N

N

Quantification of stiffness measurement errors in
resonant ultrasound spectroscopy of human cortical bone
Xiran Cai, Laura Peralta, Pierre-Jean Gouttenoire, Cécile Olivier, Francoise

Peyrin, Pascal Laugier, Quentin Grimal

» To cite this version:

Xiran Cai, Laura Peralta, Pierre-Jean Gouttenoire, Cécile Olivier, Francoise Peyrin, et al.. Quantifi-
cation of stiffness measurement errors in resonant ultrasound spectroscopy of human cortical bone.
Journal of the Acoustical Society of America, 2017, 142 (5), pp.2755-2765. 10.1121/1.5009453 . hal-
01701981

HAL Id: hal-01701981
https://hal.sorbonne-universite.fr /hal-01701981
Submitted on 6 Feb 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.sorbonne-universite.fr/hal-01701981
https://hal.archives-ouvertes.fr

1

2

3

4

10

11

12

Measurement errors in resonant ultrasound spectroscopy JASA

Quantification of stiffness measurement errors in resonant ultrasound spectroscopy

of human cortical bone

Xiran Cai,»*® Laura Peralta,’ Pierre-Jean Gouttenoire,? Cécile Olivier,3 ") Francoise
Peyrin,3 ?) Pascal Laugier,! and Quentin Grimal*

U Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR-S 1146,

CNRS UMR 7371, Laboratoire d’Imagerie Biomédicale,

15 rue de I’Ecole de Médecine, Paris 750006, France

D ESRF, 71 Avenue des Martyrs, Grenoble 38043, France

3) Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM,
CREATIS UMR 5220, U1206, 7 Avenue Jean Capelle, Villeurbanne 69621,

France

(Dated: October 6, 2017)



Measurement errors in resonant ultrasound spectroscopy

Resonant ultrasound spectroscopy (RUS) is the state-of-the-art method used to in-
vestigate the elastic properties of anisotropic solids. Recently, RUS was applied to
measure human cortical bone, an anisotropic material with low Q-factor ( 20), which
is challenging due to the difficulty in retrieving resonant frequencies. Determining
the precision of the estimated stiffness constants is not straightforward because RUS
is an indirect method involving minimizing the distance between measured and cal-
culated resonant frequencies using a model. This work was motivated by the need
to quantify the errors on stiffness constants due to different error sources in RUS,
including uncertainties on the resonant frequencies and specimen dimensions and im-
perfect rectangular parallelepiped (RP) specimen geometry. The errors were firstly
investigated using Monte-Carlo simulations with typical uncertainty values of ex-
perimentally measured resonant frequencies and dimensions assuming a perfect RP
geometry. Secondly, the exact specimen geometry of a set of bone specimens were
recorded by synchrotron radiation micro-computed tomography. Then, a ’virtual’
RUS experiment is proposed to quantify the errors induced by imperfect geometry.
Results show that for a bone specimen of ~ 1° perpendicularity and parallelism errors,
an accuracy of a few percent (< 6.2%) for all the stiffness constants and engineering

moduli is achievable.
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1 I. INTRODUCTION

15 Bone adaptation in response to mechanical loading and the subsequent optimization of
16 bone strength are regulated by mechanosensitive osteocytes, which are capable of sensing
17 strain!. For a given load, bone stiffness determines the local strain, hence investigating bone
18 stiffness in detail should allow gaining insight into bone functional adaptation mechanisms

19 and bone strength.

20 As the structure of human cortical bone, like many natural materials, is hierarchical?, it
21 is necessary to investigate it at different scales. In particular, cortical bone elastic properties
» at the mesoscale (millimeter-scale) are of special interest as they depend on tissue properties
23 at all the smaller length scales and have a direct impact on the mechanical behavior of bone
2 at the macroscale®*. In addition, this is the level at which cortical bone functions, in concert
2 with the overall gross shape of a bone in resisting functional loads®. The mesoscopic level
2 is also appropriate to investigate the regional variations of the elastic properties within a
2» bone®, which is necessary to refine finite element models to predict patterns of stress and
2 strain. In this context, precise and practical measurement methods for assessing cortical

20 bone elasticity at the mesoscale are needed.

s  In general, bone material can be considered as a transversely isotropic or orthotropic
s1 material, hence engineering moduli such as Young’s moduli, shear moduli, and Poisson’s
» ratio can be derived from the components of the stiffness tensor. Ultrasonic techniques
;3 are well suited to probe the anisotropic elastic properties of bone. The most widely used
s ultrasonic measurement method, which was introduced by Lang” and used by many research
3 groups® 14, consists in measuring the ultrasonic wave velocity (UWV). Despite its apparent
3 simplicity, UWV measurements present several pitfalls that must be carefully considered.
s The final result can be affected by some factors, including the size of the measured specimen
;s compared to the wavelength, the presence of heterogeneities, or the signal processing required

 to estimate the time of flight to calculate velocity!'®16.

w0 Resonant ultrasound spectroscopy (RUS) has been recently introduced as an alternative
a technique to the measurement of human cortical bone stiffness'”. RUS has been extensively
» used since 1990’s to investigate the elastic properties of solids as diverse as piezoelectric
s materials’®, metallic alloys'?, metallic glasses?® and composites?!, hard polymers??, wood?,

s and mineralized tissues!”?4?® for applications ranging from theoretical physics to industrial

3
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s problems. The main advantage of RUS, compared to other techniques such as UWV mea-
s surements and mechanical testing, is that the full set of the elastic tensor can be assessed
s non-destructively from a single measurement?¢?”. Briefly, in a RUS experiment, resonant
s frequencies of a free vibrating specimen are retrieved from the resonant spectrum measured
w0 by a pair of ultrasonic transducers. Then, the stiffness constants are adjusted using an
s0 iterative numerical procedure (inverse problem) until the calculated eigenfrequencies of a
s free vibration object (forward problem) match with the experimentally measured resonant

s2 frequencies.

