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a b s t r a c t 

Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a ge- 

netic relationship between these complex organic molecules and the simple organic molecules detected

in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the trans- 

formations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we

report results of hydrothermal alteration experiments conducted on a common constituent of interstellar

ice analogs, Hexamethylenetetramine (HMT – C 6 H 12 N 4 ). We submitted HMT to asteroidal hydrothermal 

conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were 

characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X- 

ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved

into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds ( > 150

species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aro- 

matic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable

through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation,

formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study

demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent

bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially

leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity

of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal

alteration.
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. Introduction

Chondrite parent bodies accreted a diversity of materials, in-

luding icy grains, minerals and organic molecules ( Aléon, 2010;

oogert et al., 2015; Herbst and van Dishoeck, 2009; Remusat,

016; Remusat et al., 2009, 2006; Scott and Krot, 2007 ). Carbona-

eous chondrites (CC) contain up to 4 wt% of organic matter (OM),

ominated by an insoluble organic matter fraction (IOM – 75 to

0 wt%) associated with a minor fraction of soluble organic mat-

er (SOM – 10–25 wt%). While the SOM is composed of a diver-

ity of small organic molecules (such as carboxylic acids, amino

cids, nucleobases, aliphatic and polycyclic aromatic hydrocarbons,

ugars,…), the IOM consists in high molecular weight molecules

ich in hetero-elements (N, S, O) made of small aromatic units and
∗ Corresponding author.

E-mail address: vassilissa.vinogradoff@mnhn.fr (V. Vinogradoff).

e  

a  

t  
hort aliphatic chains ( Alexander et al., 2007; Derenne and Robert,

010; Orthous-Daunay et al., 2013; Remusat et al., 2005b, 2005a;

inogradoff et al., 2017 ). 

The origin of chondrite OM remains the subject of intense de-

ates, in particular because this mixture of compounds, likely com-

ng from different sources, may have undergone several episodes

f evolution ( Aléon, 2010; Alexander et al., 2017, 2007; Le Guil-

ou et al., 2014; Remusat et al., 2010; Yabuta et al., 2007 ). Or-

anic molecules may form through different processes in various

strophysical environments including molecular clouds, circumstel- 

ar envelopes and protoplanetary disks ( Boogert et al., 2015; Caselli

nd Ceccarelli, 2012; Herbst and van Dishoeck, 2009 ). Pre-accretion

rganic synthesis may have occurred through plasma-induced con-

ensation reactions at elevated temperatures (up to 10 0 0 K) ( Kuga

t al., 2015; Morgan et al., 1991; Sagan and Khare, 1979; Saito

nd Kimura, 2009 ), through gas-grain reactions (Fischer–Tropsch-

ype process for instance) at moderated temperatures ( < 600 K)

https://doi.org/10.1016/j.icarus.2017.12.019
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( Anders et al., 1973; Llorca and Casanova, 20 0 0; Nuth et al.,

2008 ) or through irradiation-driven and thermal-driven reactions

within ices, usually on silicate grains, at low temperature ( < 280 K)

( Allamandola et al., 1988; Bernstein et al., 1995; Ciesla and Sand-

ford, 2012; Laurent et al., 2015; Muñoz Caro and Schutte, 2003;

Theulé et al., 2013; Vinogradoff et al., 2013 ). 

In addition to such diversity of possible sources for OM, a num-

ber of mineralogical studies of CC have pointed out that most par-

ent bodies underwent hydrothermal alteration and metamorphism

( Brearley, 20 06; Keil, 20 0 0; Mcsween, 1979 ). While the impact of

hydrothermal processes on mineral phases has been well identified

and constrained (e.g. formation of phyllosilicates, carbonates and

sulfides), it remains a subject of investigations for OM ( Alexander

et al., 2014, 2007; Burton et al., 2012; Cody et al., 2011; Cody and

Alexander, 2005; Glavin et al., 2010; Le Guillou et al., 2014; Martins

and Sephton, 2009; Orthous-Daunay et al., 2013; Remusat et al.,

2010; Vinogradoff et al., 2017; Yabuta et al., 2017 ). The present

study aims at experimentally constrain the impact of hydrother-

mal alteration on a molecule that is typically formed in interstellar

ice analogs. 

Ice experiments are conducted to simulate the evolution pro-

cesses of the interstellar ice-mantled dust from early molecular

cloud phase to planetary disk phase ( Allamandola et al., 1988;

Bernstein et al., 1995; Muñoz Caro and Schutte, 2003 ). They are

classically performed by irradiation (usually at 10 K) with ul-

traviolet light (UV) or charged particles, and/or by warming of

ice mixtures composed of water, methanol and ammonia. When

warmed up to room temperature, a refractory organic residue

forms. The main product is hexamethylenetetramine molecule

(HMT, C 6 H 12 N 4 ) which can represent up to ∼50 wt% of the residue

as determined by infrared spectroscopy ( Bernstein et al., 1995; Cot-

tin et al., 2001; Muñoz Caro and Schutte, 2003; Vinogradoff et al.,

2015, 2013, 2011 ). Of note, irradiation itself is not required to form

HMT. The detailed mechanism of HMT formation shows that the

molecule is actually formed during the heating of the ice ana-

log from three molecules: formaldehyde, ammonia and formic acid

( Vinogradoff et al., 2012 ), which are molecules commonly observed

in interstellar ices of molecular clouds and young stellar objects

( Boogert et al., 2008; Gibb et al., 2004 ). Although HMT forms at

relatively high temperature in laboratory experiments (280 K), it

has been suggested that on longer timescales, it may form at tem-

peratures as low as 200 K in protoplanetary or cometary environ-

ments ( Vinogradoff et al., 2013 ). HMT has not been observed in as-

trophysical environments because it does not have rotational mode

for gas phase detection and because its IR bands are overlapped

with silicate bands in solid phase ( Bowey et al., 1998 ). 

