For each simulated sample, we compute our estimator β̂ as defined in (2).
The conditional margins are estimated using a kernel estimator as in (A.1), with products of univariate Gaussian kernels
K1 = · · · = K4 = Φ . The bandwidth used in the estimation of the margins is taken as h = 0.12 as per Scott’s rule in R4; see
[40], p. 164. In contrast, we consider different values of the bandwidth for computing the conditional Kendall’s τ estimators,
to understand its impact on the performances. To measure the estimation errors, for each simulated sample and each value
of the bandwidth, we introduce

e(β̂) =
1
3

4∑
i=2

|β̂i − β0,i|

|β0,i|
·

The latter number measures the mean relative absolute distance between the true parameter β0 and its estimate. The mean
value of e(β̂) over the 1000 replications is then calculated, providing ē(β̂). For a grid of realistic bandwidths between 0.03
and 0.2, the obtained range of ē(β̂) is [1.3%, 6.1%], with an average value of 3.5%. If we look at the results component by



component (i.e., if, for each sample, we compute ei(β̂) = |β̂i−β0,i| |β0,i|
−1 for i ∈ {2, 3, 4}), we obtain similar levels of errors:

e2(β̂) lies between [2.0%, 7.8%] with an average value of 4.7%, e3(β̂) between [0.8%, 4.9%] with an average value of 2.8% and
e4(β̂) between [1.0%, 5.9%] with an average value of 3.8%. Regarding the standard deviations and defining si(β̂) = var(β̂i)1/2
for i = 2, 3, 4,we have s2/β0,2 ∈ [0.9%, 4.8%] with an average value of 3.8%, s3/β0,3 ∈ [0.1%, 3.2%] with an average value of
2.5%, and s4/β0,4 ∈ [0.7%, 3.6%] with an average value of 2.9%.

As another error measurement criterion, we considered the empirical estimation of the quadratic error E{(β̂−β0)2}. This
error goes from 0.0040 to 0.0049 for our range of bandwidths. A bias/variance decomposition of this error, i.e., E{(β̂−β0)2} =

var(β̂) + {E(β̂) − β0}
2, may give us indications on the relative influence of the bias with respect to the error. The empirical

estimation of {E(β̂) − β0}
2 goes from 24.7% of the global quadratic error to 36.3%. Such error levels are very reasonable.

However, the asymptotic normality of β̂ may not be achieved for this sample size, since the null hypothesis of a Shapiro–
Wilk test is strongly rejected. A larger sample size may be required to obtain this asymptotic normality. As expected, there is
an impact of the bandwidth on the practical behavior. However, we focus here on estimating β0,which is relatively weakly
sensitive to the choice of the bandwidth. Indeed, it is based on the maximization of a criterion where the nonparametric
kernel estimators are averaged.

Acknowledgments

The authors thank Axel Bücher, Holger Dette, Christian Genest, Johan Segers, Alexandre Tsybakov, and Stanislav
Volgushev for helpful discussions, as well as numerous seminar participants, particularly at the 2015 European Meeting
of Statisticians in Amsterdam, and at the SFB 2015 workshop in Bochum. Moreover, we receivedmany relevant remarks and
suggestions from the Associate Editor and three referees. This research has been supported by the Labex Ecodec (reference
project 11–LABX–0047).

Appendix A. Technical lemmas

Lemma 4. For each k ∈ {1, . . . , d}, define F̂k as

F̂k(x|z) =

n∑
j=1

wj,n(z)1(Xj,k ≤ x), (A.1)

with the weights given by (16). Assume that, for some s ≥ 2, the following conditions hold:

(i) fZ , the density of Z , exists and is strictly positive on Z . Moreover, it is s-times continuously differentiable.
(ii) For every real x and every k, the function hk(x, ·) : z ↦→ Pr(Xk ≤ x|Z = z)fZ (z), defined on Z , is s-times continuously

differentiable. Moreover,

sup
x∈R

sup
z∈Z

|dszhk(x, z)| is bounded.

(iii) The underlying kernelK (·, 1) is continuous, bounded, of bounded variation,
∫
K (z, 1) dz = 1 and it is compactly supported.

To be specific, this kernel has to be ‘‘regular’’ in the sense of Einmahl and Mason [14], i.e., it has to satisfy Assumptions
K .i–K .iv. Moreover, it is a multivariate s-order kernel, i.e.,∫ p∏

j=1

z
αj
j K (z, 1) dz = 0,

for every p-uplet of integers (α1, . . . , αp) such that αj ∈ {1, . . . , s − 1} for some index j.

Then, for all k ∈ {1, . . . , d}, we have

F̂k(x|z) − Fk(x|z) =
1
n

n∑
j=1

ak,n(Xj, Zj, x, z) + rn(x, z),

ak,n(Xj, Zj, x, z) =
1

fZ (z)
[
K (Zj − z, h)1(Xj,k ≤ x) − E{K (Zj − z, h)1(Xj,k ≤ x)}

− Pr(Xk ≤ x|Z = z)
[
K (Zj − z, h) − E{K (Zj − z, h)}

]]
,

where, by setting

un,1 =

[
n
∏p
ℓ=1 hℓ

max{− ln(
∏p
ℓ=1 hℓ), ln ln n}

]1/2
, and un,2 =

1
maxℓ∈{1,...,p} hs

ℓ

,



there exist positive constants C1, C2 such that

lim sup
n

min(u2
n,1, un,2) sup

x∈R,z∈Z
|rn(x, z)| ≤ C1 (A.2)

and

lim sup
n

min(un,1, un,2) sup
x∈R,z∈Z

|F̂k(x|z) − Fk(x|z)| ≤ C2 a.e.

Proof. Eq. (A.2) is deduced directly from Theorem 2 in [14]. Moreover, by straightforward calculations, we get

rn,k(x, z) = r (1)n,k(x, z) + r (2)n,k(x, z),

r (1)n,k(x, z) =
Eĥ(x, z)(ĝ − Eĝ)2(z)

(Eĝ)2ĝ(z)
−

(ĥ − Eĥ)(x, z)(ĝ − Eĝ)(z)
ĝ(z)Eĝ(z)

,

r (2)n,k(x, z) =
Eĥ(x, z)
Eĝ(z)

− F (xk|z),

ĥ(x, z) =
1
n

n∑
j=1

K (Zj − z, h) 1(Xj,k ≤ x), ĝ(z) =
1
n

n∑
j=1

K (Zj − z, h),

that tends typically to g = fZ and hk(x, z) = Pr(Xk ≤ x|Z = z)g(z). By invoking Eqs. (3.7)–(3.8) in the proof of Theorem 2
in [14], we get the uniform convergence of ĥ (resp. ĝ) towards Eĥ (resp. Eĝ) almost surely, at the same rate un. Note their
Remark 8 justifies the choice of different bandwidths for every component of Z .

Moreover, by usual limited expansion of Eĝ − g and Eĥ − h, we can deal with the bias term. Due to our assumptions
concerning the order of the kernel K and the regularity conditions on the underlying laws, we obtain easily that r (2)n,k(x, z) =

O(maxℓ∈{1,...,p}hs
ℓ), providing the result. □

Lemma 5. Consider an integrable function χ on (0, 1)d × Z . Assume that there exist two deterministic sequences (ξn) and (δn),
ξn → 0, δn = o(νn), such that

Pr
(

max
i∈{1,...,n}

|Ûi − Ui| > 2δn, Zi ∈ Z
)

→ 0

when n → ∞, and

E
[
|χ (Ui, Zi)|1(Zi ∈ Z){1(|Ui,k − νn| ≤ 2δn) + 1(|1 − νn − Ui,k| ≤ 2δn)}

]
≤ ξn,

for all k ∈ {1, . . . , d}. Then
∑n

i=1|χ (Ui, Zi).(ω̂i,n − ωi,n)|/n = OP (ξn).

Proof. Let us fix ε > 0. For any constant A > 0, we have

Pr

{
1
n

n∑
i=1

|χ (Ui, Zi)| × |ω̂i,n − ωi,n| > Aξn

}
≤ Pr

{
1
n

n∑
i=1

|χ (Ui, Zi)| × |ω̂i,n − ωi,n|1(|Ûi − Ui| ≤ 2δn) > Aξn

}

+ Pr
{

max
i∈{1,...,n}

|Ûi − Ui| > 2δn, Zi ∈ Z
}

≡ P1 + P2.

First, we have

P1 ≤

d∑
k=1

Pr

{
1
n

n∑
i=1

|χ (Ui, Zi)|1(Zi ∈ Z, |Ui,k − νn| ≤ |Ûi,k − Ui,k|) > Aξn/(2d)

}

+

d∑
k=1

Pr

{
1
n

n∑
i=1

|χ (Ui, Zi)|1(Zi ∈ Z, |1 − νn − Ui,k| ≤ |Ûi,k − Ui,k|) > Aξn/(2d)

}

≤
2d
Aξn

d∑
k=1

E
[
|χ (Ui, Zi)|1(Zi ∈ Z) {1(|Ui,k − νn| ≤ 2δn) + 1(|1 − νn − Ui,k| ≤ 2δn)}

]
≤ 2d/A,

which is less than ε > 0 for A large enough. This means P1 = OP (ξn). Second, by assumption, P2 is less than ε when n is
sufficiently large, proving the result. □



Remark 2. In particular, it is tempting to define, with obvious notations,

ξn = max
k

E

[
sup

uk,|uk−νn|≤2δn
|χ (uk,Ui,−k, Zi)|1(Zi ∈ Z)

]
+ max

k
E

[
sup

uk,|uk−1+νn|≤2δn
|χ (uk,Ui,−k, Zi)|1(Zi ∈ Z)

]
,

or even, when this term tends to zero,

ξn = max
k

sup
uk,|uk−νn|≤2δn

sup
u−k∈[νn−2δn,1−νn+2δn]d−1

sup
z∈Z

|χ (uk, u−k, z)|

+ max
k

sup
uk,|uk−1+νn|≤2δn

sup
u−k∈[νn−2δn,1−νn+2δn]d−1

sup
z∈Z

|χ (uk, u−k, z)|.