53 Determining the precision of the different stiffness constants measured by RUS is not
sa straightforward because RUS is an indirect method to obtain stiffness constants, involving
ss the minimization of the distance between measured and calculated frequencies. Essentially,
s elasticity estimation errors arise from two sources'®2?® (1) the imperfectly measured resonant
s frequencies; and (2) inadequate geometry of the forward model. The latter is caused by
ss possible shape imperfections (i.e., non perfectly parallel or perpendicular surfaces) not taken
so into account in the model, and metrological errors in the measurement of the specimen’s

60 dimensions.

s The effects of RUS measurement errors have been addressed to some extent in several
s> studies in the case of perfectly rectangular parallelepiped (RP) shaped specimen geome-
63 try?02 30 Regarding the first source of error (imperfectly measured resonant frequencies),
s the uncertainties on the determined stiffness constants have been estimated using the per-
es turbation theory (assuming perfect RP specimen geometry). By determining the sensitivity
ss of the resonant frequencies to the stiffness constants, the uncertainties of the stiffness con-
o7 stants can be quantified as a function of the relative root mean square error (RMSE) oy
es expressing the misfit between the measured and calculated resonant frequencies®®?°. For

e instance, Sedlack et al.?°

quantified the typical uncertainties measured on a silicon carbide
70 ceramics parallelepiped specimen and found relative measurement errors of less than 0.35%,
71 0.80% and 2.80% for shear, longitudinal and off-diagonal stiffness constants respectively, for
2 or = 0.25 %. Regarding the second source of error (imperfect geometry), on an empirical

73 basis, Migliori et al.26:3!

recommended that shape errors in parallelism and perpendicularity
7 between faces should be limited to 0.1% in order to keep errors on stiffness constants within
75 acceptable bounds, that is, close to 1%. However, there is no data in the open literature to

76 support these numbers, as far as we know.
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77 When measuring bone elasticity using RUS, errors on the measured resonant frequencies
7 are larger compared to the case of other materials. This is related to the high viscoelastic
o damping of the material (Q-factor ~ 20) resulting in resonant peaks overlapping and a
s0 lower accuracy of the measured frequencies compared to the case of high-Q materials??:32,
s1 In many RUS applications only a few specimens are measured, and much time is devoted to
g2 specimen’s preparation in order to achieve an excellent geometrical quality. In contrast, the
& high variability of elastic properties in biological materials, in particular within a bone3?,
s implies that several tens of specimens should be measured in order to obtain representative
ss values of stiffness. As a result, polishing each bone specimen in successive steps®' to obtain
ss a very high geometrical quality is not practicable. Hence, the question arises of the accuracy
g7 of the measured elasticity after a relatively simple preparation with a precision saw. To the
ss best of our knowledge, no systematic study has been conducted about neither the effects

g0 of an imperfect specimen geometry on the elastic properties of cortical bone measured by

oo RUS, nor the combined effects when resonant frequencies uncertainties are also considered.

s The objective of this study is to quantify the experimental errors when measuring cortical
e bone elasticity with RUS. We take advantage of recent advances in RUS inverse problem
s to quantify sources of errors using Monte Carlo simulations. Namely, the step consisting in
u pairing measured frequencies and their calculated counterparts in the forward problem, pre-
o5 viously achieved by an expert user with a trial-and-error method, was recently automated3*.
oo This allows an automated processing of RUS spectra which is a necessary condition for
o7 Monte Carlo analyses of error propagation. The following error sources are considered:
e (1) uncertainties on the measurement of frequencies; (2) uncertainties on the measurement
9 of dimensions (assuming a perfect RP shape); (3) imperfect specimen geometry (deviation
1o from a perfect RP). Although our primary focus is the application of RUS to measure bone,
11 the methodology introduced in this work and the quantified errors are of general interest for

102 the discussion of the precision and accuracy of RUS measurements of various materials.

103 Section II briefly recalls the theory of RUS, then Section III presents the specimens in-
14 cluded in this study and their experimental measurements. Firstly, their elasticity is assessed
10s by RUS and secondly, the geometry of the specimens is obtained from synchrotron radiation
106 micro-computed tomography (SR-uCT) images. In Section IV, the effects of measurement
107 uncertainties caused by both specimen dimensions and frequency errors, are investigated by

w8 Monte Carlo simulations. Section V investigates the errors associated to the deviation of
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100 the specimens’s shape from a perfect RP. Here, the finite element method (FEM) is used
1o to calculate resonant frequencies accounting for the actual shape of the specimen. Finally,

11 results are discussed in Section VI.

w2 II.  RUS THEORY

s RUS method is extensively described elsewhere?®2”. Here we summarize the process as
s implemented in the present work. The determination of stiffness constants of the material
us constitutive of a specimen of RP shape consists of the following steps: (1) the resonant
s frequencies P of the specimen are measured; (2) using f?, the stiffness constants C;;
ur (17 = 11,33,13,44,66) are determined by solving an optimization problem, i.e., minimizing

us the objective function (Eq. (1))%:

car _ pmod(, ) 2
N )
. k
1o where £7°¢ are simulated eigenfrequencies of a model of the specimen (forward problem)
120 and k is the index of the eigenfrequency. In the optimization, the mass is assumed known,
121 and the shape is assumed to be a perfect RP of known dimensions, collected in vector
1> dim. Frequencies f™°¢ are calculated with the Rayleigh-Ritz method (RRM), which is a
123 semi-analytical method that yields the result in a fraction of a second on a modern desktop
e computer. In Eq. (1), the experimental and simulated frequencies are assumed to be paired.

125 In the present work, pairing is done automatically in a Bayesian optimization strategy>*.

e III.  MEASUREMENTS
127 A, Specimens

128 Cortical bone specimens were harvested from the left femur of 18 human cadavers. The fe-
120 murs were provided by the Départment Universitaire d’Anatomie Rockefeller (Lyon, France)
130 through the French program on voluntary corpse donation to science. The tissue donors or
1 their legal guardians provided informed written consent to give their tissue for investiga-

132 tions, in accord with legal clauses stated in the French Code of Public Health. Among the

6
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133 18 donors, 11 were females and 7 were males (50 — 95 years old, 77 + 12.3, mean+SD). The

134 fresh material was frozen and stored at —20°C.

135 The samples were slowly thawed and then, for each femur, approximately a 10 mm thick
136 cross section was cut perpendicular to the bone axis from the mid-diaphysis. The cross
137 section was then cut into 4 pieces (Fig. 1a). Two of these pieces (lateral and medial) were
13 then used to prepare a RP specimen. They were fixed on a stainless steel block (Fig. 1b)
139 that has three mutually perpendicular faces. Without unmounting the specimen, the steel
10 block was successively positioned on each of these three faces on a reference stage in order
11 to cut with a water-cooled low-speed diamond wire saw (Model 3241, Well, Lyon, France)
112 in three mutually perpendicular planes. From each donor, one or two RP shaped specimens
13 were prepared, which led to a set of 23 specimens. The nominal specimen size was 3x4x5
s mm?® in radial (axis 1), circumferential (axis 2) and axial direction (axis 3), respectively,
us defined by the anatomic shape of the femoral diaphysis. All specimens were kept hydrated
us during sample preparation. The dimensions (dim®?) and mass (m®?) of each specimen
17 were measured by a digital caliper (precision + 0.01 mm) and a balance (precision 4 0.1

s M), respectively.

