
HAL Id: hal-01705825
https://hal.sorbonne-universite.fr/hal-01705825v1

Submitted on 9 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Virtual Machine Approach for Programming
Microcontrollers: the OMicroB Project

Steven Varoumas, Benoît Vaugon, Emmanuel Chailloux

To cite this version:
Steven Varoumas, Benoît Vaugon, Emmanuel Chailloux. A Generic Virtual Machine Approach for
Programming Microcontrollers: the OMicroB Project. 9th European Congress on Embedded Real
Time Software and Systems (ERTS 2018), Jan 2018, Toulouse, France. �hal-01705825�

https://hal.sorbonne-universite.fr/hal-01705825v1
https://hal.archives-ouvertes.fr

A Generic Virtual Machine Approach for Programming
Microcontrollers: the OMicroB Project

Steven Varoumas1,2, Benoît Vaugon3 and Emmanuel Chailloux1

1Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu
75005 Paris, France.

steven.varoumas@lip6.fr, emmanuel.chailloux@lip6.fr

2CÉDRIC, CNAM, 2 rue Conté F-75141 Paris Cedex 03, France.

3Armadillo, 46 bis, rue de la République, 92170 Vanves, France
benoit.vaugon@gmail.com

Abstract

In this paper, we present an original approach of programming microcontrollers. This approach,
which stem from our first results with the OCaPIC project of running OCaml on PIC microcon-
trollers, consists of a generic virtual machine which goal is portability as well as memory saving.
We argue that such an approach can lead to safer programs, both by using a high level program-
ming language and by being able to use software tools dedicated to code analysis thanks to code
factorization. Our generic virtual machine, called OMicroB, is foreseen to run both simple hobbyist
and entertainment programs as well as critical concurrent applications in embedded systems.

Keywords: Microcontroller, Virtual Machine, Portability, OCaml, Embedded System, OMicroB, Static
Analysis, Synchronous Language

1 Introduction

Microcontrollers are small programmable integrated circuits widely used in embedded systems and
autonomous electronic devices. Their architecture is quite simple, and includes a set of internal mem-
ories (RAM and flash), a computing core, as well as input/output pins that allow them to interact with
their environment (which can be made of sensors, actuators, other controllers, computers, . . .).

Being quite affordable and energy efficient, their clock rate is modest and their memory space is
scarce, compelling developers to use low level programming languages such as C or assembly lan-
guage in order to carefully control the memory use of the programs they want to run on these devices.
This programming approach requires developers to have a precise understanding of the microcon-
troller they use, and still can be difficult and error prone (with a difficult debugging process), even for
a specialist. It also lacks the abstraction that higher-level programming languages like Java, OCaml or
Spark/Ada can provide, such as the expressiveness of the object-oriented or functional programming
paradigms, a better safety via strong typing, or even automatic memory handling.

In order to “lift” the programming of microcontrollers into a safer and more expressive program-
ming approach, a few virtual machines (VM) have been created with the intent of running them di-
rectly on microcontrollers. These abstract machines allow developers to write programs directly in
high level languages of which the bytecode is then interpreted on the chip.

In this paper, we propose OMicroB: an OCaml virtual machine written directly in the C language
that we use as a kind of portable assembly language. OMicroB provides a set of new static analysis
in order to lower memory usage, and the C language allows us to make use of various tools for code

1

steven.varoumas@lip6.fr
emmanuel.chailloux@lip6.fr
benoit.vaugon@gmail.com

analysis such as WCET or stack usage predictions. Our goal is to target hobbyist applications (home
automation or games) as well as more critical embedded systems, on devices with limited resources.

In section 2, we present the state of the art relative to the programming of microcontrollers by the
way of a virtual machine approach. In particular, we introduce OCaPIC, which is a former work in-
tended at running the OCaml virtual machine of PIC18 devices. Section 3 introduces OMicroB and
detail all of the different steps of the compilation of an OCaml source file to the uploading of a pro-
gram into various microcontrollers. In section 4, we interpret some early tests with OMicroB in order
to highlight the performances of the VM (in speed and memory usage), and address the subject of
applications to critical software. Finally, we conclude in section 5 with a summary of the advantages
of OMicroB as well as an overview of the various future works can be done on OMicroB in order to
enhance its performances and expand its scope.