There are several scenarios that could account for the ac-

cretion of HMT in chondrites. First, if HMT precursors-bearing

ices were heated above 200 K in the protoplanetary disk, HMT

might form ( Vinogradoff et al., 2015 , 2013 ). Above 200 K, the wa-

ter is sublimated but HMT can remain stable up to 40 0–50 0 K

( Vinogradoff et al., 2012 ), absorbed onto silicate grains or as in-

dividual solid grains for instance. HMT molecules could have then

survived in the protoplanetary disk and may have been accreted

on asteroids. Another possibility is that ice mixtures containing

water and the HMT precursors were directly co-accreted in as-

teroids ( Le Guillou and Brearley, 2014 ). Over the course of the

warming of the asteroids, at temperature below the water melting

point ( < 250–270 K), reactions similar to the one observed in an-

nealing ice experiments could occur and lead to the formation of

HMT, at the expense of formaldehyde and ammonia. Given that up

to 15 wt% of water is present in chondrites, if HMT precursors are

indeed associated with water ice, it is possible that a significant

amount of HMT could be formed in the very early stages of the

asteroids life. In any case, the refractory organic residues of inter-

stellar ice experiments, including HMT, are likely to be present in
rimitive bodies ( Caselli and Ceccarelli, 2012; Ciesla and Sandford,

012; Danger et al., 2016; Gudipati et al., 2015 ). 

Here, we use HMT as a representative, simple molecule, result-

ng from interstellar ice evolution. We conducted experiments for

ifferent durations (up to 31 days) under hydrothermal conditions

ypical of those that existed on asteroids, i.e. at 150 °C (423 K) un-

er alkaline pH ( Brearley, 2006 ). Both soluble and insoluble exper-

mental products were characterized by gas-chromatography cou-

led to mass spectrometry (GC–MS), Fourier transform infrared

pectroscopy (FTIR) and synchrotron-based X-ray absorption near

dge structure (XANES) spectroscopy. Altogether, the present study

llustrates the diversity of molecules that can derive from a simple

oluble organic molecule under hydrothermal conditions, includ-

ng insoluble macromolecules. We discuss the significance of the

resent results for the origin of chondritic OM. 

. Methods

.1. Hydrothermal experiments and products extraction 

Hydrothermal experiments were carried out within Parr© PTFE

eactors maintained at 150 °C ∼ 5 bars (saturation vapor pressure)

or different durations (2, 7, 20 and 31 days). HMT powder ( > 99% –

igma Aldrich) was mixed with bi-distilled water, previously mixed

ith KOH to adjust the pH at 10, to obtain solutions at 0.7 M

mol L −1 ). To note, this concentration is below the saturation point

f HMT in water at room temperature (6 mol L −1 ). Bi-distilled wa-

er solution at pH 10 was degassed with argon before experiments.

 mL of these solutions were introduced into 12 mL PTFE reactors.

TFE reactors were closed under argon atmosphere ( > 99.999%; Air

iquide, ALPHAGAZ 1) in a glove box ( < 0.5 ppm O 2 ). 

At the end of each experiment, solutions were centrifuged in

ppendorf bio-pur tubes (2 mL) for 6 min at 12,0 0 0 rpm. The pH at

he end of each experiments was around 10. These solutions were

irectly analyzed by XANES spectroscopy while liquid-liquid ex-

ractions were performed using 0.4 mL of dichloromethane (DCM)

n 0.4 mL aliquots to perform GC–MS analyses ( Fig. 1 ). Of note, no

rganic compounds were observed after 31 day-long blank experi-

ents carried out with pure bi-distilled water. 

An insoluble, dark brown solid material was recovered for ex-

eriments longer than 7 days. This IOM was washed twice with

ater, methanol, and DCM/methanol (1:1 vol/vol), as well as with a

F/HCl solution (3:1 vol/vol, 12 M/3 M) for 24 h. The IOM were then

ried in an oven for 4 days at 60 °C under primary vacuum be-

ore bulk elemental composition analyses and infrared and XANES

pectroscopy experiments ( Fig. 1 ). 

.2. Elemental analysis 

The hydrogen, nitrogen and carbon contents of the IOM were

etermined using the Thermo-Fisher Flash 20 0 0 CHNS-O analyzer

perating at ISTeP (Paris, France). A mass of 0.7 mg of IOM was

ombusted under oxygen/helium flux at 960 °C. N 2 , CO 2 , and H 2 O

eleased by combustion were separated by a chromatography col-

mn and quantified using a thermal conductivity detector. Sul-

hanilamide (C 6 H 8 N 2 O 2 S) was used as a standard. 

.3. Gas chromatography–mass spectrometry 

Gas Chromatography–Mass Spectrometry (GC–MS) analyses

ere carried out using the Agilent Technologies 6890N gas chro-

atograph coupled with an Agilent Technologies 5973 network

ass spectrometer operating at METIS (Paris, France). The capillary

olumn is a RTX-5Si/MS (30 m ×0.25 mm, 0.5 μm film) coated with

hemically bound Restek (low-polarity phase, suitable for semi-

olatile, hydrocarbon, amine, phenol compounds). The temperature

https://doi.org/10.1016/j.icarus.2017.12.019


Fig. 1. Schematic representation of the preparation of experimental residues for GC–MS, IR and XANES analyses.
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njection was 80 °C in splitless mode and the GC oven program

tarted at 50 °C–320 °C at 4 °C/min with He as carrier gas. The sol-

ent delay was as short as possible (3 min) and no derivatization

as performed. Measurements were performed using an electron

nergy of 70 eV, an ion source temperature of 220 °C and a scan-

ing rate of 2.24 scan s −1 from 35 to 700 m/z . Products were iden-

ified using the NIST database. Data processing was done using

he OpenChrom software, namely subtraction of the solvent back-

round (DCM) taken at 3.8 min followed by an automatic peak de-

ection using the mass selective detector (MSD) first derivative pro-

ess (signal to noise ratios > 3) and then each peak is integrated

sing the MSD integrator option. This procedure allowed quantify-

ng a molecular size index in our experiments that corresponds to

he ratio between the integrated area of all peaks appearing be-

ween 25 and 54 min (hereafter called “heavy compounds”, HC)

nd the integrated area of all peaks appearing between 5 and

5 min (hereafter called “light compounds”, LC). 