Anterior

Posterior

a) b)

Figure 1. a) the cross section of a femur was cut into 4 pieces according to the anatomical locations:
lateral, medial, posterior and anterior; b) the steel block on which a bone piece was fixed for being
cut by a diamond wire saw to retrieve a cuboid specimen. Two pairs of perpendicular cuts were
realized by successively positioning the block on a reference stage with two mutually perpendicular
faces.
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1w B. Bone elasticity measurements by RUS

5o The experiments to measure the resonant frequencies and the numerical inversion to
151 calculate the stiffness constants were performed following the RUS methodology specially

1734 The procedure is briefly described

12 adapted for bone and extensively presented elsewhere
153 a8 below. The bone specimen was placed on two opposite corners between two ultrasonic
15 transducer (V154RM, Panametrics, Waltham, MA), one for emission and one for reception,

155 to achieve a free boundary condition for vibration (Fig. 2).

Computer

A

Amplifier

Receive

Spectrum

Vector Network
Analyzer

Transmit

Figure 2. The RUS setup used in this study. A bone specimen is placed between two ultrasonic
transducers at the two opposite corners to achieve a free boundary condition for vibration.

15 The frequency response of the vibration in a specified bandwidth, tuned so as to measure
157 the 20-30 first resonant frequencies, was amplified by a broadband charge amplifier (HQA-
158 15 M-10T, Femto Messtechnik GmbH, Berlin, Germany) and then recorded by a vector
150 network analyzer (Bode 100, Omicron Electronics GmbH, Klaus, Austria). Six consecutive
160 Spectrum acquisitions were performed on each specimen at different orientations in order
161 to maximize the number of detectable resonant frequencies. Then, the resonant frequencies
1e2 were extracted from the spectra using the method dedicated to highly attenuative material?
63 (Fig. 3).

s Finally, assuming a transversely isotropic symmetry!?3

, the stiffness constants Cf;”,
16s were automatically calculated by solving the inverse problem formulated in a Bayesian
16 framework3?(Sec. II). The prior information of the distribution of the stiffness constants,
167 required for the Bayesian analysis, was taken from a previous study'®. In the elastic tensor,
168 Cg = C11 —2Cg6 and (1 — 2) is the isotropy plane; C; and Csg are the longitudinal stiffness

160 constants, C'jo and C3 are the off-diagonal stiffness constants and Cyy and Cgg represent the

170 shear stiffness constants.
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Figure 3. A typical resonant spectrum measured on a bone specimen. The plus signs (+) represent
the extracted resonant frequencies.

i C.  Specimen geometry

2 The exact shape of the specimens and thus, deviation from the ideal RP shape was
173 obtained using SR-pCT 3-D imaging, which was performed on the beamline ID19 at the
17 European Synchrotron Radiation Facility (ESRF, Grenoble, France). This SR-uCT setup

36,37 The beam energy was tuned to

175 is based on a 3D parallel beam geometry acquisition
6 26 keV by using a (Silll) double crystal monochromator. A full set of 2D radiographic
177 images were recorded using a CDD detector (Gadox scintillator, optic lenses, 2048 x 2048
s Frelon Camera) by rotating the specimen in 1999 steps within a 360° range of rotation. The
1o detector system was fixed to get a pixel size of 6.5 pum in the recorded images in which a
180 region of interest of 1400x940 pixels was selected to fit the specimen.

s For each specimen, the SR-uCT image (Fig. 4a) was reconstructed and binarized to
12 get the bone phase. In RUS, the material of the measured specimen is considered as a
183 homogeneous material. Here, the specimen is much larger than the representative volume
124 element of continuum mechanics®. Accordingly, the vascular pores that are visible in the 3D
155 image were filled up (Fig. 4b) using mathematical morphology operations to obtain a mask
18 Of each slice. Then the convex envelope of the bone masks was calculated and considered to
17 be the exact shape of the specimen.

188 The quality of the geometry of the specimen was analyzed based on the reconstructed SR-
180 (tCT volume. The coordinates of the cloud of points of each specimen’s face were collected
100 and the equation of the planes fitting each face in the least-square sense were determined.
11 The angles a and 3 between the normal of the planes were used to quantify the quality of

102 the specimen’s geometry compared to a perfect RP (Fig. 5). The perpendicularity errors

9
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Figure 4. a) A slice of the binarized image of bone structure. b) The mask of the bone slice after
filling up the pores (the black parts in a)) and the contours (red color) detected from the mask.
The contours of all the masks determine the external envelope of the specimen which was used to
quantify its perpendicularity and parallelism quality.

13 between adjacent faces were quantified by da = 90° — a. The parallelism errors between
104 opposite faces were quantified by 65 = 180° — 3. The values of the angle errors for the 23
10s specimens (12 da and 3 6 per specimen) are collected in Fig. 6. The deviations (mean=std)

106 from ideal perpendicularity and parallelism were -0.07°+£0.85° and 0.30°40.78°, respectively.

Figure 5. The angle « is defined by the angle between the normal (117 and n3) of two adjacent faces
which are found by fitting the cloud of points (the dots in the figures) with the equation of the best
plane in the least-square sense; accordingly, ( is defined by the angle between the normal (1] and
n3) of two opposite faces. For a perfect RP, a and /3 should equal to 90° and 180°, respectively.

10
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no. of angles

14
12
10

no. of angles

lo N N o

3 -2 -1 0 1 2 3
da (degree)

a) perpendicularity error do

=

W

-2 -1 0 1 2 3
6/ (degree)

b) parallelism error 63

Figure 6. The distributions of the perpendicularity error da and parallelism error 3 of the 23

specimens.

w7 I'V.

SIMULATION OF THE ERRORS DUE TO UNCERTAINTIES ON

s RESONANT FREQUENCIES AND DIMENSIONS

109 A. Method

20 We consider a perfect RP specimen as a reference, characterized by the dimensions dim”,

2o mass m° and stiffness constants CJ; shown in Table I. In Table I, the values of dim" are

202 the mean values of the dimensions of the specimens used in this work. The value of m® was

203 calculated assuming a typical mass density value of 1.87 mg/mm? taken as the mean value

20 from a former study about human femoral cortical bone'®. The values of CY; correspond to

205 the mean values of the stiffness of human femoral cortical bone at the mid-diaphysis'®. The

206 first 40 eigenfrequencies fO of the reference specimen were calculated using the RRM. This

207 number of frequencies was chosen according to the experimental frequency bandwidth in RUS

208 Measurements on human cortical bone specimens, which in practice contains approximately

200 40 resonant frequencies.

Table I. Properties of the reference RP bone specimen. The eigenfrequencies f° of the reference

specimens are associated to the parameters in this table.

a0 In this section, Monte-Carlo simulations

dim’ (mm) m

* (mg)

CY; (GPa)

3x4x5 112.2

19.58 29.04 11.74 5.83 4.28

38

were performed to quantify the propagation of

i1 the errors due to uncertainties on resonant frequencies and specimen dimensions. Repeated

11
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calculations of the stiffness constants were performed, each time randomly varying the in-
put data (dimensions or/and resonant frequencies) within their stated limits of precision.
Then we quantified the variability of each stiffness constant caused by dimension errors, by

frequency errors, and by the association of both dimension and frequency errors.