Lemma 6. Under the assumptions of Theorem 2,

sup
β∈B

|∇
2
βMn(β) − ∇

2
βM(β)| = oP (1).

Proof. We have

ni + 1
n

∇
2
βMn(β) =

1
n

n∑
i=1

∇θ (ln cθ )|θ=ψ̂i
(Ûi)∇2

βψ̂(β, β⊤Zi) ω̂i,n

+
1
n

n∑
i=1

∇
2
θ (ln cθ )|θ=ψ̂i

(Ûi)∇βψ̂i∇β⊤ ψ̂i ω̂i,n ≡ B1,n(β) + B2,n(β).

Furthermore,

B1,n(β) −
1
n

n∑
i=1

∇θ cθ
cθ |θ=ψi

(Ui)∇2
βψ̂(β, β⊤Zi)ω̂i,n

is equal to

1
n

n∑
i=1

{
∇θ (ln cθ )|θ=ψ̂i

(Ûi) − ∇θ (ln cθ )|θ=ψ̂i
(Ui) + ∇θ (ln cθ )|θ=ψ̂i

(Ui) − ∇θ (ln cθ )|θ=ψi (Ui)
}

∇
2
βψ̂(β, β⊤Zi) ω̂i,n

=
1
n

n∑
i=1

{
∇

2
u,θ (ln cθ )|θ=ψ̂i

(U∗

i ).(Ûi − Ui) + ∇
2
θ,θ (ln cθ )|θ=ψ∗

i
(Ui).(ψ̂i − ψ)

}
∇

2
βψ̂(β, β⊤Zi) ω̂i,n,

for some U∗

i and ψ∗

i such that |U∗

i − Ui| < |Ûi − Ui|, |ψ∗

i − ψi| < |ψ̂ − ψi|. From Assumption 11, and using the same
arguments as in the proof of Theorem 1 (see the term T2(β)), we get

sup
β

⏐⏐⏐⏐⏐1n
n∑

i=1

∇
2
u,θ (ln cθ )|θ=ψ̂i

(U∗

i ) (Ûi − Ui)∇2
βψ̂(β, β⊤Zi) ω̂i,n

⏐⏐⏐⏐⏐ = oP (1).

From Assumptions 9 and the uniform consistency of ψ̂(β, β⊤z) (see (18)), we have

sup
β

⏐⏐⏐⏐⏐1n
n∑

i=1

∇
2
θ,θ (ln cθ )|θ=ψ∗

i
(Ui) (ψ̂i − ψ)∇2

βψ̂(β, β⊤Zi) ω̂i,n

⏐⏐⏐⏐⏐ = oP (1),

and we deduce

sup
β∈B

⏐⏐⏐⏐⏐B1,n(β) −
1
n

n∑
i=1

∇θ ln cθ |θ=ψi (Ui)∇2
βψ̂(β, β⊤Zi)ω̂i,n

⏐⏐⏐⏐⏐ = oP (1),

Invoking Assumption 6, Eq. (18), we get

sup
β∈B

⏐⏐⏐⏐⏐B1,n(β) −
1
n

n∑
i=1

∇θ ln cθ |θ=ψi (Ui)∇2
βψ(β, β⊤Zi)ω̂i,n

⏐⏐⏐⏐⏐ = oP (1).

Since the score function is uniformly integrable ( Assumption 4) and applying Lemma 5 (or the dominated convergence
theorem simply), we can replace ω̂i,n by ωi. Therefore, supβ |B1,n(β) − B1(β)| = oP (1), with

B1(β) =
1
n

n∑
i=1

∇θ ln cθ |θ=ψi (Ui)∇2
βψ(β, β⊤Zi)ωi.



 Similarly, one can deduce from Assumptions 11 and 6 that supβ |B2,n(β) − B2(β)| = oP (1), with

B2(β) =
1
n

n∑
i=1

∇
2
θ,θ (ln cθ )|θ=ψi (Ui)∇βψ(β, β⊤Zi)∇β⊤ψ(β, β⊤Zi)ωi.

From Assumption 10 and (B.2) and (B.3) in Assumption 9, we can apply Example 19.7 and Theorem 19.4 in [45] to deduce
that

sup
β∈B

|B1(β) − E{B1(β)} + B2(β) − E{B2(β)}| = oP (1).

Since (ni + 1)/n tends to Pr(Z ∈ Z) a.e. andΣ = [E{B1(β)} + E{B2(β)}]/Pr(Z ∈ Z), we obtain the result. □

Lemma 7. Let c0(u, v) denote the first order partial derivative of CM
β0
(u|w) with respect to w evaluated at point w = v, where

CM
β (u|w) denotes the conditional copula function of U given β⊤Z and ∥Z∥∞ ≤ M (i.e., Z ∈ Z). We have

∇βCM
β (u|β⊤Z)|β=β0 = c0(u, β⊤

0 Z){Z − E(Z |β⊤

0 Z, Z ∈ Z)}.

Proof. The proof is similar to the proof of Lemma 5A in [11], and of Lemma 3.4 in [28]. Observe that

CM
β (u|β⊤Z) = E(1U≤u|β

⊤Z, Z ∈ Z) = E{E(1U≤u|Z)|β⊤Z, Z ∈ Z} = E{CM
β0
(u|β⊤

0 Z)|β⊤Z, Z ∈ Z},

where we used the single-index assumption. Next, let

Γu,Z (β1, β2) = E{CM
β0
(u|α(Z, β1) + β⊤

2 Z)|β⊤

2 Z, Z ∈ Z},

where α(Z, β1) = β⊤

0 Z − β⊤

1 Z . Hence, CM
β (u|β⊤Z) = Γu,Z (β, β). As a consequence,

∇βCM
β (u|β⊤Z)|β=β0 = ∇1Γu,Z (β, β0)|β=β0 + ∇2Γu,Z (β0, β)|β=β0 ,

where ∇j represents the gradient vector with respect to βj. Observe that

∇1Γu,Z (β, β0)|β=β0 = −E{Zc0(u, β⊤

0 Z)|β⊤

0 Z}.

Moreover, Γu,Z (β0, β) = CM
β0
(u|β⊤Z),which leads to ∇2Γu,Z (β0, β)|β=β0 = Zc0(u, β⊤

0 Z), and the result follows. □

Lemma 8. Assume that the transformation Ψ is Hadamard differentiable. Then, for all v,∫
∇βψ(β, β⊤z)β=β0dPrZ |β⊤

0 Z (z|v) = 0.

Proof. Let Ψ̇ {C(·)}[D(·)] denote the Hadamard derivative of Ψ at point C, applied to function D. Recall that ψ(β, β⊤z) =

Ψ {CM
β (·|β⊤z)}. Hence, using Lemma 7,

∇βψ(β, β⊤z)|β=β0 = {z − E(Z |β⊤

0 Z = β⊤

0 z)}Ψ̇ {CM
β0
(·|β⊤

0 z)}[c0(·|β⊤

0 z)].

This shows that ∇βψ(β, β⊤z)|β=β0 = {z − E(Z |β⊤

0 Z = β⊤

0 z)}Λ(β⊤

0 z), for some transform Λ, and the result of Lemma 8
follows. □

Finally, Lemma 14 invokes two propositions from [14], that we recall here.

Proposition 9. Let G denote a class of functions bounded by 1, and let σ 2
G = supg∈Gvar{g(X, Z)}. Then, for all t > 0,

Pr

{
sup
g∈G

⏐⏐⏐⏐⏐
n∑

i=1

g(Xi, Zi) − E{g(Xi, Zi)}

⏐⏐⏐⏐⏐ ≥ A1(Gε + t)

}
≤ 2

{
exp

(
−

A2t2

nσ 2
G

)
+ exp(−A2t)

}
,

for some universal constants A1 and A2, and

Gε = E

{
sup
g∈G

⏐⏐⏐⏐⏐
n∑

i=1

g(Xi, Zi)εi

⏐⏐⏐⏐⏐
}
,

where (εi)1≤i≤n are iid Rademacher variables independent from (X1, Z1), . . . , (Xn, Zn).

Proposition 10. Assume that G is a class of functions satisfying the assumptions of Proposition 9 and such that N(ε, G) ≤ Cε−ν

for C > 0 and ν > 0.Moreover, assume that there exists σ 2
≤ 1 such that supg∈GE{g(X, Z)2} ≤ σ 2. Then, Gε ≤ An1/2σ ln(1/σ ).



Proposition 11. For each k ∈ {1, . . . , p}, let F̂k(x|z) denote the kernel estimator of the conditional distribution function Fk(x|z)
as given in Eq. (A.1), i.e., F̂k(x|z) = N̂k(x|z)/f̂ (z) with

N̂k(x|z) =
1
n

n∑
i=1

1Xk≤xK (Zi − z, h) , f̂ (z) =
1
n

n∑
i=1

K (Zi − z, h) , K (Zi − z, h) =
1

h1 · · · hp

p∏
k=1

Kk

(
Zi,k − zk

hk

)
.

Define

P(t) = Pr
{

sup
x∈R,z∈Z

⏐⏐⏐F̂k(x|z) − Fk(x|z)
⏐⏐⏐ ≥ t

}
,

and assume that

sup
x∈R,z∈Z

⏐⏐⏐E{N̂k(x|z)}/E{f̂ (z)} − Fk(x|z)
⏐⏐⏐ = bn,

for some sequence bn → 0. Then, for B large enough and t ≥ max{2bn, Bn−1/2 ln(1/minkhk)(h1 · · · hp)−1/2
}, there exist positive

constants (α, β, γ , δ) such that

P(t) ≤ 4{exp(−αnh1 · · · hpt2) + exp(−βnh1 · · · hptt) + exp(−γ nh1 · · · hp) + exp(−δnh1 · · · hp)}.