2 Programming Microcontrollers with High-Level Languages

2.1 Virtual Machines on Microcontrollers

Microcontrollers are devices with limited resources: their clock rate is commonly less than 100MHz
and their memory space is rarely more than a few kilobytes of RAM and a hundred kilobytes of flash
memory. For example, the PIC18F4620 has a clock rate of 40MHz, a RAM of 4KiB, and 64KiB of flash
memory. Even worse, the ATmega328P (used in the well-known Arduino Uno boards) is limited to 2
KiB of RAM, 32KiB of flash memory, and runs at a 16MHz maximum clock rate. Nonetheless, these
devices are widely used in the industry (automobile, avionics, . . .) as well as in more hobbyist ap-
plications (home automation, toys, . . .) due to their low cost, small size, and their efficient power
management.

Their limited resources lead developers to use low level programming languages such as C or as-
sembly language to program these devices, often needing to know precisely the architecture of the
microcontroller they want to use and consequently having no freedom to change the device in the fu-
ture or distribute their programs onto other systems (the instruction set between two microcontrollers
of different brands is rarely inter-compatible). This way of programming, while being quite efficient
is a difficult task: programming in assembly is error prone, difficult to debug, and time-consuming.
Programming in C is not automatically more convenient, can lead to various runtime errors (pointer
arithmetics are notoriously hard to debug), and can prevent clever code optimizations.

In order to help microcontroller programmers focus on the “logical” aspect of programming, free
them of hardware considerations, and help them create safer programs, projects of developing virtual
machines of higher-level programming languages for such limited microcontrollers have emerged.
These virtual machines allow a safer programming approach (by taking advantage of the higher-level
language features such as static typing or automatic memory management) while keeping fast and
efficient programs. In fact, this approach can lead to a lighter code (including the runtime library and
virtual machine) than the corresponding native code because of the more powerful and more complex
instruction set of the virtual machines and thanks to bytecode compression and cleaning tools.

Among these various virtual machines, we can mention the Darjeeling Virtual Machine (DVM) [3],
a port of the Java virtual machine on Atmel and ARM microcontrollers capable of running a subset of
this language and featuring inheritance, threads, and garbage collection. Similarly, the PICBIT [4] and
PICOBIT [9] systems are able to run Scheme virtual machines on PIC microcontrollers with powerful
performances. Lastly, MicroPython [8] is a lightweight implementation of the Python 3 programming
language, including a subset of its standard library. The target microcontroller of MicroPython is the
STM32F405RG, which is equipped with quite substantial memory resources (1024KiB of flash ROM
and 192KiB of RAM).

Some industrial solutions based on the same virtual machine approach have appeared, such as
MicroEJ [7] which runs Java bytecode on platforms with a microcontroller. However, in the same
way as MicroPython, these platforms offer less limited memory resources than the devices we are
interested in.

2

2.2 OCaPIC: OCaml on PIC microcontrollers

Closer to us, the OCaPIC project [11] provides a VM capable of running OCaml bytecode in the PIC18F
family of microcontrollers. The OCaPIC virtual machine is a port, written in PIC assembly language,
of the original OCaml virtual machine (based on the Zinc Abstract Machine: ZAM [6]). The OCaml
virtual machine is stack-based and lightweight: it only has 148 possible bytecode instructions. Besides
providing classical arithmetics and control-flow instructions, it is also able to handle functional values
with instructions dedicated to creating closures (pointers of code together with an environment) and
applying them.

OCaPIC allows the programming of microcontrollers to take advantage of all the functionalities of
the OCaml language (from version 3.12 to 4.05.0), such as its rich expressiveness (OCaml features var-
ious programming paradigms: functional, modular, imperative, and object-oriented), its automatic
memory management, and its strong static typing that guarantees the absence of typing errors at run-
time. OCaPIC thus offers a powerful, portable developing process, while keeping very satisfactory
performances. OCaPIC comes with various tools, in particular the ocamlclean tool that transforms
the OCaml bytecode to remove unused closures from the heap. This process of bytecode cleaning is
essential for running non-trivial programs on devices with such limited memory space.