The order of magnitude of the dimension error to be used in Monte-Carlo simulations
was obtained comparing, for each specimen, the SR-pCT image with the dimensions dim“”?
measured with the caliper. Specimen’s dimensions obtained from the SR-uCT image are
considered as a reference based on which the uncertainty of dim“? can be estimated. In
order to obtain a representative value ¢ of the dimension error, we compared, for each
specimen the volume of the bone SR-puCT images and the volume of a hypothetical RP
of dimensions dim“? + e. By equating these volumes for each of the 23 specimens and
solving the equations, we obtained a series of values of € shown in Fig. (7). The specimen’s
dimensions obtained from the SR-uCT image were found to be systematically smaller than
dim“”. We choose the mean value of € &~ 0.04 mm as a conservative value to represent the
accuracy of the dimensions measured by caliper. Accordingly, the uncertainty of dim“? was

set to 0.04 mm.

The standard error on the measured resonant frequencies used in Monte-Carlo simula-

tions was chosen to be 0.5%, which is typically the repeatability of the measured resonant

frequencies in bones!”.

[

I

W

[

no. of specimens

1

—(906 -0.05 -0.04 -0.03 -0.02 -0.01
€ (mm)

Figure 7. The distribution of the dimension error ¢ obtained by comparing for each specimen the
volume of the bone SR-uCT reconstruction and the volume of a hypothetical RP of dimensions
dim®*? + e.

12
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an 1. Effects of uncertainties on dimension

22 To quantify the effects of imprecise dimension measurements, 1000 random realizations of
23 dimensions were generated from independent normal distributions centered on dim® with a
24 standard deviation of 0.04 mm, dim? ~ N(dim®, 0.04?). The number of random realizations
235 was chosen following preliminary convergence tests. For each realization p, the stiffness con-

2 stants CP., were obtained by solving the inverse problem using f° as proxy for experimental

50
237 frequencies, and the frequencies fP calculated for the inadequate forward model: specimen
238 of perfect RP shape with uncertain dimensions dim”. The mass used in the forward model
230 1s that of the reference RP specimen (Table I). The inverse problem uses the objective

200 function defined in Eq. (2). The stated input parameters for the simulation are summarized

2 in Fig. 8 (block D).
- B (E )

N e Ve VAN

Proxy of experimental 0 q_ £0 m_ 0

= — fem
frequencies f f=f+% fr=f+y f
Dimensions and mass dim”=dim°+8,; m° dim®; m° dim”=dim’+8,; m° dim®® ; m*®

N N7 N / %

Figure 8. The input parameters for the simulations detailed in Secs. IV and V for quantifying

stiffness estimation errors due to the experimental error sources: dimensions imprecision (block
D), frequencies imprecision (block F), dimensions and frequencies imprecision (block D + F) and
the imperfect specimen geometry (block S). dq and ¢ represent the deviations from the reference
values dim® and f9, respectively, that are randomly generated for each realization. Given dimension
and mass are the constants used for the forward model.

x2 2. Effects of uncertainties on frequencies

23 In a similar way, for the analysis of frequency imprecision, 1000 random realizations of
2 frequencies from a normal distribution centered on f° were generated assuming a relative
s standard deviation of 0.5%, £7 ~ N (£, (0.005f%)?). The number of random realizations

26 was chosen following preliminary convergence tests. The stiffness constants ng, were then

13
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247 Obtained by solving the inverse problem based on the objective function (Eq. (3)) using f9
us as proxy for experimental frequency values with an error and f” calculated using dim®, m°

20 and assuming a perfect RP specimen (Table I). The input parameters are summarized in

250 Fig. 8 (blOCk F)

Fey =3 (%(C)) )

»1 3. Effects of uncertainties on dimension and frequencies

2 Finally, the effects of the association of dimension and frequency errors were analyzed
253 together. Assuming the uncertainties on frequency and dimension are 0.5% and 0.04 mm,
254 Tespectively, 200 independent frequency realizations and 200 independent realizations of di-
25 mensions were generated from normal distributions, ™ ~ N (£, (0.005°)?) and dim" ~
6 N(dim®,0.04%). The number of random realizations was chosen following preliminary con-
27 vergence tests. The stiffness constants C}" were then obtained by solving the inverse prob-
28 lem using f™ as proxy for experimental frequencies with errors and f" calculated for the
250 inadequate forward model : specimen of perfect RP shape with uncertain dimensions dim”.
20 The mass used in the forward model is m® (Table I). Precisely, this is done using the ob-
21 jective function defined in Eq. (4). The input parameters are summarized in Fig. 8 (block

262 D+F)

ACHOEDY (f Fo s (C?’m))z (4)

; I

w3 4. Data Analysis

% For the three cases described above, the error 0C¢?" is calculated for each realization of

265 the determined stiffness constants as

est __ CO

5C§;t = Z]Tj” X 100% (5)

266 Where ij‘?t = (CP C‘?

0 . . . .
i Cijs CZL”) and Cj; is the elasticity of the reference specimen.

14
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%7 B. Results

s The normality of the distribution of each 5ijt was verified using Shapiro-Wilk’s test
%0 (p < 0.05). Table IT summarizes the distribution of JC§;* (Eq. (5)) and the root-mean-
270 square error oy representing the quality of the frequency fit at the minimum of the objective
on function. The engineering moduli, including the Young’s moduli (E; and E3) and the
o2 Poisson’s ratio (a3, 31 and 1), were also compared to the reference values (obtained from
273 C?j in Table I). The errors are summarized in Table II. The 95% confidence intervals
2 (Cls) of the errors were evaluated (Fig. 9). For case (D), (F) and (D+F), the 95% CIs
s were calculated as mean £+ 2xSD. The values of the errors indicated in the following text

a6 correspond to the larger absolute value of the 95% CI bounds, unless otherwise stated.

Table II. The errors (mean+SD in %) on stiffness constants (Eq. (5)) and the engineering moduli
due to four sources of error: uncertainties on dimension (D), on frequencies (F), on dimension and
frequencies together (D+F) and imperfect specimen geometry (S) detailed in Sec. V.