.4. FTIR 

FTIR analyses were performed using the Vertex 70 spectrometer

Bruker) operating at the MNHN (Paris, France). Less than 0.5 mg

f powdered sample was pressed onto the diamond crystal surface

sing a single reflection in the attenuate total resonance (ATR) de-

ice, ATR-quest (Specac). The absorption of the infrared beam by

he samples was measured from 370 to 40 0 0 cm 

−1 with a spectral

esolution of 4 cm 

−1 . Spectra were accumulated 96 times (vs . 128

or the background to ensure a good signal to noise ratio). Each IR

pectrum was corrected with a baseline generated by the Bruker

pus software, integrated and normalized to its total area. 

.5. XANES spectroscopy 

.5.1. XANES data acquisition procedure 

XANES data were collected on the 10ID-1 STXM beamline

 Kaznatcheev et al., 2007 ) at the Canadian Light Source (CLS) and

n the HERMES STXM beamline ( Belkhou et al., 2015; Swaraj et al.,

017 ) at the synchrotron SOLEIL. At CLS, a 100 nm thick titanium

lter is used to remove the contribution of second order light
hile at SOLEIL, beamline optical elements are exposed to a con-

inuous flow of pure O 2 to remove carbon contamination. Micro-

cope chambers were pumped down to less than 100 mTorr af-

er sample insertion. Energy calibration is done before measure-

ents using the well-resolved 3p Rydberg peak of gaseous CO 2 at

94.96 eV for the C K-edge and using the 1s → π ∗ photo-absorption

esonance of gaseous N 2 at 400.8 eV for the N K-edge. 

For the present study, samples were deposited on Si 3 N 4 win-

ows (50 nm thick membrane). Image stacks were collected with

nergy increments of 1 eV over the 250–450 eV energy range

o measure N/C values, following the procedure described in

lleon et al., (2015) . Additional image stacks were collected with

nergy increments of 0.1 eV over the carbon (270–350 eV) and the

itrogen (390–420 eV) absorption ranges to gain insights on carbon

nd nitrogen speciation. Data were collected with a dwell time of

ne millisecond per pixel to prevent irradiation damages as recom-

ended by Wang et al. (2009) and processed using the aXis20 0 0

oftware (ver. 2.1n). The C- and N-XANES spectra shown here cor-

espond to homogeneous areas of several tens of squared microm-

ters each. 

.5.2. XANES data deconvolution procedure 

The same deconvolution procedure in three steps was applied

o all C-XANES spectra: i) background subtraction, ii) normalization

o the total carbon content, and iii) spectral fitting using Gaussian

unctions. Background subtraction consisted in the subtraction of a

inear regression over the 270–282 eV energy range. Then, follow-

ng Barré et al. (2016) and Alleon et al. (2017) , C-XANES spectra

ere normalized to their area between 280 eV and 291.5 eV and

-XANES spectra were normalized to their area between 395 and

06.5, thereby ensuring chemical consistency (a spectrum showing

 more prominent absorption at a given energy must have a less

ntense absorption at other energies). 

After normalization, Gaussian functions with a given full-width

t half maximum (0.6 eV) were used for C-XANES signal deconvo-

ution. Their positions were fixed following Urquhart et al. (1999),

hez et al. (2003) and De Gregorio et al. (2010) (see Table 1 ).

he height of the Gaussian curves were used as a proxy of the

bundance of the functional group absorption. Due to overlapping

nergies of several resonances, absorption peaks at the N K-edge

https://doi.org/10.1016/j.icarus.2017.12.019


Table 1

Positions and peak attributions for the deconvolution of the C-XANES

spectra, from Urquhart et al. (1999) , Dhez et al. (2003) and De Gregorio

et al. (2010) .

X-Ray absorption (eV) Functional groups

284.4 Quinones

284.7; 285; 285.4 Aromatics; olefins

285.8 Imines

286.2; 286.6; 286.8 Ketones; phenols; nitriles

287.6; 287.9 Aliphatics

288.2 Amides

288.55 Carboxyls; esters; acetals

289 Aldehydes

289.4 Hydroxyls

289.9 Aliphatics; carbamoyls

290.3 Carbonates
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cannot be univocally assigned to given functional groups. Still, the

N local coordination can be partly inferred based on the energy

of absorption features: imine, nitrile and pyridinic N will generate

absorption features below 400 eV, while absorption features above

400 eV will indicate the presence of amide, nitro and pyrrolic N

( Leinweber et al., 2007; Myneni, 2002 ). 

Following previous studies ( Alleon et al., 2016b, 2017 ; Bernard

et al., 2012, 2015 ; Le Guillou et al., 2013, 2014; Vinogradoff

et al., 2017 ), semi-quantitative parameters were extracted from

the XANES spectra: 1) the aromatic/olefin/imine index that corre-

sponds to the relative content of Aromatic C, C 

= C and C 

= N (i.e.
Fig. 2. XANES spectra of residual solutions. (a) XANES spectra of the starting HMT solutio

performed at 150 °C (spectra are normalized to the carbon content). (b,c) C-XANES spectra

content. Attribution of absorption features: 285 eV: aromatics/olefins; 285.8 eV: imines; 

amides/carboxyls/esters/acetals; 289.5 eV: hydroxyls; 289.9 eV: amines/aliphatics/carbam

eV: pyrroles.
he sum of the areas of the Gaussian functions used to decon-

olve the absorption signal in the range 284.4–285.8 eV), 2) the

etone/phenol/nitrile index that corresponds to the relative con-

ent of C 

= O, Aromatic-OH and C 

≡N (i.e. the sum of the areas of

he Gaussian functions used to deconvolve the absorption signal in

he range 286.2–286.8 eV) and 3), the amide/carboxyl/ester/acetal

ndex that corresponds to the relative content of N 

–C 

= O and

OOH/COOR (i.e. the sum of the areas of the Gaussian functions

sed to deconvolve the absorption signal in the range 288.2–

288.55 eV). These values carry a degree of uncertainty of ± 10%. 