Proof. Let

P̃(t) = Pr

{
sup
x,z

⏐⏐⏐⏐⏐F̂k(x|z) −
E{N̂k(x|z)}
E{f̂ (z)}

⏐⏐⏐⏐⏐ ≥ t

}
, P1(t) = Pr

{
sup
x,z

|N̂k(x|z) − E{N̂k(x|z)}| ≥ t
}
,

and

P2(t) = Pr
{
sup
z

|f̂ (z) − E{f̂ (z)}| ≥ t
}
.

We have

P(t) ≤ P̃(t/2) + Pr

{
sup
x,z

⏐⏐⏐⏐⏐E{N̂k(x|z)}
E{f̂ (z)}

− Fk(x|z)

⏐⏐⏐⏐⏐ ≥ t/2

}
,

where the last probability is zero for t/2 ≥ bn.Hence, an upper bound for P(t) can be deduced from an upper bound on P̃(t).
Define the classes of functions

G1 =
{
(x, z) ∈ R × Z ↦→ 1x′≤xK

(
z − z ′, h

)
: z ′

∈ Z, h = (h1, . . . , hp) ∈ Rp
+, x

′
∈ R

}
,

and G2 =
{
z ∈ Z ↦→ K

(
z − z ′, h

)
: z ′

∈ Z, h = (h1, . . . , hp) ∈ Rp
+, x ∈ R

}
.

These two classes of functions satisfy the Assumption of Proposition 10 with σ 2
∝
∏p

k=1hk. Hence, from Proposition 9, we
get, for each j ∈ {1, 2},

Pj(t) ≤ 2[exp{−Cn(h1 · · · hp)t2} + exp{−Cn(h1 · · · hp)t}],

for t ≥ An−1/2 ln(1/minkhk)/(h1 · · · hp)1/2,with A large enough and C > 0 some constant. Decompose

P̃(t) ≤ Pr

{
sup
x,z

⏐⏐⏐⏐⏐ N̂k(x|z) − E{N̂k(x|z)}
E{f̂ (z)}

⏐⏐⏐⏐⏐ ≥ t/2

}
+ Pr

{
sup
x,z

⏐⏐⏐⏐⏐ N̂k(x|z)[f̂ (z) − E{f̂ (z)}]
f̂ (z)E{f̂ (z)}

⏐⏐⏐⏐⏐ ≥ t/2

}
(A.3)

≤ P̃1(t/2) + P̃2(t/2). (A.4)

Next, recall that infz∈Z f (z) ≥ f0 > 0. Moreover, the bias of the kernel estimator of the density tends to 0 uniformly on
Z , i.e., supz∈Z |E{f̂ (z)} − f (z)| → 0 as n grows to infinity. This, combined with the bound obtained on P2(t), shows that
supz∈Z |f̂ (z) − f (z)| → 0. Hence, infz∈ZE{f̂ (z)} > f0/2 for n large enough, which leads to

P̃1(t/2) ≤ P1(tf0/4), (A.5)

and

P̃2(t/2) ≤ Pr
{
sup
x,z

|f̂ (z) − E{f̂ (z)}| ≥ f0/4
}

+ Pr
{
sup
x,z

⏐⏐⏐N̂k(x|z)[f̂ (z) − E{f̂ (z)}t]
⏐⏐⏐ ≥ f 20 t/16

}
.

Since supx,z |E{N̂k(x|z)}| ≤ ∥K∥∞ < ∞, we have

P̃2(t/2) ≤ P2(f0/4) + P2{f 20 t/(16∥K∥∞)}. (A.6)

Gathering (A.4), (A.5) and (A.6) leads to the result of the proposition. □



Appendix B. Proofs of the main results

Introduce the set of indicator functions

H =

{
g : [0, 1]d × Rp

→ [0, 1], (u, z) ↦→ 1(u ∈ Ba,b, z ∈ B̃c,d),

for some Ba,b =

d∏
k=1

[ak, bk] ⊂ [0, 1]d and B̃c,d =

p∏
k=1

[ck, dk] ⊂ Rp

}
.

Since all the subsets we consider inH are boxes, it is simple to verify thatH is universally Donsker (for instance, see Example
2.6.1 and apply Lemma 2.6.17 in [46].

B.1. Proof of the consistency of β̂ (Theorem 1)

For inference purposes and a given sample, the sample size that we use is actually n̂i =
∑n

i=1ω̂i,n. This random number
is close to ni =

∑n
i=1ωi,n, the sample size if the Ui were observable. Let us introduce

Mn(β) =
1

ni + 1

n∑
i=1

ω̂i,n ln cψ̂(β,β⊤zi)
(Ûi),

M∗

n (β) =
1

ni + 1

n∑
i=1

ω̂i,n ln cψ(β,β⊤zi)(Ui),

M∗∗

n (β) =
1

ni + 1

n∑
i=1

ωi ln cψ(β,β⊤zi)(Ui).

Note that β̂ is the optimizer of Mn because neither ni nor n̂i is a function of the underlying parameter β . By assumption, β0
maximizesM(β) over B. To prove the consistency of β̂ , it is sufficient to show that supβ∈B|Mn(β) − M(β)| = oP (1).

We first show that supβ∈B|Mn(β) − M∗
n (β)| = oP (1). Simple calculations yield

|Mn(β) − M∗

n (β)| ≤
1

ni + 1

n∑
i=1

ω̂i,n sup
θ∈Θ

|∇θ ln cθ (Ûi) | × |ψ̂(β, β⊤Zi) − ψ(β, β⊤Zi)|

+
1

ni + 1

n∑
i=1

⏐⏐⏐⏐ω̂i,n
∇ucψ(β,β⊤zi)

cψ(β,β⊤zi)
(U∗

i ) (Ûi − Ui)
⏐⏐⏐⏐ ≡ T1(β) + T2(β),

for some vectors U∗

i such that |Ui − U∗

i | ≤ |Ui − Ûi| for all i ∈ {1, . . . , n}.
Let us deal with T1(β). By (4), supβmaxi∈{1,...,n}|ψ̂(β, β⊤Zi) − ψ(β, β⊤Zi)| = oP (1). Then, it suffices to prove that

1
ni + 1

n∑
i=1

ω̂i,n sup
θ∈Θ

|∇θ ln cθ (Ûi)| = OP (1).

For every ε > 0 and A > 0, we have

Pr

{
1
n

n∑
i=1

ω̂i,n sup
θ∈Θ

|∇θ ln cθ (Ûi)| > A

}
≤ Pr

(
max

i∈{1,...,n}
|Ûi − Ui| > 2δn, Zi ∈ Z

)

+ Pr

{
1
n

n∑
i=1

ω̂i,n1(|Ûi − Ui| ≤ 2δn) sup
θ∈Θ

|∇θ ln cθ (Ûi)| > A

}
.

By (5), the first term on the right-hand side above is less than ε when n is large. To manage the last term on the right-hand
side, consider an arbitrary index i such that |Ûi − Ui| ≤ 2δn and ω̂in = 1. Since δn = o(νn), we can assume that, for every
k ∈ {1, . . . , d}, we have

Ui,k/2 ≤ Ûi,k if Ûi,k ≤ 1/2, and (1 − Ui,k)/2 ≤ (1 − Ûi,k) if Ûi,k > 1/2.

For rk, the kth of the U-shaped functions that define r , we deduce

rk(Ûi,k) ≤ rk(Ui,k/2) if Ûi,k ≤ 1/2, and rk(Ûi,k) ≤ rk{1 − (1 − Ui,k)/2} if Ûi,k > 1/2.



In other words, rk(Ûi,k) ≤ rk,1/2(Ui,k) for such i and every k. Then, Assumption 4 implies

1
n

n∑
i=1

sup
θ∈Θ

|∇θ ln cθ (Ûi)|ω̂i,n1(|Ûi − Ui| ≤ 2δn) ≤
1
n

n∑
i=1

r(Ûi)ω̂i,n1(|Ûi − Ui| ≤ 2δn)

≤
1
n

n∑
i=1

r1/2(Ui)ωi ≤
Md

1/2

n

n∑
i=1

r(Ui)ωi,

which is integrable. We get

Pr

{
1
n

n∑
i=1

ω̂i,n sup
θ∈Θ

|∇θ ln cθ (Ûi)| > A

}
≤ ε +

Md
1/2E{r(Ui)ωi}

A
< 2ε,

when A and n are sufficiently large. Since ni/n tends to a positive constant a.e., we deduce supβT1(β) = oP (1).
By a slightly more subtle reasoning, we can obtain supβT2 = oP (1). For every ε > 0,

Pr{T2(β) > ε} ≤ Pr
(

max
i∈{1,...,n}

|Ûi − Ui| > 2δn, Zi ∈ Z
)

+ Pr

{
1

ni + 1

n∑
i=1

ω̂i,n1(|Ûi − Ui| ≤ 2δn) sup
β

⏐⏐⏐⏐∇ucψ(β,β⊤zi)

cψ(β,β⊤zi)
(U∗

i ) (Ûi − Ui)
⏐⏐⏐⏐ > ε

}
,

and the first term on the right-hand side is smaller than ε when n is large. Due to Assumption 4 and for every ε > 0, there
exists η ∈ (0, 1/2) such that

max
k∈{1,...,d}

E[r̃k,1/2(UZ ){Uk1(Uk < η) + (1 − Uk)1(Uk > 1 − η)} 1(Z ∈ Z)] < ε2.