Error source D F D+F S

0C, -0.41£1.51 -0.12+1.41 -0.524+1.70 3.56+1.61
0C'33 0.16£2.68 0.00+1.44 0.13£2.52 -2.1841.51
0C3 -0.21+£1.38 -0.09+£2.60 -0.36+2.16 2.2242.08
0Cy 0.02£1.27 0.00+£0.53 0.07+1.41 -0.5240.91
0Cs6 -0.01£1.10  -0.03+£0.48  -0.05%1.18 0.85+0.68
0F, -0.16+£1.08 -0.0740.46 -0.22+1.09 1.5540.82
0Fs 0.17£2.62 -0.00+£1.09 0.204+2.67 -3.19£1.10
OVs3 0.03£1.92 -0.01£1.94 -0.06+£2.68 2.78+1.15
oV 0.34+2.26 0.05+1.79 0.32+2.24 -2.01£1.53
Y23 -0.50+£2.06 -0.14+1.89 -0.55+2.24 2.42+1.49
oy 0.35+0.23 0.43+0.06 0.58+0.16 0.29+0.09

2z The errors caused by dimension imprecision (case (D)) and both dimension and frequency

s imprecision (case (D+F)) are comparable, i.e., less than 5.5% for Cy;, C33 and Ci3, less than

15
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Figure 9. The mean and 95% confidence intervals of the errors on stiffness constants and engineering
moduli corresponding to case (D), (F), (D+F) and (S). The error bars show the upper and lower
bounds of the intervals and the mean values are represented at the center of the errorbars by the
‘circle’ or ’square’ makers. For case (D), (F) and (D+F) the intervals were estimated as mean
+ 2xSD, for case (S) they were evaluated by fitting the cumulative distribution functions of the
errors using kernel density estimators.

219 2.9% for Cyy and Cgg. Similar observation also applies to the engineering moduli for which
280 the errors are less than 2.4% for Ey, 5.5% for E3 and 5.4% for the Poisson’s ratios. Errors
2s caused by frequency imprecision alone are less than 1.1% for Cyy and Cgg, 2.9% for C; and
282 C3 and 5.3% for Ci3, which agrees well with the sensitivities of resonant frequencies to the
263 stiffness constants?®. The error §C,3 is larger when frequencies are imprecise compared to
23¢ when dimensions are imprecise. The errors on shear stiffness constants (6Cyy and dCgg) are
265 smaller than the errors on longitudinal (§C}; and 6Cs3) and off-diagonal stiffness constants
25 (0C13) in all the 3 cases (D, F, and D+F). Overall, 6 E5 is two times larger than 0F; and
257 the accuracy associated to Young’s moduli E; and FEj3 are similar to that associated to
268 C11 and Css. For all the stiffness constants, o are around 0.35%, 0.43% and 0.58% when
280 dimension imprecision, frequency imprecision and both dimension and frequency imprecision

200 are considered, respectively.
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20 V.  SIMULATION OF THE ERRORS DUE TO IMPERFECT SPECIMEN
22 GEOMETRY

203 A. Method

20 In RUS, the inverse problem to determine stiffness constants is solved assuming that
205 the specimen is a perfect RP. In this section, we investigate the uncertainty on stiffness
206 associated to this assumption resorting to a 'virtual’ RUS experiment (Fig. 8 (block S) and
207 Fig. 10):

xs (1) For each of the 23 bone specimens, the resonant frequencies f/*™ were calculated using
200 the finite element method considering the actual specimen’s geometry derived from SR-puCT
300 images, measured mass m? and specimen’s stiffness Cff P determined in the usual manner
so1 assuming a perfect RP shape. Details on the finite element implementation are given in
302 appendix (Appendix A).

23 (2) The stiffness constants C{;m of each specimen were estimated solving the inverse
30« problem defined by the frequencies f/¢™ (the first 40 frequencies) considered as measurements
05 and a forward model characterized by a perfect RP geometry (dimensions dim“?) and
306 specimen’s mass (m®?) (Sec. I1I).

s These resulting szfm are the stiffness constants of a RP bone specimen that would exhibit
308 the same resonant frequencies as the imperfect shape bone specimens with stiffness constants
0o C;”. Constants C{jem are biased by imperfect specimen geometry and are compared to the

a0 true stiffness constants of the specimen used in the FEM model (C{;”). Namely, we calculate

cfem_gexr
Y Y % 100%.

su the errors (5ij5m = "
i

si2 B. Results

a3 The errors on stiffness constants and the engineering moduli due to imperfect geometry
su of the specimens are summarized in Table II (last column). As only 23 specimens were
a5 included and the errors were not normally distributed, the 95% CIs of the errors (Table III
a6 and Fig. 9) were evaluated by fitting the cumulative distribution functions of the errors
ai7 using kernel density estimators. For all the stiffness constants, there is a bias, i.e. the
sis mean value of the errors is not zero and it can be positive or negative depending on the

s constant (the mean values vary from -3.19% to 3.56%). The SD of the errors varies from
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Figure 10. Diagram of the FEM simulation for quantifying the bias caused by imperfect specimen
geometry. Cffp are bone stiffness constants measured by RUS (Section IIIB), £/¢™ are the reso-
nant frequencies calculated from the actual specimen geometry, dim®? are the dimensions of the

specimens measured by caliper,

fem
c!

problem, and 5Cij€m represent the estimation errors.

0.68% to 2.08%.

are the stiffness constants calculated by solving the inverse

In particular, the errors on shear stiffness constants present a smaller

sz variation than longitudinal and off-diagonal ones (see the 95% Cls in Table III) and the errors

322 on Young’s moduli present slightly less variability compared to the longitudinal stiffness

23 constants (Table II and III).

324

325

Table III. The 95% CIs (in %) of the errors on stiffness constants and the engineering moduli due

to imperfect specimen geometry.

0Ch 0Cs3 0C13 0Cy dCs6
95% CI  [-1.08,6.16]  [-5.15,0.62]  [-3.29,5.33]  [-3.29, 1.04]  [-1.04, 2.34]
5E1 5E3 5V23 51/31 5V21
95% CI  [-0.87,3.27]  [-5.09,-0.98]  [0.75,5.56]  [-4.78, 1.39]  [-0.17, 5.17]
VI. DISCUSSION AND CONCLUSION

In this study, we performed simulations to quantify the errors on the stiffness constants

26 determined from RUS measurements. We used typical elasticity values of human cortical

27 bone as reference and studied the effects of errors due to (1) uncertainties on the mea-
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»g surement of frequencies; (2) uncertainties on the measurement of dimensions (assuming a
2o perfect RP shape); (3) imperfect specimen’s geometry (deviation from a perfect RP). The
30 first two points were addressed with a calculation of error propagation with Monte-Carlo
31 simulations which require a statistical model of the quantities investigated. For dimensions
s (of an assumed perfect RP) and frequencies, it is reasonable to assume normal distributions
;33 around the reference values. The third source of error is the deviation of the shape from a
s perfect RP. In that case we do not have a statistical model for the shape alterations, i.e.,
135 Monte-Carlo simulations cannot be used. Hence, the third point was addressed using actual
336 experimental data on a collection of 23 bone specimens. The main parameters of the Monte-
s Carlo simulations were the assumed level of error on experimentally determined resonant
a8 frequencies, set to 0.5%, and experimentally determined specimen’s dimensions, set to 0.04
30 mm (~1%). The choice of these values is consistent with our experience of using RUS to