. Results

.1. Evolution of the soluble compounds 

.1.1. XANES data 

XANES spectra of the starting and of the residual solutions were

ollected prior any extraction. The C-XANES spectrum ( Fig. 2 b) of

he starting HMT solution (0.7 M) exhibits a broad absorption band

entered at 290 eV, attributed to the 1 s → σ ∗ electronic transitions

f amine (C 

–N) groups ( Myneni, 2002; Solomon et al., 2009 ). The

-XANES spectrum ( Fig. 2 c) of the starting HMT solution exhibits

 broad absorption feature centered at 406.8 eV with two peaks at

99.2 and 401.2 eV. Given the HMT structure, these peaks might

e assigned to tertiary amines functions (N 

–(CH 2 ) 3 ) involved in a

yclic structure. Although HMT exhibits an initial N/C value of 0.57,

he mean N/C value of all the residual solutions is 0.27, thereby

ighlighting a chemical evolution of HMT during experiments. 
n (0.7 M) and of the solutions after 2, 7, 20, 31 day-long hydrothermal experiments

 normalized to the carbon content and N-XANES spectra normalized to the nitrogen

286.2–286.8: ketones/phenols/nitriles; 287.2–287.9 eV: aliphatics; 288.2–288.7 eV:

oyls; 398.8–399.9 eV: imines/nitriles/pyridinic N; 401–401.5: amides; 401.5–402.5

https://doi.org/10.1016/j.icarus.2017.12.019


Fig. 3. Evolution of the aromatic/olefin/imine index, the ketone/phenol/nitrile in- 

dex, the amide/carboxyl/ester/acetal index and the molecular size index of the so- 

lutions as a function of experimental duration.
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After 2 days at 150 °C, the residual solution exhibits a C-XANES

pectrum with two main peaks at 288.4 and 289.5 eV, attributed to

he presence of amide (N 

–C 

= O), acetal (O 

–C 

–O), ester (O 

= C 

–O-R)

nd/or carboxyl (O 

= C 

–OH) groups and to the presence of hydroxyl

roups (C 

–OH), respectively ( Lessard et al., 2007; Robin et al., 2015;

ouchon and Bernard, 2015 ). Two additional, less intense absorp-

ion features can be observed at 285.8 eV, corresponding to 1s →
∗ electronic transitions of imine (C 

= N) groups, and at 286.6 eV

ttributed to 1 s → π ∗ electronic transitions of ketone (C 

= O), phe-

ol (Ar –OH) and/or nitrile (C 

≡N) groups ( Dhez et al., 2003; Hitch-

ock et al., 2005 ). The N-XANES spectrum of this residual solution

xhibits two peaks at 398.9 and 399.9 eV, likely corresponding to
ig. 4. Gas chromatograms of the starting HMT solution (0.7 M) and of the DCM extra

ormamide (1). Peaks between 5–25 min of the 31 days extract have been assigned to kno
s → π ∗ electronic transitions of imine (C 

= N), nitrile (C 

≡N) and/or

yrrole/pyrimidine groups and a peak at 401.2 eV, related to the

ontribution of 1s → π ∗ transitions in amine and/or amide groups

 Alleon et al., 2017, 2016a; Leinweber et al., 2007; Myneni, 2002 ). 

With increasing experimental duration (from 2 to 20 days),

he relative concentrations of aromatic/imine carbons and

etone/phenol/nitrile carbons significantly increase (peaks 

t 285.8 and 286.6 eV) while the relative concentrations of

mide/carboxyl/ester/acetal and hydroxyl carbons slightly de- 

rease (peaks at 288.4 and 289.5 eV) in the residual solution

 Figs. 2 and 3 ). Consistently, the contribution of the broad ab-

orption feature at 406.8 eV decreases while the contributions

f the imine/nitrile/pyrrole/pyrimidine groups (peaks at 398.9

nd 399.9 eV) and of the amide/amine/pyrazole groups (peaks at

01.2 and 401.8 eV) increase. After 20 days, the mean molecular

omposition of the organic compounds in solution stops evolving

 Fig. 3 ). 

.1.2. GC–MS data 

GC–MS data were collected on the DCM liquid-liquid extracts.

he gas chromatogram of the DCM extract ( Fig. 4 ) of the start-

ng HMT solution (0.7 M) only displays the HMT peak at 20.73 min

 m/z 140). This peak is still observed after 2 and 7 days (very small

eak) of hydrothermal alteration but no more after 20 days, indi-

ating that the total degradation of HMT takes between 7 and 20

ays at 150 °C ( Fig. 4 ). Concomitant with the degradation of HMT,

he number of soluble organic compounds (number of peaks in

he chromatogram) increases with increasing experimental dura-

ion ( Fig. 4 ). 

