M. Abifadel, Living the PCSK9 Adventure: from the Identification of a New Gene in Familial Hypercholesterolemia Towards a Potential New Class of Anticholesterol Drugs, Current Atherosclerosis Reports, vol.48, issue.23, p.439, 2014.
DOI : 10.1002/hep.22354

J. L. Goldstein and M. S. Brown, Familial hypercholesterolemia, The American Journal of Medicine, vol.58, issue.2, pp.8-16, 1978.
DOI : 10.1016/0002-9343(75)90563-X

T. L. Innerarity, Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding., Proc. Natl. Acad. Sci. USA, pp.6919-6923, 1987.
DOI : 10.1073/pnas.84.19.6919

URL : http://www.pnas.org/content/84/19/6919.full.pdf

M. Abifadel, Mutations in PCSK9 cause autosomal dominant hypercholesterolemia, Nature Genetics, vol.12, issue.2, pp.154-156, 2003.
DOI : 10.1146/annurev.cellbio.12.1.697

N. G. Seidah, The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation, Proc. Natl. Acad. Sci. USA, pp.928-933, 2003.
DOI : 10.1161/01.ATV.20.4.1089

M. C. Mcnutt, T. A. Lagace, and J. Horton, Catalytic Activity Is Not Required for Secreted PCSK9 to Reduce Low Density Lipoprotein Receptors in HepG2 Cells, Journal of Biological Chemistry, vol.327, issue.Pt 3, pp.20799-20803, 2007.
DOI : 10.1056/NEJMoa054013

M. Marduel, p.Leu167del Mutation, Human Mutation, vol.257, issue.2, pp.83-87, 2013.
DOI : 10.1007/s11883-001-0061-4

C. K. Garcia, Autosomal Recessive Hypercholesterolemia Caused by Mutations in a Putative LDL Receptor Adaptor Protein, Science, vol.292, issue.5520, pp.1394-1398, 2001.
DOI : 10.1126/science.1060458

M. Benn, G. F. Watts, A. Tybjaerg-hansen, and B. G. Nordestgaard, Mutations causative of familial hypercholesterolaemia: screening of 98 098 individuals from the Copenhagen General Population Study estimated a prevalence of 1 in 217, European Heart Journal, vol.25, issue.17, pp.1384-1394, 2016.
DOI : 10.1093/eurheartj/ehs038

J. Wang, Polygenic Versus Monogenic Causes of Hypercholesterolemia Ascertained ClinicallyHighlights, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.36, issue.12, pp.2439-2445, 2016.
DOI : 10.1161/ATVBAHA.116.308027

B. Sjouke, Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype???phenotype relationship, and clinical outcome, European Heart Journal, vol.37, issue.9, pp.560-565, 2015.
DOI : 10.1038/ng1509

B. G. Nordestgaard, Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society, European Heart Journal, vol.97, issue.14, pp.3478-3490, 2013.
DOI : 10.1136/hrt.2010.213975

M. Marduel, Molecular Spectrum of Autosomal Dominant Hypercholesterolemia in France, Human Mutation, vol.31, issue.11, pp.1811-1824, 2010.
DOI : 10.1002/humu.21348

URL : https://hal.archives-ouvertes.fr/hal-00573066

P. N. Hopkins, Gain of Function Mutations and Its Specific Treatment With Alirocumab, a PCSK9 Monoclonal AntibodyCLINICAL PERSPECTIVE, Circulation: Cardiovascular Genetics, vol.8, issue.6, pp.823-831, 2015.
DOI : 10.1161/CIRCGENETICS.115.001129

A. C. Alves, A. Etxebarria, A. K. Soutar, C. Martin, and M. Bourbon, Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia, Human Molecular Genetics, vol.322, issue.7, pp.1817-1828, 2014.
DOI : 10.1126/science.1161524

M. M. Motazacker, Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia, European Heart Journal, vol.298, issue.Suppl. 1, pp.1360-1366, 2012.
DOI : 10.1126/science.1078124