340 measure bone specimens'”.

s Using micro-CT, we could quantify the range of geometrical errors associated to a simple
s specimen’s preparation procedure. We found that perpendicularity and parallelism errors
3 were in average less than 1° and always less than 2° (Fig. 6).

s Overall, we found errors on elasticity values of a few percents, or less than one percent,
us depending on the considered stiffness constant. Note that we discuss the accuracy errors
a6 reporting the 95% Cls of the error. Consistent with the findings of several previous stud-

26,29 we found that the off-diagonal stiffness constants presented the highest errors and

7 1es
us shear constants the smallest ones. This is related to the higher sensitivity of RUS to shear
w0 stiffness constants. Comparing the uncertainties of the sources of error (dimensions and
350 frequencies) and the uncertainties of the errors on shear stiffness constants (the most pre-
351 cisely determined ones), comparable values were observed (Table II), i.e., 0.04 mm (~1%)
32 uncertainty on dimensions and 0.5% uncertainty on frequencies leads to ~1.2% and ~0.5%
353 uncertainties on the errors of shear stiffness constants, respectively. Additional Monte-Carlo
s simulations, following the same routine in Section IV A showed that increasing the error level
35 of dimensions and frequencies by 20%, i.e., the uncertainties of dimensions and frequencies

56 became 0.05 mm and 0.6%, respectively, will increase the Cls of the error on shear stiffness

357 by ~16% to 25%, approximately.

s For all the stiffness constants but 43, dimension uncertainties lead to larger errors in

350 elasticity compared to the case where only frequency uncertainties are considered (Table II
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0 and Fig. 9). For C43, the largest error is observed for frequency uncertainties, suggesting that
1 C13 may be less sensitive to dimension imperfections than to resonant frequencies in current
32 simulation conditions. Interestingly, dimension uncertainties or a coupling of frequency and
363 dimension uncertainties caused similar levels of errors on the stiffness constants (Table II

364 and Fig. 9).

s Deviation of the actual specimen’s shape from a perfect RP affects the accuracy of the
36 stiffness constants measured with RUS. This is because the forward model used to solve the
67 inverse problem, assuming a perfect RP geometry, is not correct. The approach introduced
e in Section V aimed at simulating the effect of this source of error. It is important to
30 note that, in general (when a micro-CT scan of the specimen is not available), only the
w0 mass can be accurately measured as opposed to the dimensions (because the geometry is
sn in general not perfect). This is the reason why mass (m?) but not mass density was used
s2 in the simulations in Secs. IV and V. The uncertainty of the mass was about 0.1% since
a3 the precision of the balance is + 0.1 mg and the mass of the bone specimens are around
sz 100 mg. A linear relationship exists between mass and stiffness constants, consequently,

%6 a mass uncertainty of 0.1% will cause the

a5 for given dimensions and resonant frequencies
w6 same uncertainty (0.1%) on the stiffness constants, which is negligible compared to the error
s levels caused by other factors. Accordingly, the uncertainty of mass was not considered in
ars this work. We have observed that most of the caliper-measured volumes were overestimated
o of approximately 3% in average compared to the volumes deduced from SR-uCT images.
0 Accordingly, the quantified elasticity errors are a result of both overestimated dimensions
ss1 and irregularity of the RP shape. The elasticity errors due to an imperfect RP geometry
se2 (Table IIT and Fig 9) were between 2.3%~6.2%. The comparison of the contribution of the
383 three sources of errors to the precision of RUS measurements shows that errors due to an

s imperfect geometry are found to be of the same order as the errors calculated by Monte-Carlo

s simulations caused by frequency or dimension uncertainties in our specific case.

s It is noteworthy that the values of o; obtained from simulations in the present study
w7 (07 ~ 0.58% with Monte-Carlo simulations and oy ~ 0.29% using FEM simulations with
388 the imperfect shape) are similar to values reported for actual RUS measurements of bone

19 and other attenuative materials!”??

where o is typically in the range 0.25-0.40%. This
300 suggests that the simulations accurately reproduce the experimental error characteristic of

500 RUS measurements. The level of errors quantified in the present study are consistent with
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302 the reported precision of RUS for human cortical bone application (3%, 5% and 0.4% for
303 longitudinal, off-diagonal and shear stiffness constants, respectively)!”, estimated from the
s« RMSE o7y.

35 This study has introduced an original methodology to quantify errors in RUS measure-
36 ments. The method was applied to bone but could be used to assess the accuracy for RUS
;o7 measurements of various materials. Note that it has been possible to implement Monte-
s Carlo simulations only because an automated pairing of frequencies (for the calculation of
300 the objective function) was possible. This automated pairing was initially developed to
a0 process spectra of attenuative materials where several resonant peaks can not be retrieved®?
s01 and it is also efficient to process synthetic resonant frequencies as in the present study where
s02 NO peak is missing.

w3 In RUS measurements, specimens are assumed to be homogeneous, although cortical
w04 bone specimens are inhomogeneous to some extent. When the wavelength is much greater
s0s than the length scale of the inhomogeneity, the material can be regarded as a homogeneous
w6 material. A conservative estimation of acceptable inhomogeneity in RUS was suggested by
w07 Ulrich et.al.?®. The maximum size of an inhomogeneity should be smaller than a threshold
aws & < 21/m, where [ is the smallest dimension of the sample and n can be taken as the number
a0 Of the considered resonant frequencies. Here with [ = 3 mm and n = 40, the threshold
mois & = 150 pwm, which is larger than the diameter of the pores in human cortical bone
a1 (Haversian canals diameter is typically in the range of 20 — 100 um). According to this
a2 criterion, bone specimens in the present work may be considered as homogeneous.

a3 Aside of the uncertainties in the values of the inputs in RRM, including mass, dimensions
ss and stiffness constants, the RRM has a limited accuracy associated to the truncation to M-
a5 th order of the polynomial approximation of the displacement field. Resonant frequencies
a6 calculated with RRM are more accurate with increasing values of M but as a counterpart,
a7 the computing time increases. In the present work, this was a critical issue because large
a1s numbers of iterations were involved to solve the inverse problem in the Bayesian framework.
a0 In practice, M = 10 used in this study, following the suggestion by Migliori and Sarrao?®, is a
20 good compromise between accuracy and computing time if the first 50 resonant frequencies
s are considered. A preliminary test showed that the root-mean-square-error between the
2 RRM-yielded frequencies when M = 10 and M = 20 is close to 0.07% for the first 40

a2 frequencies, which is negligible compared to the magnitude of other sources of error that we
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24 handled with in this work.