Light compounds -LC- with m/z up to 136 can be identified

etween 5 and 25 min and correspond mainly to three fami-

ies of nitrogen-rich molecules ( Fig. 4 , Table 2 ): pyridine deriva-

ive molecules (6-membered ring molecules - C 5 H 5 N ± alkyl sub-

tituents), imidazole/pyrazole derivative molecules (5-membered 

ing molecules – C 3 H 4 N 2 ± alkyl substituents), and pyrazine deriva-

ive molecules (6-membered ring molecules – C 4 H 4 N 2 ± alkyl sub-

tituents). Oxygen-bearing products are also observed, such as

 

–N-dimethyl formamide (C 3 H 7 NO – first peak at 5.37 min) that

orm during the first 2 days of hydrothermal alteration, and pyra-

olidinones and imidazolidinones (i.e. pyrazoles or imidazoles with

n additional carbonyl group) that require longer times to form

they are observed after 20 days) ( Table 2 ). 
cts after hydrothermal alteration for 2, 7, 20 and 31 days normalized to the N,N

wn molecules ( Table 2 ). Stars ( ∗) indicate contaminations from the GC–MS column. 
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Table 2

Nature of the organic molecules identified using GC–MS within the DCM extract of the HMT solution (0.7 M) after 31 days of hy- 

drothermal alteration at 150 °C. The retention time, the molecular ion ( m/z ), the m/z of the main fragments (sorted by decreasing

intensity – m/z ) and their possible assignments are reported for each “light compound” observed.

Number Retention time [M + ] m/z 

Main fragments ∗

m/z

Possible assignment

Name Formula

1 5.37 73 44,42 N-N-dimethyl formamide C 3 H 7 NO

2 6.18 98 97,42,56 C2-methyl, 2-pyrazoline/imidazoline, C 5 H 10 N 2

3 6.65 96 95,81,68,54 C2-alkyl imidazole or pyrazole C 5 H 8 N 2

4 6.94 83 56 1-methyl-1H-1,2,4-triazole C 3 H 5 N 3

5 7.48 93 92,66,65,39 Pyridine, 3-methyl C 6 H 7 N

6 7.56 96 98,42,68,54 C2-alkyl imidazole or pyrazole C 5 H 8 N 2

7 7.82 112 97,111,42,56 2-Pyrazoline, 1,3,4-trimethyl- C 6 H 12 N 2

8 8.73 112 97,111,83,42 2-Pyrazoline, 3-ethyl,1-methyl C 6 H 12 N 2

9 9.07 108 42,40,39 Pyrazine, 2,6-dimethyl C 6 H 8 N 2

10 9.22 82 54,42,81,40 1H-imidazole, 1-methyl C 4 H 6 N 2

11 9.39 110 95,109,42 C3-alkyl imidazole or pyrazole C 6 H 10 N 2

12 10.1 107 106,79,66,92 C2-alkyl pyridine C 7 H 9 N

13 10.18 110 109,68,95,42 C3-alkyl imidazole or pyrazole C 6 H 10 N 2

14 11.28 107 106,79,92,77 C2-alkyl pyridine C 7 H 9 N

15 11.55 96 95,68,42,81 Imidazole-1,4-dimethyl C 5 H 8 N 2

16 12.18 122 42,81,109 Pyrazine, trimethyl C 7 H 10 N 2

17 13.33 99 98,44,42 Pyrrolidinone, -methyl C 5 H 9 NO

18 14.36 96 95,68,42,56 C2-alkyl imidazole or pyrazole C 5 H 8 N 2

19 15.25 136 54,42,39 Pyrazine tetramethyl C 8 H 12 N 2

20 15.99 114 44,113,42 2-imidazolidinone, 1.3-dimethyl C 5 H 10 N 2 O

21 16.79 110 109,95,68,42 C3-alkyl imidazole or pyrazole C 6 H 10 N 2

22 17.2–22 110, 124 – C3/C4-alkyl imidazole or pyrazole C 6 H 10 N 2

23 25–54 Heavy compounds (HC) C 7 H 12 N 2
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Heavy compounds -HC- with m/z comprised between 136 and

254 can be observed at retention times between 25 and 55 min

( Fig. 4 ). Although the exact nature of these compounds is not read-

ily assigned, they exhibit characteristic fragments of 6/5-membered

ring pyridine/imidazole/pyrazine. They thus could be further

derivatives of the pyridine/imidazole/pyrazine LC (with additional

alkyl or CO 2 or NH 2 substituents) or pyridine/imidazole/pyrazine

polycyclic compounds. Of note, the abundance of HC increases with

increasing hydrothermal alteration duration ( Figs. 3 and 4 ). In fact,

the molecular size index (i.e. the HL/LC ratio) increases with ex-

perimental duration up to 20 days ( Fig. 3 ). 
i  

s  

C

Fig. 5. Infrared spectra of the IOM formed during the 7, 20 and 31 day-long hydrother

tretching bands, as: asymmetric mode, s: symmetric mode, δ: bending bands).
.2. Formation of an insoluble material 

A dark brown solid material, representing less than 1% wt of the

nitial HMT, forms during experiments longer than 7 days. This ma-

erial being insoluble in water, MeOH and DCM is logically called

OM hereafter. Elemental analyses conducted on the IOM from the

1 day-long experiment reveals that it contains 53.4 ± 0.2 wt% of C,

.3 ± 0.01 wt% of H, 18.7 ± 0.1 wt% of N and 22.6 ± 0.2 wt% of O, i.e.

ts formula can be written C 100 H 120 N 30 O 31 . 

The IOMs from the 7, 20 and 31 day-long experiments are

pectroscopically very similar ( Figs. 5 and 6 ), thereby highlight-

ng a similar chemical composition. Their IR spectra display

tretching vibrations of NH and OH bonds (360 0–30 0 0 cm 

−1 ),

 

–H bonds (2850–2950 cm 

−1 ), C 

= C or C 

= N bonds (1550–
mal experiments performed at 150 °C using the starting HMT solution (0.7 M) (v:

https://doi.org/10.1016/j.icarus.2017.12.019


Fig. 6. XANES spectra of IOM. (a) XANES spectra of the IOM formed after 7, 20, 31 day-long hydrothermal experiments performed at 150 °C (spectra are normalized to

the carbon content). (b,c) C-XANES spectra normalized to the carbon content and N-XANES spectra normalized to the nitrogen content. Attribution of absorption features:

285 eV: aromatics/olefins; 285.8 eV: imines; 286.2–286.8: ketones/phenols/nitriles; 287.2–287.9 eV: aliphatics; 288.2–288.7 eV: amides/carboxyls/esters/acetals; 289.5 eV:

hydroxyls; 289.9 eV: amines/aliphatics/carbamoyls; 398.8–399.9 eV: imines/nitriles/pyridinic N; 401–401.5: amides; 401.5–402.5 eV: pyrroles.
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Fig. 7. Schematic representation of the detection of HMT, LC, HC, IOM and amides

(mainly N,N-dimethylformamide) in experimental residues as a function of experi- 

mental duration.
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620 cm 

−1 ), and C 

= O/C 

= O 

–N bonds (1650–1750 cm 

−1 ), and

ending vibrations of NH bonds (160 0–150 0 cm 

−1 ), C 

–H or OH

onds (below 1500 cm 

−1 ), together with stretching vibrations of

 

–O and C 

–N bonds (90 0–120 0 cm 

−1 ) ( Coates, 20 06; Colthup,

950 ). The C-XANES spectra of these IOMs ( Fig. 6 b) reveal the

resence of aromatic or olefin (285 eV), imine (285.8 eV), ke-

one/phenol/nitrile (286.6 eV), carboxyl/ester/acetal (288.5 eV) and

ydroxyl (289.6 eV) groups. Peaks at 398.9 and 399.9 eV observed

n the N-XANES spectra support the presence of imine/nitrile

nd/or pyrrole/pyrimidine compounds, while the peaks at 401.2

nd 401.8 eV indicate the presence of amide/pyrazole compounds.

/C values of 0.28 are estimated for these IOMs based on XANES

ata. 

. Discussion

The present hydrothermal alteration experiments show that,

ithin a few days, HMT may evolve into (1) a very diverse suite

f soluble compounds, including N 

–N-dimethyl formamide and N-

ich heterocyclic compounds ( > 150 species after 31 days), and (2)

 polymeric N-rich IOM that forms after only 7 days of experiment

 Fig. 7 ). 

.1. Formation of a diverse suite of new soluble compounds 

HMT is formed from formaldehyde and ammonia and also de-

omposes, in water at temperature > 70 °C, into six molecules of

ormaldehyde and four of ammonia ( Blažzevi ́c et al., 1979; Meiss-

er et al., 1954 ). The exact kinetics of HMT decomposition in water

emains unknown. Our data show that HMT does not persist much
onger than 7 days at 150 °C in alkaline solution, suggesting that

MT decomposition is instantaneous on asteroidal time scales. 

In parallel, the present results evidence that the products of

MT decomposition can react to form a diversity of organic com-

ounds under hydrothermal conditions typical of asteroids. In par-

icular, numerous N-rich compounds form ( > 150 species after 31

ays, with m/z comprised between 59 and 254), likely through

hain reactions ( Fig. 8 ). Note that the N/C of the reaction products

https://doi.org/10.1016/j.icarus.2017.12.019


Fig. 8. Chemical pathways for the transformation of HMT during hydrothermal alteration experiments at 150 °C, pH 10, based on both existing literatue data and the present

results. With increasing time, the HMT is degraded and the number and the complexity of produced compounds increases. Successive Formose and Maillard-like reactions

might have lead to the formation of the LC, HC and IOM products.
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is twice as low as that of HMT, suggesting that nitrogen has been

lost to the gas phase as N 2 or NH 3 during experiments. 

Formaldehyde may condense and form sugar derivatives via

the Formose reaction ( Breslow, 1959; Butlerov, 1861 ). The For-

mose reaction generally refers to the formation of aldose and ke-

tose sugars through the Aldol condensation of glycolaldehyde with

formaldehyde ( Breslow, 1959; Shapiro, 1987 ). Hydrothermal For-

mose reactions may lead to the formation of three to six carbon

sugar molecules in a few minutes at 200 °C ( Kopetzki and Antoni-

etti, 2011 ) and to some N-heterocycle compounds in the presence

of ammonia ( Kort, 1970 ). 

At temperatures higher than 100 °C, an equimolar solution of

formaldehyde and ammonia may also lead in a few hours to the

formation of amine compounds, such as methylamine (CH 3 NH 2 ),

dimethylamine (CH 3 ) 2 NH and trimethylamine (CH 3 )3N ( Jones and

Wheatley, 1918; Werner, 1917 ). Noted that this reaction also leads
o the formation of amino acids in acid hydrolysis conditions ( Fox

nd Windsor, 1970; Hulett et al., 1971 ) and in alkaline hydrolysis

onditions with the presence of glycolaldehyde ( Kebukawa et al.,

017 ). In the present experiments, the formation of N 

–N-dimethyl

ormamide likely results from nucleophilic addition reactions be-

ween amine compounds and formic acid ( Jursic and Zdravkovski,

993; Mitchell and Reid, 1931 ), i.e. between products of formalde-

yde oxidation ( Fig. 8 ). Of note, the N-methyl formamide and the

ormamide compounds should also be formed, but cannot be de-

ected without derivation by GC–MS. 

With increasing experimental duration and with the temper-

ture (150 °C), these amine compounds likely react with sug-

rs through Amadori rearrangements and Maillard-like reactions

 Ames, 1992; Nursten, 2005 ). In fact, although Maillard reac-

ions generally involve amino acids and sugars ( Maillard, 1912 ),

he cyclic aldimines produced during the present experiments

https://doi.org/10.1016/j.icarus.2017.12.019
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pyridines, imidazoles and pyrazines with many alkyl substitu-

ions) are common Maillard reaction products, as are soluble O-

ich compounds of high molecular weight, such as Shiff bases and

i-carbonyl compounds ( Ames, 1992; Nursten, 2005 ). Maillard-like

eactions likely occur in the present experiments after the formose

eaction because of the large quantity of available amines ( Ellis,

959; Namiki, 1988; Yamashita and Naraoka, 2014 ). 