By applying Markov’s inequality, we deduce that

Pr

{
1
n

n∑
i=1

ω̂i,n1(|Ûi − Ui| ≤ 2δn) sup
β

⏐⏐⏐⏐∇ucψ(β,β⊤zi)

cψ(β,β⊤zi)
(U∗

i )(Ûi − Ui)
⏐⏐⏐⏐ > ε

}

≤ Pr

{
1
n

d∑
k=1

n∑
i=1

ω̂i,n1(|Ûi − Ui| ≤ 2δn)|r̃k(U∗

i )| × |Ûi,k − Ui,k| > ε

}

≤ Pr
{1
n

d∑
k=1

n∑
i=1

ωi1(|Ûi − Ui| ≤ 2δn)r̃k,1/2(Ui)

× {|Ûi,k − Ui,k|1{η ≤ Ui,k ≤ 1 − η} + Ui,k1(Ui,k < η) + (1 − Ui,k)1(Ui,k > 1 − η)} > ε

}
≤ Pr

[
2δn
n

d∑
k=1

n∑
i=1

ωi r̃k,1/2(Ui)1{η ≤ Ui,k ≤ 1 − η} > ε/2

]
+

2ε2

ε

≤ Pr

{
2δn
nη

d∑
k=1

n∑
i=1

ωiUi,k(1 − Ui,k)r̃k,1/2(Ui) > ε/2

}
+ 2ε,

and then

Pr{T2(β) > ε} ≤ 3ε +
4dδn maxk E{ωiUi,k(1 − Ui,k)r̃k,1/2(Ui)}

ηε
,

that is less than 4ε when n is sufficiently large, because of Assumption 4. Note that we have used Ûi,k ∈ (0, 1) for every
i ∈ {1, . . . , n} and k ∈ {1, . . . , d} above. Since ε may be arbitrarily small and ni/n tends to a constant a.e., we get supβT2(β)
= oP (1), and we have proved that supβ∈B|Mn(β) − M∗

n (β)| = oP (1).
Second, due to Assumption 2 and for every ε > 0, we have

Pr

{
sup
β

⏐⏐⏐⏐⏐1n
n∑

i=1

(ω̂i,n − ωi,n) ln cψ(β,β⊤zi)(Ui)

⏐⏐⏐⏐⏐ > ε

}

≤ Pr

{
1
n

n∑
i=1

1(Ui ∈ En, Ûi ̸∈ En, Zi ∈ Z) sup
β

|ln cψ(β,β⊤zi)(Ui)| > ε/2

}

+ Pr

{
1
n

n∑
i=1

1(Ui ̸∈ En, Ûi ∈ En, Zi ∈ Z) sup
β

|ln cψ(β,β⊤zi)(Ui)| > ε/2

}



≤
2
ε
E[{1(Ui ∈ En, Ûi ̸∈ En) + 1(Ui ̸∈ En, Ûi ∈ En)}1(Zi ∈ Z)h(Ui, Zi)]

≤
4
ε
E[1(|Ûi − Ui| > 2δn, Zi ∈ Z)h(Ui, Zi)] (B.1)

+
2
ε
E[{1(Ui ∈ En, Ûi ̸∈ En) + 1(Ui ̸∈ En, Ûi ∈ En)}1(|Ûi − Ui| ≤ 2δn, Zi ∈ Z)h(Ui, Zi)].

But, we have for any i,

1(|Ûi − Ui| ≤ 2δn){1(Ui ̸∈ En, Ûi ∈ En) + 1(Ui ∈ En, Ûi ̸∈ En)}

≤ 2
d∑

k=1

{
1(Ui,k ∈ [νn − 2δn, νn + 2δn]) + 1(1 − Ui,k ∈ [νn − 2δn, νn + 2δn])

}
,

that tends to zero a.e. when n → ∞. Invoking the Dominated Convergence Theorem and (3), this proves that the second
term on the right-hand side of (B.1) is less than ε when n is large enough.

Moreover, due to Assumption 2 and Hölder’s inequality,

E{1(|Ûi − Ui| > 2δn, Zi ∈ Z)h(Ui, Zi)} ≤ E{h(U , Z)α 1(Z ∈ Z)}1/α Pr(|Ûi − Ui| > 2δn, Zi ∈ Z)1−1/α,

that is less than ε when n is large enough (Assumption (5)). This yields

sup
β

⏐⏐⏐⏐⏐1n
n∑

i=1

(ω̂i,n − ωi,n) ln cψ(β,β⊤zi)(Ui)

⏐⏐⏐⏐⏐ = oP (1).

Similarly, we prove supβ |
∑n

i=1(ωi,n − ωi) ln cψ(β,β⊤zi)(Ui)|/n = oP (1).We deduce easily that supβ∈B|M∗
n (β) − M∗∗

n (β)| =

oP (1) because ni/n tends to a constant a.e.
To conclude the proof, we can apply a usual Uniform Law of Large Numbers. For instance, Lemma 2.4 in [30] tells us

that (3) insures that supβ∈B|M∗∗
n (β) − M(β)| = oP (1). Therefore, we get that β̂ tends to β0 in probability. □

B.2. Proof of Theorem 2

First, we need to introduce some additional assumptions. They require that the functions we manipulate (or their
estimates) are ‘‘sufficiently regular’’: to be Lipschitz, upper bounded by U-shaped functions, or a member of some Donsker
classes of functions, etc. Since we are managing several indices (θ , u, z and β), the uniformity with respect to some of them
is most often imposed.

Assumption 7. Let the functions on (0, 1)d × Z be defined by

f (u, z) = ∇θ ln cθ |θ=ψ(β0,β⊤
0 z)(u) and f̂ (u, z) = ∇θ ln cθ |θ=ψ̂(β0,β⊤

0 z)(u).

For almost every realization, the functions f and f̂ belong to a Donsker class for the underlying law of (X, Z), that is denoted
F1.

Assumption 8. Let the functions on Z be defined by

p : z ↦→ p(z) = ∇βψ(β, β⊤z)|β=β0 and p̂ : z ↦→ p̂(z) = ∇βψ̂(β, β⊤z)|β=β0 .

For almost every realization, the functions p and p̂ belong to a Donsker class for the underlying law of (X, Z), that is denoted
F2.

Assumption 9. Assume that E{supθ∈Θ |∇
2
θ ln cθ (UZ )| 1(Z ∈ Z)} < ∞. Moreover, for every (u, u′) ∈ (0, 1)2d, we have

|∇θ ln cθ (u) − ∇θ ln cθ ′ (u)| ≤ ξ (u) |θ − θ ′
|, (B.2)⏐⏐∇2

θ ln cθ (u) − ∇
2
θ ln cθ ′ (u)

⏐⏐ ≤ ξ (u) |θ − θ ′
|, (B.3)

for some functionΦ such that E{ξ (U )} < ∞. Moreover, there exists a function r3 in Rd such that, for every u ∈ (0, 1)d,

sup
θ∈Θ

|∇
3
θ ln cθ (u)| ≤ r3(u), E{r3(UZ )1(Z ∈ Z)} < ∞.

Assumption 10. Assume that, for every (β1, β2) ∈ B2 and j ∈ {1, 2}, there exists a finite constant C such that

sup
z∈Z

|∇
j
βψ(β1, β

⊤

1 z) − ∇
j
βψ(β2, β

⊤

2 z)| ≤ C |β1 − β2|.



Assumption 11. For every k ∈ {1, . . . , d}, there exists a function Γk ∈ Rd and some α ∈ [0, 1) such that

sup
θ∈Θ

|∂uk∇θ (ln cθ )(u)| + sup
θ∈Θ

|∂uk∇
2
θ (ln cθ )(u)| ≤ Γk(u), E{Uαk (1 − Uk)αΓk(UZ ) 1(Z ∈ Z)} < ∞.

The next assumption is less intuitive and highly technical. It is required to control for the behavior of (unobservable) Ui
close to the boundary of [0, 1]d, i.e., when n is large and the trimming function ‘‘fills the hypercube’’.

Assumption 12. For any u ∈ Rd, set

g(u, z) = sup
θ∈B(θ0(z),η1n)

sup
v∈B(u,2δn)

|∇θ ln cθ (v)|,

where B(u, δ) (resp. B(θ, η)) denotes the closed ball of center u (resp. θ ) and radius δ (resp. η). Assume

sup
k∈{1,...,d}

E{g(Ui, Zi)1(Zi ∈ Z, |Ui,k − νn| < 2δn)} = o(n−1/2), (B.4)

and similarly after having replaced νn by 1 − νn.

The latter assumption is usually satisfied with a lot of usual copula models. Broadly speaking and when cθ is continuous
with respect to its arguments and θ itself, it means that

δn

∫
|∇θ cθ (u−k, νn|z)|θ=θ0(z)| 1(z ∈ Z) du−k dPrZ (z) = o(n−1/2),

and the same replacing νn by 1−νn. We have denoted by (u−k, νn) the d-dimensional vector whose components are uj, when
j ̸= k, and whose kth component is νn.

Second, let us prove Theorem 2. By definition of β̂,∇βMn(β̂) = 0.Next, a first order Taylor expansion leads to−∇βMn(β0)
= (β̂−β0)∇2

βMn(β̃),where β̃ = β0+oP (1), using the consistency of β̂. From Lemma6,we have∇
2
βMn(β̃) = ∇

2
βM(β̃)+oP (1).

Moreover, from Assumption 5 and the consistency of β̂ (hence the consistency of β̃), we get ∇
2
βMn(β̃) = Σ + oP (1). Next,

we have

∇βMn(β0) =
1
n

n∑
i=1

∇θ ln cθ |θ=ψ̂i
(Ûi)∇βψ̂(β, β⊤Zi)|β=β0 ω̂i,n.