ws  This study has some limitations. We used simulated resonant frequencies as proxy for
26 RUS data as input to the inverse problem. Precisely, the eigenfrequencies of the first forty
s27 vibration modes were used. In actual RUS experiments to measure bone, a maximum of
a8 fifteen to twenty frequencies among the first forty can actually be retrieved due to peak
20 overlapping??. In theory, taking into account more frequencies should improve the precision
0 of the determination of stiffness constants because more information is used for the inverse
31 problem. However, in practice, the achievable precision also depends on the quality of the
2 frequency measurement which decreases in the higer frequency range due to the increased
33 modal density and peak overlapping. Since the resonant frequencies are much more sensitive
s to shear stiffness constants®®, it is expected that using less frequencies than in the present
s35 study would essentially decrease the precision of constants Ci1, Cs3 and C3 but would have
a3 little impact on the precision of the shear stiffness constants. The results of the simulation
s in Sec. V critically rely on the actual pixel size in SR-uCT experiments, because the exact
a3 shape of the specimens were used to compute the ’true’ resonant frequencies for the inverse
s39 problem. However, we did not perform calibration for identifying the actual pixel size during
s SR-puCT experiments. This could partly affect or bias the results. Another limitation is
s that we did not simulate the error on stiffness constants due to a combination of frequency
a2 uncertainty and imperfect RP geometry. In view of the results of Sec. IV, we expect that
w3 elasticity errors would only be slightly larger. Furthermore, some sources of errors in RUS
s have not been considered such as the effect of imperfect boundary conditions?® and the

as uncertainty on the measurement of specimen’s mass.

a6 The validation of the measurement of bone elasticity with RUS relies (1) on the successful
w7 measurement of a reference transverse isotropic material with a Q-factor similar as bone’s
us Q-factor??; (2) on the comparison of the stiffness constants obtained with RUS and from
u9 the independent measurement of the time-of-flight of shear and longitudinal waves in bone
0 specimens'®7; and (3) on the results of the present study focused on the quantification of
ss1 accuracy errors. The latter suggest that despite the typical non-perfect geometry of bone
ss2 specimens and despite the relatively large uncertainty in the measurement of the bone reso-
s53 nance frequencies (due to attenuation), the stiffness constants are obtained with a maximum

ssa error of a few percents. A very conservative accuracy value can be quantified by the larger

a5 absolute value of the (non symetric) 95% CI bounds; accuracy defined like this was 6.2%
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w6 for longitudinal stiffness and 3.3% for shear stiffness, 5.1% for Young’s moduli and 5.6% for
ss7 Poisson’s ratios (Table IIT).

s To further enhance the accuracy of bone RUS measurement, possible paths would be
w0 (1) using a specific implementation of the Rayleigh-Ritz method for nonrectangular par-
w0 allelepiped specimen®, provided that the angles between the specimen’s surfaces can be
w1 measured; (2) decreasing the frequency uncertainty by improving the signal processing of

w2 RUS spectra.
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w3 Appendix A: Calculation of resonant frequencies using Finite element

s modeling (FEM)

a5 Bone was modeled as a homogeneous transversely isotropic material. The bone volumes
a6 obtained from the SR-puCT were discretized into about 3 million quadratic tetrahedral el-
a7 ements. This corresponded to a maximum element size of 0.12 mm, which was chosen
as after a convergence study and ensures at least 10 elements per smallest wavelength in the
a9 investigated frequency bandwidth. A modal analysis was conducted to calculate the eigen-
a0 frequencies. We used the software Code-Aster (ver 12.5, EDF R&D, France, license GNU
w1 GPL, http://www.code-aster.org).

2 The accuracy of the finite element model was evaluated by comparing the first 40 FEM

w83 eigeinfrequencies to eigenfrequencies calculated with the Rayleigh-Ritz method for a perfect
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RP bone specimen (Table I). The RMSE o between eigenfrequencies calculated by the two
methods was ~ 0.06%. After solving the inverse problem using FEM eigenfrequencies, the
errors in the stiffness constants were ~ 0.05%, 0.60% and 0.30% on shear, longitudinal and
off-diagonal stiffness constants. These errors are at least one order of magnitude smaller

than the errors related to shape imperfections (Sec. V).

REFERENCES

1J. Klein-Nulend, P. J. Nijweide, and E. H. Burger, “Osteocyte and bone structure,”
Current osteoporosis reports 1, 5-10 (2003).

2P. Fratzl and R. Weinkamer, “Natures hierarchical materials,” Progress in Materials Sci-
ence 52, 1263-1334 (2007).

3J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical
structure of bone,” Medical engineering & physics 20, 92-102 (1998).

4Q. Grimal, K. Raum, A. Gerisch, and P. Laugier, “A determination of the minimum sizes
of representative volume elements for the prediction of cortical bone elastic properties,”
Biomechanics and modeling in mechanobiology 10, 925-937 (2011).

J. D. Currey, Bones: structure and mechanics (Princeton university press, Princeton,
2002), pp. 436.

5D. Rohrbach, Q. Grimal, P. Varga, F. Peyrin, M. Langer, P. Laugier, and K. Raum,
“Distribution of mesoscale elastic properties and mass density in the human femoral shaft,”
Connective tissue research 56, 120-132 (2015).

’S. B. Lang, “Elastic coefficients of animal bone,” Science 165, 287-288 (1969).

8J. L. Katz and H. S. Yoon, “The structure and anisotropic mechanical properties of bone,”
IEEE Trans. Biomed. Eng. BME-31, 878 —884 (1984).

9R. Ashman, J. Rho, and C. Turner, “Anatomical variation of orthotropic elastic moduli
of the proximal human tibia,” Journal of biomechanics 22, 895-900 (1989).

197, Y. Rho, “An ultrasonic method for measuring the elastic properties of human tibial
cortical and cancellous bone.” Ultrasonics 34, 777-783 (1996).

H(Q. Schwartz-Dabney and P. Dechow, “Accuracy of elastic property measurement in
mandibular cortical bone is improved by using cylindrical specimens,” Journal of biome-

chanical engineering 124, 714-723 (2002).

24



su 2A. A. E. Orfas, J. M. Deuerling, M. D. Landrigan, J. E. Renaud, and R. K. Roeder,
si5 “Anatomic variation in the elastic anisotropy of cortical bone tissue in the human femur,”
sis  Journal of the mechanical behavior of biomedical materials 2, 255-263 (2009).

sz 13 M. Granke, Q. Grimal, A. Saed, P. Nauleau, F. Peyrin, and P. Laugier, “Change in porosity
si8 is the major determinant of the variation of cortical bone elasticity at the millimeter scale
s9  in aged women,” Bone 49, 1020-1026 (2011).

s20 1YE. Lefevre, P. Lasaygues, C. Baron, C. Payan, F. Launay, H. Follet, and M. Pithioux, “An-
1 alyzing the anisotropic hooke s law for children s cortical bone,” Journal of the mechanical

5!

s2  behavior of biomedical materials 49, 370-377 (2015).