The continual increase of the molecular size index with increas-

ng experimental duration highlights the production of high molec-

lar weight soluble compounds (i.e. HC compounds). However, the

hemical pathways that led to their formation remain unclear.

hese compounds could be seen as soluble melanoidins that con-

titute typical end products of Maillard-like reactions and, as such,

ay have formed via multiple condensation/polymerization reac-

ions between low molecular weight intermediate products ( Fig. 8 ).

After 20 days, the soluble compounds only slightly evolve

ith increasing experimental duration as indicated by GC–MS and

ANES data, highlighting that a metastable thermodynamic equi-

ibrium is likely achieved ( Helgeson et al., 1998 ). Basic extrapola-

ions suggest that such a mixture of soluble N-rich low and high

olecular weight compounds may persist under asteroidal condi-

ions for much longer durations. 

.2. From soluble to insoluble organic matter 

A solid, N-rich IOM (C 100 H 120 N 30 O 31 ) forms after 7 days of hy-

rothermal alteration ( Figs. 5 and 6 ). This IOM can be seen as com-

lex aromatic molecules containing N-rich (imines with many alkyl

ubstitutions) and O-rich groups (ketones, phenols, carboxyls and

ydroxyls) as shown by XANES and IR data. Its molecular structure

oes not vary with increasing experimental duration. Note that the

/C of this IOM is similar to that of the soluble compounds ( ∼0.28)

nd twice as low as the initial HMT value. 

The formation of IOM from soluble compounds has been docu-

ented to occur during (secondary) thermal cracking of soluble as-

haltenes at relatively low temperature ( ∼150 °C) in terrestrial set-

ings ( Bernard and Horsfield, 2014; Hill et al., 2003; Michels et al.,

996 ). These complex cracking reactions eventually lead to the for-

ation of gases and of insoluble pyrobitumen residues that con-

titute are stable end products that may accumulate in a closed

ystem ( Behar et al., 1992; Bernard and Horsfield, 2014; Ungerer

t al., 1988 ). 

Complex organic materials, likely insoluble, may alternatively

orm through condensation, dehydration and cyclization reactions

nvolving sugars produced from formaldehyde via the Formose re-

ction ( Cody et al., 2011; Kebukawa et al., 2013; Kort, 1970; We-

er, 2001 ). Such polymerization can occur in a few days at tem-

eratures as low as 363 K if glycolaldehyde is added (with Ca(OH) 2 
s catalyst) ( Kebukawa et al., 2013; Kopetzki and Antonietti, 2011 ).

he presence of ammonia enhances the IOM yield significantly at

emperatures below 150 °C ( Kebukawa et al., 2013; Kort, 1970 ).

n such case, N-rich heterocyclic compounds are formed and in-

orporated into the polymeric structure ( Kebukawa et al., 2013;

ort, 1970 ). Kinetic studies have shown that the half-life for

uch organic solid formation at 0 °C is ∼2 × 10 4 years in the ab-

ence of ammonia vs only 70 years in the presence of ammonia

 Kebukawa and Cody, 2015 ). 

Alternatively, in the presence of amines, IOM may directly

orm through condensation/polymerization of Maillard-like prod-

cts such as the soluble melanoidins discussed in the previous sec-

ion. These reactions which require reactive molecules, such as un-

aturated imine/carbonyl compounds ( Benzing-Purdie et al., 1985 ),

ead to the formation of polymeric, insoluble melanoidins with a

igh molecular weight ( Namiki, 1988; Nursten, 2005 ). The final

omposition of such Maillard insoluble melanoidins depends on
he amine/sugar ratio of the solution, as well as on temperature

nd pH ( Cämmerer and Kroh, 1995 ). 

The IOM that forms in the present experiments is insoluble

n all organic solvents, as are chondritic IOM and terrestrial py-

obitumen, which might not be the case for the Kebukawa IOM

nd the Maillard insoluble melanoidins. Compared to these IOMs,

he present IOM is significantly richer in nitrogen but contains

ess oxygen: it exhibits a N/C of 0.28 and a O/C of 0.32 (vs 0.1

nd 0.4 for the Kebukawa IOM or up to 0.15 and up to 0.6 for

he Maillard melanoides, respectively). The amount of IOM that

orms is also very different (less than 1 wt% of the starting ma-

erial vs . 15 or 30 wt% for the Kebukawa IOM or the Maillard insol-

ble melanoidins respectively). These differences are likely related

o the large initial concentration of nitrogen in our solution (ini-

ial N/C of 0.57 vs 0.1 or less than 0.15 for the Kebukawa IOM or

he Maillard insoluble melanoidins respectively) which has led to

ifferent chemical pathways. 

Elucidating the exact pathway of IOM formation in the present

xperiments remains a difficult task, especially as several routes

ay occur simultaneously. The fact that the molecular structure of

he IOM that forms in the present experiments does not signifi-

antly vary with increasing experimental duration highlights that

ts precursors are already formed before the end of the first week

f hydrothermal alteration. Interestingly, the IOM and the HC form

oncomitantly ( Fig. 7 ), which suggests that both the IOM and the

C are products of reactions involving LC or that the IOM results

rom reactions involving LC and the firstly formed HC. 

.3. Implications for the origin of chondritic OM 

A longstanding question in cosmochemistry is whether the

hondritic organic compounds are formed in the ISM, in the proto-

lanetary disk or within asteroids during hydrothermal alteration

 Aléon, 2010; Alexander et al., 2014, 2007; Glavin et al., 2010;

e Guillou et al., 2014; Remusat et al., 2010, 2009; Vinogradoff

t al., 2017 ). A number of interstellar and nebular processes (ion-

olecule reactions, gas-grain reactions, irradiation, heating) may

ead to the formation of both soluble and insoluble OM ( Danger

t al., 2016, 2013; Herbst and van Dishoeck, 2009; Kuga et al.,

015; Laurent et al., 2015; Marcellus et al., 2017 ). Here, we in-

estigated the impact of asteroidal hydrothermal conditions on a

imple interstellar molecule such as HMT (which constitutes up to

0 wt% of ice analog residues – Cottin et al., 2001; Muñoz Caro

nd Schutte, 2003; Vinogradoff et al., 2015, 2013, 2012 ) assuming

hat it had been accreted by asteroids ( Caselli and Ceccarelli, 2012;

udipati et al., 2015 ). 