OCaPIC, as well as others VM approaches intends to increase code portability: the same bytecode
is able to run in every VM developed for the language. However, it may seem quite contradictory
that these VM have all been developed for a specific set of microcontrollers (sometimes in assembly
language, as it is the case with OCaPIC to maximize performances), restricting the portability of the
VM approach to the constraint of developing a VM for each and every device one would want to run
bytecode on.

3 OMicroB: A Generic Implementation of the OCaml Virtual Ma-
chine

By benefiting from the portability of the bytecode of a higher-level language, OCaPIC has been a first
step towards a generic approach to the OCaml programming of microcontrollers, but is still limited to
the PIC18F family of microcontrollers. In order to run the OCaml VM on other devices (such as Atmel
AVR microcontrollers which are used in Arduino boards), one would have to re-write another version
of the OCaml VM for each of these devices, which can be time-consuming and feel contradictory to
our goal of code portability. We thus intend to provide an even more generic approach by proposing
OMicroB: a VM directly written in C language, that can be configured in order to adapt to the resources
of the hosting microcontroller.

The workflow from an OCaml source file to a microcontroller executable file (represented in figure
1) is the following: first, the source file is compiled 1 , and the resulting bytecode is cleaned 2 . Then,
the cleaned bytecode is converted into a C file 3 . This C file is finally linked with our virtual ma-
chine 4 and used by a C compiler made for the right device 5 . The resulting executable can now be
transferred to the microcontroller and run. We describe these different steps in details in the following
subsections.

3.1 Bytecode compiling (1) and cleaning (2)

The OCaml source file of our microcontroller’s applications are in standard OCaml syntax, and thus
can be used with the native OCaml bytecode compiler (ocamlc). The resulting file is an OCaml byte-
code file that could (provided all of the external C functions that are needed by the program are im-
plemented) still be executed on a standard PC.

This file can contain dead code (primarily unused closures, created at runtime, that come when
opening an OCaml library) that could take a lot of memory and result in unusable programs because
memory is a very scarce resource on microcontrollers. To eliminate this unused code, we use the

3

OCaml

file

ocamlc

(bytecode compilation and link)

bytecode

file

ocamlclean

(bytecode cleanup)

bytecode

file
C file

bc2c

(C generation + compression) gcc

avr-gcc

sdcc

gcc-arm
interpreter

+ runtime

1

2

3

4

5

Figure 1: From an OCaml source file to a microcontroller

ocamlclean tool (bundled with OCaPIC [11]) that removes blocks of unused code by performing
static analysis of the functional program in order to detect which closures may not be used at runtime.
The resulting program uses way less memory and it is now realistic to run it into a device with limited
resources.

3.2 The bytecode-to-C tool (bc2c) (3)

The bc2c tool takes as input the bytecode file output by the OCaml linker ocamlc or the bytecode
cleaner ocamlclean. It then performs some code analysis and transformations to optimize and
compact the bytecode, and finally produces a C source file defining the constants and static arrays
needed by the OMicroB implementation of the OCaml Virtual Machine described farther.

Bytecode compaction

The bytecode “compaction”, performed by bc2c, simply consists in a compact encoding of opcodes
and arguments of the bytecode instructions. Since we target 8 bits architectures in the first place and
since the bytecode is only stored in flash memory and never loaded in RAM, their is no interest in
code alignment and each byte avoided in the code implies a significant gain in bytecode reading and
interpretation.

Obviously, our encoding of the bytecode uses only one byte per opcode. For bytecode instructions
having arguments, we adapt the number of bytes used to store them. For a single instruction like
GETGLOBAL <ind>, we may generate different opcodes depending on the encoding of arguments.
To reduce code pointer sizes stored in the bytecode, each code pointer is implemented by a relative
offset instead of an absolute address. For example, in most cases, a BRANCHIF <ofs> instruction
only takes two bytes in the bytecode, one for the opcode (corresponding to a BRANCHIF with an
argument stored on one byte), and one for the offset as argument.