)

3 °R. G. Leisure and F. Willis, “Resonant ultrasound spectroscopy,” Journal of Physics:
s« Condensed Matter 9, 6001 (1997).

s2s 1L, Peralta, X. Cai, P. Laugier, and Q. Grimal, “A critical assessment of the in-vitro
26 measurement of cortical bone stiffness with ultrasound.” Ultrasonics 80, 119-126 (2017).
s2r 17S. Bernard, Q. Grimal, and P. Laugier, “Accurate measurement of cortical bone elasticity
s8 tensor with resonant ultrasound spectroscopy,” Journal of the mechanical behavior of
s20 biomedical materials 18, 12-19 (2013).

s 18T. Delaunay, E. L. Clezio, M. Guennou, H. Dammak, M. P. Thi, and G. Feuillard,
sn  “Full tensorial characterization of pzn-12%pt single crystal by resonant ultrasound spec-
s troscopy,” and Frequency Control IEEE Transactions on Ultrasonics, Ferroelectrics 55,
533 476-488 (2008).

s2 1R. Schwarz and J. Vuorinen, “Resonant ultrasound spectroscopy: applications, current
s33  status and limitations,” Journal of Alloys and Compounds 310, 243-250 (2000).

s 20W. H. Wang, “The elastic properties, elastic models and elastic perspectives of metallic
s glasses,” Progress in Materials Science 57, 487-656 (2012).

s 2L H. Ledbetter, C. Fortunko, and P. Heyliger, “Orthotropic elastic constants of a boron-
s39  aluminum fiber-reinforced composite: An acoustic-resonance-spectroscopy study,” Journal
so0  of Applied Physics 78, 1542-1546 (1995).

sa1 22S. Bernard, Q. Grimal, and P. Laugier, “Resonant ultrasound spectroscopy for viscoelastic
se2 characterization of anisotropic attenuative solid materials,” The Journal of the Acoustical
se3  Society of America 135, 26012613 (2014).

sa 2°R. Longo, T. Delaunay, D. Laux, M. El Mouridi, O. Arnould, and E. Le Clezio, “Wood

ss  elastic characterization from a single sample by resonant ultrasound spectroscopy,” Ultra-

25



ss6  sonics 52, 971-974 (2012).

sar 22T, Lee, R. S. Lakes, and A. Lal, “Investigation of bovine bone by resonant ultrasound
sis spectroscopy and transmission ultrasound,” Biomechan. Model. Mechanobiol. 1, 165-175
s0  (2002).

ss0 2°J. H. Kinney, J. R. Gladden, G. W. Marshall, S. J. Marshall, J. H. So, and J. D. May-
ss1  nard, “Resonant ultrasound spectroscopy measurements of the elastic constants of human
2 dentin.” J Biomech 37, 437-441 (2004).

s53 20A. Migliori and J. L. Sarrao, Resonant Ultrasound Spectroscopy (Wiley, New York, 1997),
ssa - pp. 202.

sss 27 A. Migliori and J. D. Maynard, “Implementation of a modern resonant ultrasound spec-
56 troscopy system for the measurement of the elastic moduli of small solid specimens,” Rev.
7. Sci. Instrum. 76, 121301 (2005).

sss 25T, J. Ulrich, K. McCall, and R. Guyer, “Determination of elastic moduli of rock samples
50 using resonant ultrasound spectroscopy,” The Journal of the Acoustical Society of America
se0 111, 1667-1674 (2002).

ss. 2M. Landa, P. Sedldk, H. Seiner, L. Heller, L. Bicanova, P. Sittner, and V. Novék, “Modal
s2 resonant ultrasound spectroscopy for ferroelastics,” Appl. Phys., A 96, 557-567 (2009).
ses SOP. Sedldk, H. Seiner, J. Zidek, M. Janovskd, and M. Landa, “Determination of all 21
ss«  independent elastic coefficients of generally anisotropic solids by resonant ultrasound spec-
s troscopy: Benchmark examples,” Experimental Mechanics 54, 1073-1085 (2014).

ses OLA. Migliori, J. L. Sarrao, W. M. Visscher, T. M. Bell, M. Lei, Z. Fisk, and R. G. Leisure,
ss7  Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of
ses  solids,” Physica B 183, 1 — 24 (1993).

se0 O2A. Lebedev, L. Ostrovskii, A. Sutin, I. Soustova, and P. Johnson, “Resonant acoustic
s0  spectroscopy at low q factors,” Acoustical Physics 49, 81-87 (2003).

sn 33S. Bernard, J. Schneider, P. Varga, P. Laugier, K. Raum, and Q. Grimal, “Elasticity-
sz density and viscoelasticity-density relationships at the tibia mid-diaphysis assessed from
s resonant ultrasound spectroscopy measurements.” Biomech Model Mechanobiol 15, 97-109
s (2016).

s5 945, Bernard, G. Marrelec, P. Laugier, and Q. Grimal, “Bayesian normal modes identifi-
st cation and estimation of elastic coefficients in resonant ultrasound spectroscopy,” Inverse

sz Problems 31, 065010 (2015).

26



578

579

580

581

582

583

584

585

586

5

<]

7

588

589

590

591

5

el

2

593

594

35H. S. Yoon and J. L. Katz, “Ultrasonic wave propagation in human cortical boneii. mea-
surements of elastic properties and microhardness,” Journal of biomechanics 9, 459-464
(1976).

36M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, and
P. Spanne, “A synchrotron radiation microtomography system for the analysis of trabec-
ular bone samples,” Medical Physics 26, 2194-2204 (1999).

3TT. Weitkamp, P. Tafforeau, E. Boller, P. Cloetens, J.-P. Valade, P. Bernard, F. Peyrin,
W. Ludwig, L. Helfen, and J. Baruchel, “Status and evolution of the esrf beamline id19,”
in X-ray Optics and Microanalysis: Proceedings of the 20th International Congress, Vol.
1221 (2010) pp. 33-38.

3G, Anderson, “Error propagation by the monte carlo method in geochemical calculations,”
Geochimica et Cosmochimica Acta 40, 1533-1538 (1976).

39B. J. Zadler, J. H. Le Rousseau, J. A. Scales, and M. L. Smith, “Resonant ultrasound
spectroscopy: theory and application,” Geophysical Journal International 156, 154-169
(2004).

40A . Yoneda, “Intrinsic eigenvibration frequency in the resonant ultrasound spectroscopy,”

Earth, planets and space 54, 763-770 (2002).

27