At 150 °C in hydrothermal conditions, HMT reacts (instanta-

eously on asteroidal timescales, i.e. 10 6 years – Fujiya et al., 2012 )

o form a very diverse suite of N-rich soluble compounds ( > 150

pecies), as evidenced in the present study. The fact that CC con-

ain amides and quite similar nitrogen-bearing aromatic molecules

 Martins et al., 2008; Stoks and Schwartz, 1981; Yamashita and

araoka, 2014 ) thus suggests that asteroids possibly accreted inter-

tellar organic compounds such as HMT. Actually, more than thou-

ands of different organic species have been identified in ice analog

esidues ( Danger et al., 2016, 2013; Marcellus et al., 2015; Nuevo

t al., 2008 ). Asteroidal hydrothermal alteration reactions involving

nterstellar organic compounds could be at the origin of a large

art of the inventory of soluble chondritic molecules ( > 10,0 0 0 dif-

erent soluble molecules – Schmitt-Kopplin et al., 2010 ). 

Although the chondritic IOM contains pyrrole and alkyl-

yridine groups ( Pizzarello and Williams, 2012; Remusat et al.,

005b ), it is not as N-rich as the IOM that forms in the present

xperiments (C 100 H 60-80 O 16-18 N 3 S 2-7 ( Derenne and Robert, 2010 ) vs

 100 H 120 O 31 N 30 ). In fact, in terms of N/C and XANES signatures, the

nsoluble organic products of the present experiments are closer to

https://doi.org/10.1016/j.icarus.2017.12.019
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organic materials of ultracarbonaceous micrometeorites (UCAMM

– N/C of ∼0.15–0.2 – Dartois et al., 2013; Yabuta et al., 2017 ).

Yabuta et al. (2017) have recently interpreted the N-rich organic

compounds from one UCAMM as products of incipient aqueous al-

teration reactions that likely occurred within water coming from

locally melted cometary ice grains. These organic materials would

thus be highly primitive and may contain the precursor of CC or-

ganic compounds ( Yabuta et al., 2017 ). Altogether, the results of the

present study thus shed a new experimental light on the comet-

asteroid continuum. 

Importantly, the N/C values of the soluble and insoluble prod-

ucts of the present experiments are lower than that of HMT, sug-

gesting that significant amount of NH 3 and/or N 2 is released dur-

ing hydrothermal alteration. Pizzarello and Williams (2012) de-

tected up to 10 μg mg −1 of NH 3 that was likely IOM-bound, i.e.

trapped within the IOM porosity, indicating that NH 3 was present

in the system during alteration. Still, a fraction of these gases

could have been lost through degassing of the asteroids ( Young

et al., 2003; Alexander et al., 2010; Le Guillou et al., 2015 ), thereby

having impacted the formation of the soluble and insoluble com-

pounds (a loss of NH 3 would have decreased the pH of the sys-

tem while a loss of H 2 would have increased its fO 2 ). Asteroidal

hydrothermal alteration of organic compounds likely occurred in a

continuously changing environment. 

Lastly, the insoluble/soluble ratio of the products of the present

experiments is significantly lower than that of chondrites. Accord-

ing to Kebukawa et al. (2013) and Kebukawa and Cody (2015) , the

presence of ammonia significantly enhances the formation of IOM

from formaldehyde via the formose reaction at 150 °C. Given the

large N concentration of the starting material of the present ex-

periments (N/C ∼0.57 vs ∼0.1 for Kebukawa experiments) and the

production of ammonia, the yield of IOM from HMT should thus

have been quite high, at least if similar reaction pathways have oc-

curred. The low IOM yield observed here ( < 1 wt% vs ∼15 wt% for

Kebukawa experiments) suggests that, rather than the ammonia

concentration, this is the addition of glycolaldehyde and Ca(OH) 2 
that enhances the Formose reaction and produces such high IOM

yield in the Kebukawa experiments ( Kebukawa et al., 2013; Ke-

bukawa and Cody, 2015 ). This illustrates the need to properly iden-

tify the parameters that impact hydrothermal alteration reactions

in addition to the temperature, the pH, the nature of the start-

ing materials and the reaction pathways, including any accreted

organic or inorganic phase. In this respect, the exact role played

by inorganic phases remains to be investigated. For instance, phyl-

losilicates, oxides and/or carbonates have been observed in close

association with organic compounds in CC ( Le Guillou et al., 2014;

Le Guillou and Brearley, 2014; Zega et al., 2010 ). Because these

minerals may exert an influence on the oxidation state of the sys-

tem, their presence may strongly impact organic reactions (e.g.,

McCollom, 2013; Seewald, 2001 ). 

5. Concluding remarks

The present study highlights the pertinence of performing lab-

oratory experiments to improve the understanding of organic mat-

ter evolution in the context of asteroidal hydrothermal alteration,

thereby shedding new light on the possible origin of chondritic

organic compounds. The present experiments demonstrate that, if

exposed to asteroidal conditions, a single molecule such as HMT

will degrade and lead to the formation of hundreds of soluble

compounds together with an insoluble organic material. These hy-

drothermal processes can be seen as instantaneous on asteroidal

timescales. A step forward could be to investigate precisely the

stability of organic hydrothermal products exposed to dry heating

conditions, which likely existed in most asteroidal environments

( Bonal et al., 2016; Remusat et al., 2016 ). 
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