A. From the trimming functions ω̂i,n to ωi,n. Under Assumptions 3 and 12, we can apply Lemma 5 with the function

χ (Ui, Zi) = sup
θ∈Bi,θ

sup
v∈Bi,d

|∇θ ln cθ (v)| sup
β∈B

sup
z∈Z

|∇βψ(β, β⊤z)|

and Bi,θ = B{θ0(Zi), η1n} and Bi,d = B(Ui, 2δn). This implies

∇βMn(β0) =
1
n

n∑
i=1

∇θ ln cθ |θ=ψ̂i
(Ûi)∇βψ̂(β, β⊤Zi)|β=β0ωi,n + oP (n−1/2).

Now, decompose ∇βMn(β0) ≡ A1n + A2n + R1n + R2n + R3n,where

A1n =
1
n

n∑
i=1

∇θ ln cθ |θ=ψi (Ui)∇βψ(β, β⊤Zi)|β=β0ωi,n,

A2n =
1
n

n∑
i=1

{∇θ ln cθ |θ=ψi (Ûi) − ∇θ ln cθ |θ=ψi (Ui)}∇βψ(β, β⊤Zi)|β=β0ωi,n,

R1n =
1
n

n∑
i=1

∇θ ln cθ |θ=ψi (Ûi){∇βψ̂(β, β⊤Zi)|β=β0 − ∇βψ(β, β⊤Zi)|β=β0}ωi,n,

R2n =
1
n

n∑
i=1

{∇θ ln cθ |θ=ψ̂i
(Ûi) − ∇θ ln cθ |θ=ψi (Ûi)}∇βψ(β, β⊤Zi)|β=β0ωi,n,

and

R3n =
1
n

n∑
i=1

{∇θ ln cθ |θ=ψ̂i
(Ûi) − ∇θ ln cθ |θ=ψi (Ûi)} × {∇βψ̂(β, β⊤Zi)|β=β0 − ∇βψ(β, β⊤Zi)|β=β0}ωi,n.



In this decomposition, we show that only the first two terms (A1n and A2n) matter, and that for each j ∈ {1, 2, 3}, the term
Rjn is oP (n−1/2).

B. Study of R1n. First observe that

R1n =
1
n

n∑
i=1

∇θ ln cθ |θ=ψi (Ui){p̂(Zi) − p(Zi)}ωi,n + R′

1n,

R′

1n =
1
n

n∑
i=1

{∇θ ln cθ |θ=ψi (Ûi) − ∇θ ln cθ |θ=ψi (Ui)}{p̂(Zi) − p(Zi)}ωi,n.

By a limited expansion, we have

R′

1n =
1
n

n∑
i=1

{∇u∇θ (ln cθ )|θ=ψi (U
∗

i ) (Ûi − Ui)}{p̂(Zi) − p(Zi)}ωi,n,

for some U∗

i such that |U∗

i − Ui| < |Ûi − Ui|. Reasoning as in the proof of Theorem 1, we can write

Pr(n1/2
|R′

1n| > ε) ≤ Pr
(

max
i∈{1,...,n}

|Ûi − Ui| > 2δn, Zi ∈ Z
)

+ Pr

{
1

n1/2

n∑
i=1

⏐⏐∇2
u,θ (ln cθ )|θ=ψi (U

∗

i )
⏐⏐ |Ûi − Ui|ωi,n|p̂(Zi) − p(Zi)|1(|Ûi − Ui| ≤ 2δn) > ε

}

≤ ε + Pr

{
η1n

n1/2

n∑
i=1

d∑
k=1

|Γk,1/2(Ui)t| |Ûi,k − Ui,k|ωi,n1(|Ûi − Ui| ≤ 2δn) > ε

}
,

for n large enough and invoking Assumption 6. Note that

|Ûi,k − Ui,k|1(|Ûi − Ui| ≤ 2δn)ωi,n ≤ CαUαi,k(1 − Ui,k)α|Ûi,k − Ui,k|
1−α
, a.e.

for some constant Cα , when n is sufficiently large, i ∈ {1, . . . , n} and k ∈ {1, . . . , d}. This yields

Pr(n1/2
|R′

1n| > ε) ≤ ε + Pr

{
C ′
αη1nδ

1−α
n

n1/2

n∑
i=1

d∑
k=1

Γk,1/2(Ui)Uαi,k(1 − Ui,k)αωi > ε

}

≤ ε +
dC ′

αn
1/2η1nδ

1−α
n

ε
max

k
E{Γk,1/2(Ui)Uαi,k(1 − Ui,k)αωi}

for some constant C ′
α . Thanks to Assumption 11, Pr(n1/2

|R′

1n| > ε) < 2ε when n is large enough, implying R′

1n = oP (n−1/2).
Moreover, with obvious notations, R1n can be rewritten as

R1n =
1
n

n∑
i=1

{
g̃n(Xi, Zi) − g̃(Xi, Zi)

}
ωi,n + R′

1n,

where g̃n and g̃ both belong to F3 = F1 F2 H, which is a Donsker class of functions. Indeed, the fact that F3 is a Donsker
class follows from the permanence properties of Examples 2.10.10 and 2.10.7 in [46]. Moreover, from Assumption 6,

sup
x∈Rd,z∈Z

|g̃n(x, z) − g̃(x, z)| = oP (1).

Therefore, the asymptotic equicontinuity of Donsker classes (see Section 2.1.2 in [46]) yields,

R1n =

∫
∇θ cθ
cθ |θ=ψ(β0,β⊤

0 z)
(u){p̂(z) − p(z)}ωn(u, z)dPr(U ,Z)(u, z) + oP (n−1/2).

We can replace ωn(u, z) above by 1(z ∈ Z) if

η2n

∫
|∇θ cθ (u)|θ=ψ(β0,β⊤

0 z)| × |ωn(u, z) − ω∞(u, z)| du dPrZ (z) = o(n−1/2).

This is guaranteed under Assumption 12. Then, under our assumptions, we can apply Fubini’s theorem. This yields∫
∇θ ln cθ |θ=ψ(β0,β⊤

0 z)(u){p̂(z) − p(z)}1(z ∈ Z)dPr(U ,Z)(u, z)

=

∫
{p̂(z) − p(z)}dPrZ (z)

{∫
∇θ ln cθ |θ=ψ(β0,β⊤

0 z)(u) 1(z ∈ Z)dPr(U |Z=z)(u)
}

= 0,



by definition of ψ(β0, β
⊤

0 z), which maximizes E{ln cθ (Uz )|Z = z} with respect to θ , for any z ∈ Z . This shows that R1n =

oP (n−1/2), and is therefore negligible.

C. Study of R2n.Write, from Assumption 11 and with obvious notations,

R2n =
1
n

n∑
i=1

{
∇θ cθ
cθ |θ=ψ̂i

(Ui) −
∇θ cθ
cθ |θ=ψi

(Ui)
}

∇βψ(β, β⊤Zi)|β=β0ωi,n + R′

2n, (B.5)

where

R′

2n =
1
n

n∑
i=1

{∇θ ln cθ |θ=ψ̂i
(Ûi) − ∇θ ln cθ |θ=ψi (Ûi)}∇βψ(β, β⊤Zi)|β=β0ωi,n

−
1
n

n∑
i=1

{∇θ ln cθ |θ=ψ̂i
(Ui) − ∇θ ln cθ |θ=ψi (Ui)}∇βψ(β, β⊤Zi)|β=β0ωi,n

=
1
n

n∑
i=1

{∇
2
θ (ln cθ )|θ=ψi (Ûi) − ∇

2
θ (ln cθ )|θ=ψi (Ui)} (ψ̂i − ψi)∇βψ(β, β⊤Zi)|β=β0ωi,n

+
1
2n

n∑
i=1

{∇
3
θ (ln cθ )|θ=ψ∗

i
(Ûi)∇3

θ (ln cθ )|θ=ψ̃i
(Ui)} (ψ̂i − ψi)(2)∇βψ(β, β⊤Zi)|β=β0ωi,n

=
1
n

n∑
i=1

∇u∇
2
θ (ln cθ )|θ=ψi (U

∗

i ) (Ûi − Ui) (ψ̂i − ψi)∇βψ(β, β⊤Zi)|β=β0ωi,n

+OP

{
max

i∈{1,...,n}
|ψ̂i − ψi|

2
}
,

for some U∗

i , ψ
∗

i and ψ̃i such that |U∗

i − Ui| < |Ûi − Ui|, |ψ∗

i −ψi| < |ψ̂i −ψi| and |ψ̃i −ψi| < |ψ̂i −ψi|. Note that we have
invoked Assumption 9 to bound the last term on the right-hand side in probability. The main term on the right-hand side is
OP (η1nδ1−αn ) = oP (n−1/2) from Assumptions 11 and 6 (mimic the treatment of R′

1n as above). We deduce R′

2n = oP (n−1/2).
Next, invoking Assumptions 6 and 11, the first term on the right-hand side of (B.5) can be rewritten as

1
n

n∑
i=1

{hn(Ui, Zi) − h(Ui, Zi)}ωi,n,

where supu,z |hn(u, z) − h(u, z)| = oP (1), and hn and h both belong to F4 = p.H.F1, as a consequence of Assumption 7. This
is a Donsker class from Example 2.10.10 in [46]. The asymptotic equicontinuity of the Donsker class F4 allows to write

R2n =

∫
{∇θ ln cθ |θ=ψ̂(β0,β⊤

0 z)(u) − ∇θ ln cθ |θ=ψ(β0,β⊤
0 z)(u)} × ∇βψ(β, β⊤z)|β=β0ωn(u, z)dPr(U ,Z)(u, z) + oP (n−1/2).