C. Maglio, Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing, Journal of Internal Medicine, vol.14, issue.4, pp.396-403, 2014.
DOI : 10.1038/nrg3455

M. J. Bamshad, Exome sequencing as a tool for Mendelian disease gene discovery, Nature Reviews Genetics, vol.43, issue.11, pp.745-755, 2011.
DOI : 10.1038/ng.806

N. O. Stitziel, Exome Sequencing in Suspected Monogenic DyslipidemiasCLINICAL PERSPECTIVE, Circulation: Cardiovascular Genetics, vol.8, issue.2, pp.343-350, 2015.
DOI : 10.1161/CIRCGENETICS.114.000776

URL : http://circgenetics.ahajournals.org/content/circcvg/8/2/343.full.pdf

G. Schonfeld, Familial hypobetalipoproteinemia, Journal of Lipid Research, vol.38, issue.5, pp.878-883, 2003.
DOI : 10.1161/01.ATV.19.10.2368

L. H. Andersen, A. R. Miserez, Z. Ahmad, and R. L. Andersen, Familial defective apolipoprotein B-100: A??review, Journal of Clinical Lipidology, vol.10, issue.6, pp.1297-1302, 2016.
DOI : 10.1016/j.jacl.2016.09.009

J. P. Rabès, R3531C Mutation in the Apolipoprotein B Gene Is Not Sufficient to Cause Hypercholesterolemia, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.20, issue.10, pp.76-82, 2000.
DOI : 10.1161/01.ATV.20.10.e76

J. Boren, Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100., Journal of Clinical Investigation, vol.101, issue.5, pp.1084-1093, 1998.
DOI : 10.1172/JCI1847

A. R. Miserez and U. Keller, Differences in the Phenotypic Characteristics of Subjects With Familial Defective Apolipoprotein B-100 and Familial Hypercholesterolemia, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.15, issue.10, pp.1719-1729, 1995.
DOI : 10.1161/01.ATV.15.10.1719

J. Borén, U. Ekström, B. Agren, P. Nilsson-ehle, and T. L. Innerarity, The Molecular Mechanism for the Genetic Disorder Familial Defective Apolipoprotein B100, Journal of Biological Chemistry, vol.256, issue.12, pp.9214-9218, 2001.
DOI : 10.1172/JCI5549

E. R. Thomas, mutation that causes autosomal dominant hypercholesterolemia, Molecular Genetics & Genomic Medicine, vol.467, issue.3, pp.155-161, 2013.
DOI : 10.1038/nature09534

M. Futema, mutations, Journal of Medical Genetics, vol.45, issue.8, pp.537-544, 2014.
DOI : 10.1038/ng.2797

H. Sun, Proprotein Convertase Subtilisin/Kexin Type 9 Interacts With Apolipoprotein B and Prevents Its Intracellular Degradation, Irrespective of the Low-Density Lipoprotein Receptor, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.7, pp.1585-1595, 2012.
DOI : 10.1161/ATVBAHA.112.250043

S. Poirier, Dissection of the Endogenous Cellular Pathways of PCSK9-induced Low Density Lipoprotein Receptor Degradation, Journal of Biological Chemistry, vol.258, issue.42, pp.28856-28864, 2009.
DOI : 10.1517/14728220802600715

D. Susan-resiga, The Proprotein Convertase Subtilisin/Kexin Type 9-resistant R410S Low Density Lipoprotein Receptor Mutation, Journal of Biological Chemistry, vol.269, issue.5, pp.1573-1590, 2017.
DOI : 10.1002/jcc.20291

G. Rauh, Identification of a heterozygous compound individual with familial hypercholesterolemia and familial defective apolipoprotein B-100, Klinische Wochenschrift, vol.100, issue.7, pp.320-324, 1991.
DOI : 10.1161/01.ATV.10.4.577