Virtual machine cleaning

Most of compiled programs do not use the whole set of bytecode instructions, in particular when
some features of the language are not used like exceptions or objects, for example. Furthermore, since
the implementation of instructions with arguments are replicated for the different encoding of argu-
ments, lots of instructions are nearly never generated by bc2c like, for example, a CLOSURE <ofs>
with an offset encoded on four bytes.

The set of opcodes generated bybc2c is then adapted to the program and the C code of the Virtual
Machine is cleaned from all its unused instructions and primitives thanks to constants generated by
bc2c. A small program is then compiled into a small bytecode and a small Virtual Machine. More-
over, to improve the speed of bytecode interpretation, the set of used opcodes is chosen to always be
contiguous, from 0 to <n>-1 where <n> is then number of used opcodes.

4

Initialization shortcut

An OCaml program starts by the deserialization of OCaml allocated constants like strings or constant
lists. It continues with the interpretation of the beginning of the bytecode, typically generated from
libraries, and which its interpretation generates lots of closure allocations, module creations, global
variables computations (like a constant matrix), etc. The main program then starts with its hardware
initializations, inputs/outputs, etc.

The initialization of constants and libraries may be time and memory consuming, typically stack
consuming when some modules exports lots of functions. Furthermore, lots of libraries are usually
used partially, typically when they expose conditional codes or code generated by functor instancia-
tions.

To reduce flash and RAM usage and make initialization faster, the bc2c tool simulates, on a com-
puter at compile time, the execution of the beginning of the program until the first input/output. It
allocates a stack and a heap miming the OMicroB representation of OCaml values, deserialize global
constants and starts bytecode interpretation. At the first input/output, it dumps in the generated C
file the living part of the heap, stack, and bytecode, i.e. the part of the bytecode accessible from the
current code pointer and closures from the cleaned heap.

3.3 The bytecode interpreter and runtime (4)

The OCaml virtual machine

The OCaml virtual machine is based on a stack: this stack (with a companion accumulator - acc -
register) stores OCaml values that are manipulated by the interpreter. In our implementation, these
values can be:

• Direct values (integers, or floats).

• Block values, used for representing “boxed” values (such as tuples, lists, . . .). These blocks are
allocated on the program’s heap.

• Pointers to a block of code in flash memory.

The virtual machine also contains several registers: the main ones being the program counter (pc),
the stack pointer (sp), the accumulator (acc, used to avoid too much stack pop and push), a pointer
to the environment (env) and a pointer to the global data (global).

Given the parametric polymorphism of the OCaml language, the different values inside the virtual
machine are uniformly represented. In OMicroB, values can be configured to be stored on 32 bits or
64 bits words (independently of the actual memory architecture of the microcontroller).

Representation of the OCaml values in OMicroB

In order to be correctly handled by the interpreter, the OCaml values need be quickly distinguishable
depending on their nature: integers, floating-point numbers and pointers all need a different memory
representation for the program to run correctly.

Our value representation differs little from the original representation by the native (used on per-
sonal computers) bytecode interpreter (ocamlrun) with two main exceptions: floating-points num-
bers are not allocated on the heap (as it is done in the PC implementation of the runtime) and are
instead direct1. The other difference is that one needs to discriminate between heap pointers (with
the values stored in RAM) from code pointers (the values stored in the flash memory of the microcon-
troller).

1This choice stems from our desire to use values of simple types (including floats) in a synchronous extension of OCaml
without dealing with interruptions from the garbage collector during a synchronous instant.

5

Our representation of the OCaml values uses NaN boxing [5]: an encoding of values inside the
space of the NaN values defined in the IEEE 754 floating-point standard. This representation is the
following (on a 32 bits configuration):

• Integers are represented on 31 bits, with the lsb2 of the word set to 1:
08162431

[1

• Pointers to a block on the heap have their lsb set to 0 and their first ten msb3 set to 1.