Decompose ωn(u, z) as ων(u)ωM (z),where ων(u) = 1mink min(1−uk,uk)≥νn , and ωM (z) = 1|z|≤M . The function

φn(z) =

∫ {
∇θ cθ
cθ |θ=ψ̂(β0,β⊤

0 z)
(u) −

∇θ cθ
cθ |θ=ψ(β0,β⊤

0 z)
(u)

}
ων(u)dPr(U |Z=z)(u),

is a function of β⊤

0 z only. This is due to the fact that the distribution of U given Z only depends on β⊤

0 Z, because of the
single-index assumption. With a slight abuse in notations, denote φn(z) = φn(β⊤

0 z). This leads to

R2n =

∫
φn(v)

{∫
∇βψ(β, β⊤z)|β=β0ωM (z)dPr(

Z |β⊤
0 Z

)(z|v)
}
dPrβ⊤

0 Z (v) + oP (n−1/2).

Next, as a consequence of Lemma 8, use that∫
∇βψ(β, β⊤z)|β=β0ωM (z)dPr(

Z |β⊤
0 Z=v

)(z) = 0.

This implies R2n = oP (n−1/2).

D. Study of R3n. By the same reasoning as for R2n, we get

R3n =
1
n

n∑
i=1

{∇θ ln cθ |θ=ψ̂i
(Ui) − ∇θ ln cθ |θ=ψi (Ui)} × {∇βψ̂(β, β⊤Zi)|β=β0 − ∇βψ(β, β⊤Zi)|β=β0}ωi,n + oP (n−1/2).

Due to Assumptions 6 and 9 (see Eq. (B.2)), we obtain R3n = oP (n−1/2). □



B.3. Proof of the asymptotic normality of β̂ (Corollary 3)

First, we need to introduce the way we estimate Ui by pseudo-observations Ûi. Again, additional technical assumptions
are required.

Assumption 13. For every k ∈ {1, . . . , d}, there exists a function ζk ∈ Rd (see Definition 1) such that

sup
θ∈Θ

⏐⏐∂2uk∇θ (ln cθ )(u)
⏐⏐ ≤ ζk(u) and E{Uγk (1 − Uk)γ ζk(UZ ) 1(Z ∈ Z)} < ∞,

for some γ ∈ [0, 1]. Moreover, δ2−γn = o(n−1/2).

The latter assumption is of the same type as Assumption 11. Now, we impose that the estimated conditional margins can
be rewritten as i.i.d. expansions, a rather light requirement in general.

Assumption 14. For every k ∈ {1, . . . , d}, x ∈ R and z ∈ Z , we can write

F̂k(x|z) − Fk(x|z) =
1
n

n∑
j=1

ak,n(Xj, Zj, x, z) + rn(x, z),

for some particular functions ak,n and for some sequence (rn) such that

sup
x∈R

sup
z∈Z

|rn(x, z)| = rn,∞ = oP (n−1/2).

The latter assumption implies that, for every i ∈ {1, . . . , n} and k ∈ {1, . . . , d},

Ûi,k − Ui,k =
1
n

n∑
j=1

ak,n(Xj, Zj, Xi,k, Zi) + rn,i, n1/2 max
i∈{1,...,n}

|rn,i| = oP (1).

Denote an(Xj, Zj,Xi, Zi), or ai,j even shorter, the d-vector whose components are ak,n(Xj, Zj, Xi,k, Zi) for all k ∈ {1, . . . , d}.
In the case of the kernel-based estimates F̂k of Lemma 4, Assumption 14 is satisfied by using s-order kernels K such that

maxkhk = o(n−1/(2s)) and n1/2∏p
k=1hk ≫ na for some a > 0. If hk = n−π for all k ∈ {1, . . . , d}, this necessitates s > p and

π ∈ (1/(2s), 1/(2p)).
Now, we require that the expectation of the previous terms an(Xj, Zj,Xi, Zi) in the expansion tends towards a determin-

istic function sufficiently quickly and uniformly with respect to i ∈ {1, . . . , n}.

Assumption 15. DefineΛψ(β0,β⊤
0 z) = ∇u∇θ (ln cθ )|θ=ψ(β0,β⊤

0 z), and assume that

rn,∞E{|Λψ(β0,β⊤
0 Zi)(Ui)|ωn(Ui, Zi)} = o(n−1/2). (B.6)

Assume that there exists a functionW such that

sup
x∈Rd,z∈Z

|E{an(Xi, Zi, x, z)} − W (z, x)| = Wn,∞ = o(n−1/2),

and such that

Wn,∞E
{⏐⏐⏐Λψ(β0,β⊤

0 Zi)(Ui)W (Zi,Xi).∇βψ(β, β⊤Zi)|β=β0

⏐⏐⏐ωi,n

}
< ∞. (B.7)

Choosing the kernel-based estimates F̂k of Lemma 4, we see that E{an(Xj, Zj, x, z)} = W (z, x) = 0 and Assumption 15 is
automatically satisfied. This is most often the case with parametric marginal models, too.

Moreover, (B.6) and (B.7) are often easily satisfied when E{|Λψ(β0,β⊤
0 Zi)(Ui)| 1(Zi ∈ Z)} < ∞. Note that the Gaussian

copula model does not fulfill the latter condition. Nonetheless, Assumption 15 will be satisfied with a convenient choice of
bandwidths, kernels and trimming sequences; see Appendix B.4.

When Assumption 15 was related to the bias of Ûi, the next one seeks to control its variance.

Assumption 16. Assume v2n = E[|an(X2, Z2,X1, Z1) − E{an(X2, Z2,X1, Z1) |X1, Z1}|
2
] < ∞ and

v2n E{|Λψ(β0,β⊤
0 Zi)(Ui)|2ωi,n}/n = o(1).

We are ready to prove Corollary 3. We use the same notations as in the proof of Theorem 2. Recall that

A2,n =
1
n

n∑
i=1

{∇θ ln cθ |θ=ψi (Ûi) − ∇θ ln cθ |θ=ψi (Ui)}∇βψ(β, β⊤Zi)|β=β0ωi,n,



which can be rewritten as

A2,n =
1
n

n∑
i=1

Λψi (Ui) (Ûi − Ui)∇βψ(β, β⊤Zi)|β=β0ωi,n + OP (δ2−γn ) ≡ A′

2,n + oP (n−1/2),

thanks to a limited expansion and invoking Assumptions 15 and 13. Next, under (B.6), we have

A′

2,n =
1
n2

n∑
j=1

n∑
i=1

Λψi (Ui) ai,j ∇βψ(β, β⊤Zi)|β=β0ωi,n + oP (n−1/2).

The leading term in A′

2,n can be decomposed into A′

21 + A′

22, where

A′

21 =
1
n2

n∑
j=1

n∑
i=1

Λψi (Ui) E(ai,j|Zi,Xi)∇βψ(β, β⊤Zi)|β=β0ωi,n

and

A′

22 =
1
n2

n∑
j=1

n∑
i=1,i̸=j

Λψi (Ui) {ai,j − E(ai,j|Zi,Xi)} ∇βψ(β, β⊤Zi)|β=β0ωi,n.

Due to Assumption 15, Eq. (B.7), we have

A′

21 =
1
n

n∑
i=1

Λψi (Ui)W (Zi,Xi)∇βψ(β, β⊤Zi)|β=β0ωi,n + oP (n−1/2).

Next, observe that the main term of A′

22 is of the form
∑

i<jU(Zi,Xi, Zj,Xj), after symmetrization, where

E{U(Zi,Xi, Zj,Xj)|Zj,Xj} = E{U(Zi,Xi, Zj,Xj)|Zi,Xi} = 0.

So, A′

22 is a degenerate U-process of order 2. It can be easily verified that its expectation is zero and

var(A′

22) = O
{
v2n

n2

∫
|Λψ(β0,β⊤

0 z)(u)|
2
|∇βψ(β, β⊤z)|β=β0 |

2
ωn(u, z) dPr(U ,Z)(u, z)

}
.

Under Assumptions 16, we get A′

22 = oP (n−1/2). We have obtained

A1n + A2n =
1
n

n∑
i=1

ωi,n∇θ ln cθ |θ=ψi (Ui)∇βψ(β, β⊤Zi)|β=β0

+
1
n

n∑
i=1

ωi,nΛψi (Ui).W (Zi,Xi)∇βψ(β, β⊤Zi)|β=β0 + oP (n−1/2) ≡
1
n

n∑
i=1

ωiMi + Bn + oP (n−1/2),

by introducing a bias term Bn =
∑n

i=1(ωi,n − ωi)Mi/n, due to the trimming procedure. Its expectation is denoted bn =

E{(ω1,n −ωi)M1}, and its variance is O(n−1δn). The asymptotic bias is negligible under (19), by recalling Assumption 12, and
then applying Lemma 5. In every case, the result follows from a standard Central Limit Theorem, recalling the expansion of
Theorem 2. □

B.4. Examples (continued)

Here, we analyze the conditions 1 to 16 to obtain the asymptotic normality of β̂ in the case of the copula families in
Section 2.4. The reader will note that all such assumptions can be checked in practical terms, even if such a task may be
slightly boring.

Example 4 ((Continued): The Gaussian Copula). Obviously, Assumptions 5, 9 and 10 are satisfied. This is the case for
Assumption 7 too, becauseΣ ↦→ ln(|Σ |) is Lipschitz under (17) and invoking Example 19.7 in [45].