P. Benlian, Phenotypic expression in double heterozygotes for familial hypercholesterolemia and familial defective apolipoprotein B-100, Human Mutation, vol.18, issue.4, pp.340-345, 1996.
DOI : 10.1161/01.ATV.11.2.379

A. Decampo, K. Schallmoser, H. Schmidt, H. Toplak, and G. M. Kostner, A novel splice-site mutation in intron 7 causes more severe hypercholesterolemia than a combined FH-FDB defect, Atherosclerosis, vol.157, issue.2, pp.524-525, 2001.
DOI : 10.1016/S0021-9150(01)00535-4

D. C. Rubinsztein, Characterization of six patients who are double heterozygotes for familial hypercholesterolemia and familial defective apo B-100, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.13, issue.7, pp.1076-1081, 1993.
DOI : 10.1161/01.ATV.13.7.1076

E. S. Tai, Compound heterozygous familial hypercholesterolemia and familial defective apolipoprotein B-100 produce exaggerated hypercholesterolemia, Clin. Chem, vol.47, pp.438-443, 2001.

A. Taylor, A double heterozygote for familial hypercholesterolaemia and familial defective apolipoprotein B-100, Annals of Clinical Biochemistry, vol.47, issue.5, pp.487-490, 2010.
DOI : 10.1258/acb.2010.010089

URL : http://journals.sagepub.com/doi/pdf/10.1258/acb.2010.010089

L. Pisciotta, Additive effect of mutations in LDLR and PCSK9 genes on the phenotype of familial hypercholesterolemia, Atherosclerosis, vol.186, issue.2, pp.433-440, 2006.
DOI : 10.1016/j.atherosclerosis.2005.08.015

S. Bertolini, Spectrum of mutations and phenotypic expression in patients with autosomal dominant hypercholesterolemia identified in Italy, Atherosclerosis, vol.227, issue.2, pp.342-348, 2013.
DOI : 10.1016/j.atherosclerosis.2013.01.007

B. Sjouke, Double-heterozygous autosomal dominant hypercholesterolemia: Clinical characterization of an underreported disease, Journal of Clinical Lipidology, vol.10, issue.6, pp.1462-1469, 2016.
DOI : 10.1016/j.jacl.2016.09.003

S. Elbitar, Proprotein convertase subtilisin / kexin 9 (PCSK9) inhibitors and the future of dyslipidemia therapy: an updated patent review (2011-2015), Expert Opinion on Therapeutic Patents, vol.36, issue.129, pp.1377-1392, 2011.
DOI : 10.1038/nbt0516-452a

G. Siest, Objectives, Design and Recruitment of a Familial and Longitudinal Cohort for Studying Gene-Environment Interactions in the Field of Cardiovascular Risk: The Stanislas Cohort, Clinical Chemistry and Laboratory Medicine, vol.35, issue.1, pp.35-42, 1998.
DOI : 10.1016/0009-8981(91)90106-M

J. P. Rabès, Familial ligand-defective apolipoprotein B-100: Simultaneous detection of the ARG3500???GLN and ARG3531???CYS mutations in a French population, Human Mutation, vol.86, issue.2, pp.160-163, 1997.
DOI : 10.1002/(SICI)1098-1004(1997)10:2<160::AID-HUMU8>3.0.CO;2-O

M. Li, H. Gui, J. S. Kwan, S. Bao, and P. C. Sham, A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases, Nucleic Acids Research, vol.4, issue.4, p.53, 2012.
DOI : 10.1038/msb.2008.27

S. Benjannet, NARC-1/PCSK9 and Its Natural Mutants, Journal of Biological Chemistry, vol.105, issue.47, pp.48865-48875, 2004.
DOI : 10.1086/302370

URL : http://www.jbc.org/content/279/47/48865.full.pdf

G. Dubuc, A new method for measurement of total plasma PCSK9: clinical applications, Journal of Lipid Research, vol.68, issue.1, pp.140-149, 2010.
DOI : 10.1073/pnas.0903849106