08162431

1 1 1 1 1 1 1 1 1 1 [0

• Pointers to flash memory are represented without modification, but their adresses are limited
to 232−222−1 in order not to have only ones in the ten msb (and be mistaken for heap pointers).

08162431

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ [0

(the “∗”s cannot all be 1)

• Floats are represented “as is” (32 bits) with the following (single) NaN value:
08162431

0 1 1 1 1 1 1 1 1 1 0

This representation is simply extended for a 64 bits configuration.

Interpreting the bytecode file

The core of OMicroB is the OCaml bytecode interpreter: each of the 148 OCaml bytecode instructions
is handled by a corresponding C code that operates on the OCaml stack and registers.

For example, the chunk of bytecode on figure 2 creates a closure (that takes an integer parameter
and computes another closure), applies it to the integer value 4, and applies its functional result to the
integer value 8.

The interpreter reads the array representing the bytecode program (created by bc2c) in the C file.
This array is stored in flash memory (since it is read only) in order to gain RAM space. To lower flash
memory usage of the overall program, we take advantage of the C preprocessor by defining macros
for each OCaml instruction and only compile the code of the instructions that are used in the given
bytecode. That way, the interpreter is adapted to the program it must handle, and doesn’t come with
unneeded code.

The runtime library

In order to run non-trivial programs, OMicroB comes with a runtime library that defines various pre-
defined types such as lists, arrays, references (mutable variables) or strings, and a generic compare
function. Just like the original OCaml virtual machine, OMicroB can also be extended with external
C functions that can be useful when porting the VM to other microcontroller architectures (typically,
the input/output primitives of a given microcontroller will be written in C and use in the OCaml code
just as any OCaml function).

Memory management of the heap is provided by a very simple garbage collector (GC) that im-
plements a stop-and-copy algorithm. This GC is tail recursive (except for the handling of mutually
recursive value), doesn’t allocate any memory for itself, and is very quick, but it has the important
drawback of only allowing the use of half the heap space for all heap allocations.

2least significant bit
3most significant bit

6

l e t add_x x = (* add_x takes an i n t e g e r x and *)
(function y −> y + x) (* c r e a t e s a functional value that takes y *)

in (* and computes y + x *)
l e t add_4 = add_x 4 in (* add_4 i s the function : (function y −> y + 4) *)
add_4 8 (* = 12 *)

56 BRANCH 62 go to address 62
57 GRAB 1 create a closure (which code begins at address 58) into the stack

and go back to the caller (i.e. return at address 66)
58 ACC 0 put the top value of the stack into acc (the accumulator)
59 PUSHACC 2 push the content of acc into the stack and

put the third value from the top of the stack into acc
60 ADDINT add the first and second value of the stack and put the result in acc
61 RETURN 2 end of the closure
62 CLOSURE 0 57 create a closure (which code begins at address 57) into acc
63 PUSHCONST 4 push the content of acc into the stack and put the value 4 into acc
64 PUSHACC 1 push the content of acc into the stack and

put the second value from the top of the stack into acc
65 APPLY 1 go to the code of the closure that is inside acc (i.e. the code at address 57)

and put the result (corresponding to function y -> y + 4) into acc
66 PUSHCONST 8 push acc and put 8 in acc
67 PUSHACC 1 push acc and put the second value from the top of the stack into acc
68 APPLY 1 go to the code of the closure that is inside acc, and put the result into acc

Figure 2: Example of an OCaml file and its corresponding bytecode

3.4 Compiling the C program (5)

Compiling the resulting C program is straightforward: we use a compiler adapted to the desired mi-
crocontroller (e.g. avr-gcc for Atmel microcontrollers, sdcc for PIC, . . .). The main part of the C
program that must be different between families of devices is located in the runtime: the needed C
primitives called by the virtual machine (for example those needed to switch the values on the micro-
controller’s pins) often need to be written differently depending on the used architecture.