To deal with Assumption 8, note that p and p̂ are Lipschitz transforms of conditional Kendall’s tau τ (β, β⊤z) and
τ̂ (β, β⊤z), respectively. From Example 19.20 in [45], it is sufficient to show that the functions z ↦→ ∇βτ (β0, β

⊤

0 z) and
z ↦→ ∇β τ̂ (β0, β

⊤

0 z) belong to a Donsker class a.e., assuming the underlying dimension d is two. It follows from Lemma 7 and
from the relation τ (β0, β

⊤

0 z) = −1 + 4
∫
Cβ0 (u|β⊤

0 z)Cβ0 (du|β⊤

0 z) that

∀z∈Z ∇βτ (β0, β
⊤

0 z) = f1(β⊤

0 z) + zf2(β⊤

0 z),

with

f1(v) = −E(Z |β⊤

0 Z = v, Z ∈ Z)
{∫

c0(u, v)Cβ0 (du|v) +

∫
Cβ0 (u|v)c0(du, v)

}
,



f2(v) = Z
{∫

c0(u, v)Cβ0 (du|v) +

∫
Cβ0 (u|v)c0(du, v)

}
,

using the notations of Lemma 7. In a Gaussian copula family, the maps z ↦→ fj(β⊤

0 z) and z ↦→ f ′

j (β
⊤

0 z) are uniformly
bounded on Z . Therefore, ∇βτ (β0, β

⊤

0 z) belongs to the class G = {z ∈ Z → f (β⊤

0 z) + zg(β⊤

0 z), f , g ∈ C(M)} with
C(M) = {f : ∥f ∥∞+∥f ′

∥∞ ≤ M}. The collection C(M) is aDonsker class fromTheorem2.7.1 in van der Vaart andWellner [46].
Moreover, G is Donsker from Examples 2.10.7–2.10.8 in [46].

It is also the case for ∇β τ̂ . Indeed, with the notations of Appendix C, we can write

τ̂ (β, β⊤z) = −1 +
4

n2 f̂ 2β (β⊤z)

n∑
i,j=1

1(Xj ≤ Xi)K̃h̃(β
⊤Zj − β⊤z)K̃h̃(β

⊤Zi − β⊤z).

A differentiation with respect to β easily shows that ∇β τ̂ (β0, β
⊤

0 z) is of the form ∇β τ̂ (β0, β
⊤

0 z) = f̂1(β⊤

0 z) + z f̂2(β⊤

0 z). The
results of Appendix C allow to show that, for j ∈ {1, 2},

sup
z∈Z

|f̂j(β⊤

0 z) − fj(β⊤

0 z)| = OP {h̃2
n + (ln n)1/2n−1/2h̃−3/2

n }

and

sup
z∈Z

|f̂ ′

j (β
⊤

0 z) − f ′

j (β
⊤

0 z)| = OP {h̃2
n + (ln n)1/2n−1/2h̃−5/2

n }.

Therefore, z ∈ Z ↦→ ∇β τ̂ (β0, β
⊤

0 z) belongs to the Donsker class G when nh̃5
n → 0.

Eq. (18) of Assumption 6 is coming from the results of Appendix C, and simple calculations prove that Assumption 11 is
satisfied for every α > 0. Recalling the notations of Appendix C, we have

sup
z∈Z

|τ̂ (β0, β
⊤

0 z) − τ (β0, β
⊤

0 z)| = OP {h̃s̃
+ (ln n)1/2n−1/2h̃−1/2

} = OP (η1n)

and

sup
z∈Z

|∇β τ̂ (β, β⊤

0 z) − ∇β0τ (β0, β
⊤

0 z)| = OP {h̃s̃
+ (ln n)1/2n−1/2h̃−3/2

} = OP (η2n).

To fix the ideas, assume h̃ ∼ n−π̃ , for some π̃ > 0. Then, to satisfy η1nη2n = o(n−1/2), it is sufficient to have 4s̃π̃ > 1, s̃ ≥ 2
and 4π̃ < 1. Recall that we had set δn ∼ n−πs

+ ln2n.n−(1−pπ )/2. To satisfy δ1−αn ηjn = o(n−1/2) for j ∈ {1, 2}, it is sufficient to
have 1 < (1 − α)min(2sπ, 1 − pπ ) + min(2s̃π̃ , 1 − 3π̃ ).

Concerning Assumption 12, it can be verified that the left-hand side of (B.4) isO[δnνn{Φ
−1(νn)}2]. Nonetheless,Φ−1(νn) ∼

−
√
(−2) ln νn, when νn → 0; see [10]. A sufficient condition is then δnνn ln(νn) = o(n−1/2).
Assumptions 14 and 15 are trivially satisfied because we have chosen nonparametric marginal CDFs and we apply

Lemma 4, for which we have seen that we setW (z, x) = 0.
Assumption 13 is the most demanding and cannot be obtained by the same reasoning as for Assumption 12. Actually, we

recall that the former one has been requested only in the proof of Corollary 3 to show that

1
n

n∑
i=1

∇u∇
2
θ (ln cθ )|θ=ψi (U

∗

i ) (Ûi − Ui)2∇βψ(β, β⊤Zi)|β=β0ωi,n = oP (n−1/2),

for some random vectors U∗

i , |U
∗

i − Ui| ≤ |Ûi − Ui|. Due to Assumption 3, it is sufficient to check that

δ2nE{|∇u∇
2
θ (ln cθ )|θ=ψi (Ui)∇βψ(β, β⊤Zi)|β=β0 |ωi,n} = o(n−1/2).

Due to the boundedness of cθ , the latter expectation is less than a constant times∫ Φ−1(1−νn)

Φ−1(νn)
|t| exp(t2/2) dt.

The latter integral behaves as exp[{Φ−1(νn)}2/2]. SinceΦ−1(νn) ∼ −
√
(−2) ln νn, it is sufficient to satisfy δ2n/νn = o(n−1/2).

Usual variance calculations for kernel densities prove that Assumption 16 is truewhen nhp
= n1−pπ

→ ∞, i.e., when pπ < 1.
Gathering all the previous constraints, we can exhibit explicit combinations of parameters. For instance, we can set

s = 2p, s̃ = 4, π = 1/(2s + p), π̃ = 1/9, hn ∼ n−1/(2s+p)
= n−1/5p, h̃n ∼ n−4/9,

for some α < 1/2, implying δn ∼ n−2/5 and we choose νn = n−1/5. Note that we need high-order kernels in general, even in
the bivariate case (p = 2).

Similar reasonings allow to exhibit explicit tuning parameters to manage Clayton and/or Gumbel copula models. They
are left to the reader as an exercise.



Appendix C. Conditional Kendall’s tau

In this section, we show how to check Assumption 6 in general, when the conditional margins are estimated nonpara-
metrically. Incidentally, we prove some theoretical results related to the estimation of conditional Kendall’s tau, that are
valuable per se.

We consider the situation of a d-dimensional random vector X,whose conditional copula is parameterized by τ (β, β⊤z),
the conditional Kendall’s tau coefficient of this vector as defined in (11)when d = 2, and (12)more generally. In otherwords,
we consider the case where ψ(β, β⊤z) = g{τ (β, β⊤z)} for some ‘‘sufficiently regular’’ function g . Indeed, Kendall’s tau are
commonly used for inference purposes of parametric copulas, particularly Archimedean and elliptical copulas. Moreover, as
explained in Section 2.2, (6) and (7) are satisfied in such cases. Finally, we do not suffer from the curse of dimensionality
because conditional Kendall’s tau is that associated to the copula of X knowing β⊤Z .

Introducing a kernel estimator F̂β of Fβ (x|y) = Pr(X ≤ x|β⊤Z = y) as F̂β (x|y) = Ĥβ (x,∞|y) (recall (13)), define

τ̂ (β, β⊤z) =
1

2d − 1

{
−1 + 2d

∫
F̂β (x|β⊤z)F̂β (dx|β⊤z)

}
.

In Lemma 12, we show that the uniform consistency of the conditional Kendall’s tau coefficient is obtained, provided that
we have some convenient convergence rates for F̂β .

Lemma 12. Assume that

sup
x∈Rd,β∈B,z∈Z

|F̂β (x|β⊤z) − Fβ (x|β⊤z)| = OP (εn,0). (C.1)

Then

sup
β∈B,z∈Z

|τ̂ (β, β⊤z) − τ (β, β⊤z)| = OP (εn,0).

Proof. Decompose

(2d
− 1){τ̂ (β, β⊤z) − τ (β, β⊤z)} = 2d

∫
{F̂β (x|β⊤z) − Fβ (x|β⊤z)}F̂β (dx|β⊤z)

+ 2d
∫

Fβ (x|β⊤z){F̂β (dx|β⊤z) − Fβ (dx|β⊤z)}.

The first term is OP (εn,0) due to (C.1). For the second, observe that∫
Fβ (x|β⊤z){F̂β (dx|β⊤z) − Fβ (dx|β⊤z)} = (−1)d−1

∫
{F̂β (x|β⊤z) − Fβ (x|β⊤z)} F (dx|β⊤z),

which is less than supx,β,z |F̂β (x|β⊤z) − Fβ (x|β⊤z)|, and we use again (C.1). □

Lemma 12 yields some tools to verify the first part of Assumption 6, if one assumes that the function g is regular enough
(i.e., Hölder with some high enough Hölder exponent). Similarly, we can derive the uniform consistency of∇ j

β τ̂ for j ∈ {1, 2},
which allows to check the remaining conditions in Assumption 6.

Lemma 13. Assume that

sup
x∈Rd,β∈B,z∈Z

|∇
j
β F̂β (x|β

⊤z) − ∇
j
βFβ (x|β

⊤z)| = OP (εn,j), (C.2)

for j ∈ {1, 2}, and that

max
j∈{1,2}

∫ ⏐⏐⏐∇ j
βFβ (dx|β

⊤z)
⏐⏐⏐+ ⏐⏐⏐∇ j

β F̂β (dx|β
⊤z)
⏐⏐⏐ ≤ C0,

for some positive constant C0. Then

sup
β∈B,z∈Z

|∇β τ̂ (β, β⊤z) − ∇βτ (β, β⊤z)| = OP {max(εn,1, εn,0)}

and

sup
β∈B,z∈Z

|∇
2
β τ̂ (β, β

⊤z) − ∇
2
βτ (β, β

⊤z)| = OP {max(εn,2, εn,1, εn,0)}.