4 Performances and application to critical software

We conducted different tests of OCaml programs using our OMicroB virtual machine on the Arduino
Uno board, a common hobbyist device holding an AVR Atmega328p microcontroller with a 16 MHz
clock rate, 2 KiB or RAM, and a flash memory of 32 KiB.

The different executed tests are the following:

– empty is the empty program, doing nothing. Note that since this program does nothing, and
thanks to bc2c’s instructions cleaning, the generated source doesn’t contain any code responsi-
ble for handling any OCaml instruction, and the executable is thus small (it contains only the
code of the runtime). Disabling instruction cleaning, the VM total footstep (interpreter + GC +
runtime) would be around 22 KiB, so the gain brought by the bc2c analysis is substantial.

– oddeven checks if the integers between 0 and 100 are odd or even numbers using two mutually
recursive functions. This programs is intended to test (mutual) recursion.

– sieve computes 100 times the prime numbers inferior to 10 using the sieve of Eratosthenes
method. This program tests the pattern matching mechanism as well as the GC of the runtime.

7

– deriv computes 100 times the symbolic derivative of x2 over x. This is intended to test more
complex pattern matching, the GC, and the representation of strings.

– integr computes 100 times the integral
∫ 1

0 x2 dx. This program tests the float implementation
and the GC.

The table of figure 3 displays the various space and time results of the execution of these programs:
the sizes of the OCaml bytecodes, the sizes of their executable files, the speed of their execution on the
Uno, the number of instructions interpreted by the VM during execution, the deduced number of
instructions per second, the initial RAM use of the program, and the configuration of OMicroB for the
stack size and heap size.

Program Bytecode Exec. Time # of Speed Init. RAM Stack size Heap size
size (B) size (B) (ms) insts (inst/s) usage (B) (words) (words)

empty 0 4270 0 0 _ 64 0 0
oddeven 66 5318 195 31 834 163 251 1003 64 64
sieve 189 9646 476 53 247 111 863 1825 64 164
deriv 261 8846 71 7391 104 098 1946 28 196
integr 132 9722 212 21 936 103 471 1849 64 164

Figure 3: Execution time and space of various OCaml programs

These different results validate our generic approach: the generated code (containing the virtual
machine and its runtime, as well as the bytecode of the program) can fit in the very limited memory
space offered by the Arduino Uno. Our automatic dynamic memory management is able to efficiently
reuse memory: for example, the integr program allocates 100 closures of 5 words in total (i.e. 16
KiB) during its execution, but the program only needs one closure at every moment: the GC cleans the
heap accordingly 3 times during execution. The sieve and deriv programs perform respectively 50
and 16 garbage collection passes during their execution.

The cost of this portable approach is difficult to precisely evaluate, as comparing the previous re-
sults with OCaPIC might not be particularly relevant: hardware differences between the architectures
of the Atmel AVR of the Arduino and the PIC of OCaPIC makes comparison unsuitable, as for exam-
ple reading a byte in flash memory takes 12 cycles on AVR while it takes only 2 on a PIC. Moreover,
we handle in OMicroB values stored on 32 bits words, whereas OCaPIC uses 16 bits values, and the
small size of the Uno’s flash memory implies frequent triggers of the GC, thus a decrease in speed is
expected: OMicroB on AVR is about 3.7 times slower than OCaPIC on a PIC18F4620 (due in parts to
these differences in value representation, cost of frequent flash memory access, and heap space).

We experimented with porting OMicroB to PIC18 microcontrollers, unfortunately the performances
of the various C compilers for 8 bits PIC microcontrollers (sdcc or xc8) were quite poor and their op-
timizations not very satisfactory (e.g. theswitch instruction that discriminates between the different
bytecode instructions was compiled by xc8 into several nested if instructions): our speed results fell
at least 5 times slower than the heavily optimized VM of OCaPIC when using these compilers.

The generic approach of using a virtual machine written in C comes with the price of predictable
but acceptable decrease in speed (which can be - as we have noticed with PIC - greatly dependent of
the C compiler), and we could certainly improve the speed performances of the VM by writing some
target-specific code for the parts that we observed as badly optimized by compilers, as well as imple-
menting a more efficient garbage collection algorithm. However, speed was not our primary goal, as
our target market are hobbyists applications (that will benefit from the programming level and the
ease of debugging applications), and industry embedded programs which will take advantage of the
safety offered by the OCaml language, via its static typing and analysis tools. The targeted applications
won’t need high speed performances - since native programs are hardly beatable in speed anyways -
and we instead focused our efforts in reducing memory use (the targeted architectures might be 100
times slower than PCs, but their memory resources are 1 000 000 times smaller). Small programs might

8

be slower than their equivalent in C, but thanks to the terseness of bytecode instructions, the total size
of the entire program (VM + runtime + bytecode) will be smaller for more complex programs (and thus
fit in very limited space).

Application to critical systems

In [10] we argued that a synchronous programming model was very well suited for concurrent pro-
gramming of microcontrollers, especially for critical applications. A synchronous model assures us
that no new values need to be allocated on the heap during execution, that way the garbage collec-
tor cannot be triggered during execution of a synchronous instant and this is a major advantage for
Worst-Case Execution Time (WCET) and memory use analysis for critical programs (as well as speed
performances).

For example, the following synchronous function (or node) written in OCaLustre (a data-flow syn-
chronous extension of OCaml) defining a counter can easily be handled by OMicroB (for clarity, we
give on the right side the translation of this function into the Lustre synchronous language):

l e t%node count (i n i t) ~return : (c) =
c = i n i t −>> (c + 1)

node count (i n i t : i n t) returns (c : i n t) ;
l e t

c = i n i t fby c + 1
t e l

A program executing this node for 1000 loops has the following memory and speed results (note that
the heap use of such a program is very light - only 10 words are needed):

Bytecode Executable Time # of Speed Init. RAM Stack size Heap size
size (B) size (B) (ms) insts (inst/s) usage (B) (words) (words)

77 6546 153 25 030 163 594 389 16 10

The use of both OCaml for programs and C for the VM offers a way to factorize code analysis by
running different tools on each levels: the bytecode can be debugged using the traditional OCaml de-
bugger (ocamldebug) or can be profiled without having to flash the microcontroller by compiling
and running the VM on a Unix machine using a native C compiler (and a library simulating the I/O
of the chip). Using C tools, execution time can be bounded with the help of a WCET analyser such as
Bound-T [2] or the OTAWA framework [1] by computing an execution time for each bytecode instruc-
tion. Stack usage of the VM can also be computed using C or assembly tools. We were successful in
computing WCET of each OCaml instructions for an Atmel target with the help of Bound-T.

5 Conclusion and future work

We described a virtual machine approach of programming microcontrollers, using an implementation
of the OCaml virtual machine with various tools dedicated to code size and memory use compaction.
We were able to run the entire VM on very limited devices, with good performances. The same perfor-
mances are expected for bigger programs running on similar devices, but with more memory space.

Our generic virtual machine approach guarantees portability: we were successful in running sim-
ple programs on Atmel AVR microcontrollers, experiment with PIC microcontrollers, and debug on
PC. This approach offers access to various levels of factorization: bytecode analysis can be done with-
out information about the target device, and C tools can be used to analyze compiled programs.

We argued in [10] that programs for microcontrollers are inherently concurrent. We proposed
OCaLustre, a lightweight synchronous extension to OCaml. This extension is even more promising
using this generic VM approach because this factorization of code can be taken advantage of to com-
pute the WCET of each bytecode instruction appearing during a synchronous instant.

OMicroB is dedicated to target simple non critical programs (such as games) in very limited hard-
ware, as well as critical embedded applications, for example in the LCHIP4 project (a low cost safe ex-
ecution platform based on redundant PIC32 microcontrollers, where our VM approach would bring a

4http://www.clearsy.com/2016/10/4260/

9

diversified execution for redundancy). Those two targets can overlap on safety needs, as it was shown
with the specification (and its check) of a Tetris game for the Arduboy board in SPARK5.