Proof. This is a consequence of applying the ∇-operator to τ̂ (β, β⊤z), and of the compactness of Z . □



The next step is to verify that, under reasonable conditions, (C.1) and (C.2) hold. To this aim, let us introduce some
assumptions.

Assumption 17. Let K̃ denote a univariate symmetric kernel function of order s̃, s̃ ≥ 2. It is twice continuously differentiable
with bounded derivatives up to order 2. Moreover, h̃n denotes a bandwidth sequence, where h̃n = O(n−a) for some a > 0
and nh̃n → ∞.

Note that, in general, the latter triplet (K̃ , h̃, s̃) is different from the similar quantities (K , h, s) that have been invoked to
define the pseudo-observations Ûi; see Lemma 4.

Assumption 18. Let fβ (y) denote the density of β⊤Z evaluated at point y. Assume that infβ∈B,z∈Z infyfβ (y) > c, for some
c > 0.Moreover, assume that fβ is s-times continuously differentiable, with uniformly bounded derivatives.

The latter assumption is satisfied most of the time, because β⊤z belongs to a compact subset when β ∈ B and z ∈ Z .
For instance, assume the arguments y above belong to a fixed interval [a, b] and that Z follows a Gaussian N (0,Σ). Then
β⊤Z ∼ N (0, β⊤Σβ) and fβ (y) = exp{−y2/2(β⊤Σβ)}/(

√
2πβ⊤Σβ). Since β⊤Σβ belongs to a compact [c, d], c > 0, the

latter density is larger than exp{−b2/(2d2)}/(
√
2πd) > 0.

In the single-index literature, some authors relaxed this assumption, by only assuming infz infyfβ0 (y) > c. Nevertheless,
Assumption 18 requires to introduce a trimming procedure, in order to avoid parts of the distribution for which some
fβ (β⊤Zi) are too close to zero. Such trimming procedures (generally working in two-steps), that can be extended straight-
forwardly in our case, have been investigated in detail for example in Lopez et al. [28].

Let A denote a generic set of functions with envelope F . For a probability measure Q, let N (ε,A, ∥ · ∥2,Q) denote the
number of L2(Q)-balls required to cover the set of functions A, and

N(ε,A) = sup
Q:∥F∥2,Q<∞

N (ε∥F∥2,Q,A, ∥ · ∥2,Q).

Assumption 19. A is a class of functions bounded by 1 such that N(ε,A) ≤ Cε−ν .Moreover, for φ ∈ A, letmφ(y) = E{φ(X,
Z)|β⊤Z = y}. Assume that the functions mφ are twice continuously differentiable, and their derivatives up to order 2 are
upper bounded by some finite constantM that does not depend on φ.

We first state Lemma 14, that yields consistency rates for kernel weighted sums.

Lemma 14. Let L denote a class of functions satisfying Assumption 19. Under Assumption 17, we have

1

nh̃
sup
λ∈L

sup
β∈B,z∈Z

⏐⏐⏐⏐⏐
n∑

i=1

λ(Xi, Zi)K̃
(
β⊤Zi − β⊤z

h̃

)
− E

{
λ(Xi, Zi)K̃

(
β⊤Zi − β⊤z

h̃

)}⏐⏐⏐⏐⏐ = OP {(ln n)1/2n−1/2h̃−1/2
}.

Proof. Let

B = sup
β,z,λ

⏐⏐⏐⏐⏐
n∑

i=1

λ(Xi, Zi)K̃
(
β⊤Zi − β⊤z

h̃

)
− E

{
λ(Xi, Zi)K̃

(
β⊤Zi − β⊤z

h̃

)}⏐⏐⏐⏐⏐ ,
and

Bε = E

{
sup
β,z,λ

⏐⏐⏐⏐⏐
n∑

i=1

εiλ(Xi, Zi)K̃
(
β⊤Zi − β⊤z

h̃

)⏐⏐⏐⏐⏐
}
,

where (εi)1≤i≤n are iid Rademacher variables. Due to Proposition 9, we have

Pr {B ≥ A1(Bε + t)} ≤ 2[exp{−A′

2t
2/(nh̃)} + exp(−A2t)], (C.3)

where A′

2 is a constant. Indeed, since the functions λ are uniformly bounded by 1,

sup
β,z,λ

var
{
λ(X, Z)K̃

(
β⊤Z − β⊤z

h̃

)}
= O(h̃).

Next, observe that the class of functions

LK̃ =

{
g : Rd

× Z → R, (x, z) ↦→ λ(x, z)K̃
(
β⊤z − β⊤u

h̃

)
: u ∈ Z, β ∈ B, h̃ ∈ R+

}
,

satisfies the assumptions of Proposition 10 with σ 2
= O(h) and that, for some C and ν,

N(ε,LK̃ ) ≤ Cε−ν . (C.4)



The property (C.4) can be obtained from the following: Lemma 22 in Nolan and Pollard [31] shows that N(ε,K) ≤ C2ε
−ν2 ,

where

K =

{
(x, z) ∈ Rd

× Z ↦→ K̃
(
β⊤z − β⊤u

h̃

)
: u ∈ Z, β ∈ B, h̃ ∈ R+

}
.

Using Assumption 19 and Lemma A.1 in Einmahl and Mason [13], we get that LK̃ = LK satisfies (C.4).
Therefore, we can apply Proposition 10 to deduce that

Bε ≤ A′n1/2h̃1/2(− ln h̃)1/2 = A′′n1/2h̃1/2(ln n)1/2. (C.5)

It follows from (C.5) that, for t1 > 2A1A′′,

Pr{B ≥ t1n1/2h̃1/2(ln n)1/2} ≤ Pr{B ≥ A1Bε + t1n1/2h̃1/2(ln n)1/2/2}.

Applying (C.3) with t = t1n1/2h̃1/2(ln n)1/2/(2A1), we get

Pr{B ≥ t1n1/2h̃1/2(ln n)1/2} ≤ 2[exp{−A′

2t
2
1 ln n/(4A2

1)} + exp{−A2t1n1/2h̃1/2(ln n)1/2/(2A1)}],

and the result follows. □

This lemma is the cornerstone of Lemma 15, which ensures consistency rates for F̂β and its derivatives.

Lemma 15. Let A denote a class of functions satisfying Assumption 19. Then, under Assumptions 17 and 18,

sup
φ∈A

sup
β∈B,z∈Z

⏐⏐⏐⏐∫ φ(x, z){F̂β (dx|β⊤z) − Fβ (dx|β⊤z)}
⏐⏐⏐⏐ = OP {h̃s̃

+ (ln n)1/2n−1/2h̃−1/2
}.

Proof. Write

m̂φ(β⊤z) =

∫
φ(x, z)F̂β (dx|β⊤z) =

1

nh̃f̂β (β⊤z)

n∑
i=1

φ(Xi, Zi)K̃
(
β⊤Zi − β⊤z

h̃

)
,

where

f̂β (β⊤z) =
1

nh̃

n∑
i=1

K̃
(
β⊤Zi − β⊤z

h̃

)
,

is an estimator of the density fβ (β⊤z) of β⊤Z evaluated at β⊤z. Let

m̂φ(β⊤z) =
1

nh̃

n∑
i=1

φ(Xi, Zi)K̃
(
β⊤Zi − β⊤z

h̃

)
= m̂φ(β⊤z)f̂β (β⊤z),

and mφ(β⊤z) = mφ(β⊤z)fβ (β⊤z). It follows from Lemma 14 that

sup
β,z,φ

|m̂φ(β⊤z) − E{m̂φ(β⊤z)}| + sup
β,z

|f̂β (β⊤z) − E{f̂β (β⊤z)}| = OP

{
(ln n)1/2

n1/2h̃1/2

}
.

Moreover, using classical arguments on kernel estimators (and Assumptions 19 and 17), we have

sup
β,z,φ

|E{m̂φ(β⊤z)} − mφ(β⊤z)| + sup
β,z

|E{f̂β (β⊤z)} − fβ (β⊤z)| = O(h̃s̃).

The result of the lemma follows from the fact that the density fβ (β⊤z) is bounded away from zero by Assumption 18. □

Lemma 15 allows to verify Condition (C.1) by considering φ(x, z) = 1(x ≤ x0), for some constant vectors x0. This shows
that, in this case, εn,0 = h̃s̃

+(ln n)1/2n−1/2h̃−1/2. It also permits to obtain the uniform consistency rates for∇
j
β F̂β for j ∈ {1, 2},

with

εn,1 = h̃s̃
+

(ln n)1/2

nh̃3/2
, εn,2 = h̃s̃

+
(ln n)1/2

nh̃5/2
.

Indeed,

∇βm̂φ(β⊤z) =
1

nh̃2

n∑
i=1

1(Xi ≤ x) (Zi − z)K̃ ′

(
β⊤Zi − β⊤z

h̃

)
,

and the convergence of this term can be studied using Lemma 15, but replacing K̃ by K̃ ′, and setting φ(X, Z) = 1(X ≤

x) (Z − z). The latter function is indexed by (x, z) that lives into Rd
×Z , defining the convenient classA to apply Lemma 15.

The other terms obtained by differentiation can be studied in the same way.



Hence, the latter results allow to verify whether Assumption 6 holds. Indeed, under some (light) conditions of regularity,
we have obtained that

sup
β∈B,z∈Z

|τ̂ (β, β⊤z) − τ (β, β⊤z)| = OP {h̃s̃
+ (ln n)1/2n−1/2h̃−1/2

},

sup
β∈B,z∈Z

|∇β τ̂ (β, β⊤z) − ∇βτ (β, β⊤z)| = OP {h̃s̃
+ (ln n)1/2n−1/2h̃−3/2

},

and

sup
β∈B,z∈Z

|∇
2
β τ̂ (β, β

⊤z) − ∇
2
βτ (β, β

⊤z)| = OP {h̃s̃
+ (ln n)1/2n−1/2h̃−5/2

}.
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