The results of our experiments with OMicroB are very promising, and we intend to improve its
performance and target more devices: we are interested in experimenting with the PIC32 microcon-
trollers used in the LCHIP project (their compilers based on GCC might offer better code optimizations
than on PIC8). To offer even better performances, the implementation of a Mark & Compact garbage
collector that wouldn’t “waste” half of the heap is a work in progress. In bc2c, static analysis by ab-
stract interpretation could be performed so that we could detect global data that are never modified
(such as strings and closures) and move them at compile-time from the RAM of the microcontroller to
its (typically larger) flash memory. With this optimization, instead of dumping one heap, bc2c should
generate three heaps: an immutable heap stored in the flash memory containing constant and un-
movable blocks known at compile time, a mutable heap in the RAM memory containing mutable but
unmovable blocks known at compile time and pointed by the initial stack and the immutable heap,
and the standard heap in RAM, initially empty, used to store blocks allocated at runtime and managed
by the garbage collector. These different improvements will allow to run more complex programs on
devices with a small memory space and will also be useful on more powerful microcontrollers.

References

[1] BALLABRIGA, C., CASSÉ, H., ROCHANGE, C., AND SAINRAT, P. OTAWA: An Open Toolbox for Adap-
tive WCET Analysis. In Workshop on Software Technologies for Embedded and Ubiquitous Sys-
tems, SEUS 2010 (Oct. 2010), pp. 35–46.

[2] BOUND-T. Bound-T time and stack analyser - http://www.bound-t.com.

[3] BROUWERS, N., CORKE, P., AND LANGENDOEN, K. Darjeeling, a java compatible virtual machine
for microcontrollers. In Proceedings of the ACM/IFIP/USENIX Middleware ’08 Conference Com-
panion (New York, NY, USA, 2008), Companion ’08, ACM, pp. 18–23.

[4] FEELEY, M., AND DUBÉ, D. Picbit: a Scheme system for the PIC microcontroller. In Scheme and
Functional Programming Workshop (SFPW’03) (Nov. 2003), pp. 7–15.

[5] GUDEMAN, D. Representing type information in dynamically typed languages. Tech. Rep. TR
93-27, Dept of Computer Science, The University of Arizona, Oct. 1993.

[6] LEROY, X. The ZINC experiment : an economical implementation of the ML language. Tech. Rep.
RT-0117, INRIA, Feb. 1990.

[7] MICROEJ. Embedded Software Solutions for IoT Devices - http://www.microej.com.

[8] MICROPYTHON. Python for microcontrollers - https://micropython.org.

[9] ST-AMOUR, V., AND FEELEY, M. PICOBIT: A Compact Scheme System For Microcontrollers. In
Proceedings of the 21st international conference on Implementation and application of functional
languages (2010), IFL’09, Springer-Verlag, pp. 1–17.

[10] VAROUMAS, S., VAUGON, B., AND CHAILLOUX, E. Concurrent Programming of Microcontrollers,
a Virtual Machine Approach. In 8th European Congress on Embedded Real Time Software and
Systems (ERTS 2016) (2016).

[11] VAUGON, B., WANG, P., AND CHAILLOUX, E. Programming Microcontrollers in OCaml: the
OCaPIC Project. In International Symposium on Practical Aspects of Declarative Languages (PADL
2015) (June 2015), no. 9131 in LNCS, Springer Verlag, pp. 132–148.

5http://blog.adacore.com/spark-tetris-on-the-arduboy

10

http://www.bound-t.com
http://www.microej.com
https://micropython.org

	Introduction
	Programming Microcontrollers with High-Level Languages
	Virtual Machines on Microcontrollers
	OCaPIC: OCaml on PIC microcontrollers

	OMicroB: A Generic Implementation of the OCaml Virtual Machine
	Bytecode compiling (1) and cleaning (2)
	The bytecode-to-C tool (bc2c) (3)
	The bytecode interpreter and runtime (4)
	Compiling the C program (5)

	Performances and application to critical software
	Conclusion and future work

