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Most transhumeral amputees report that their prosthetic device lacks functionality,

citing the control strategy as a major limitation. Indeed, they are required to control

several degrees of freedom with muscle groups primarily used for elbow actuation.

As a result, most of them choose to have a one-degree-of-freedom myoelectric hand

for grasping objects, a myoelectric wrist for pronation/supination, and a body-powered

elbow. Unlike healthy upper limb movements, the prosthetic elbow joint angle, adjusted

prior to the motion, is not involved in the overall upper limb movements, causing

the rest of the body to compensate for the lack of mobility of the prosthesis. A

promising solution to improve upper limb prosthesis control exploits the residual limb

mobility: like in healthy movements, shoulder and prosthetic elbow motions are coupled

using inter-joint coordination models. The present study aims to test this approach. A

transhumeral amputated individual used a prosthesis with a residual limb motion-driven

elbow to point at targets. The prosthetic elbow motion was derived from IMU-based

shoulder measurements and a generic model of inter-joint coordinations built from

healthy individuals data. For comparison, the participant also performed the task while

the prosthetic elbow was implemented with his own myoelectric control strategy. The

results show that although the transhumeral amputated participant achieved the pointing

task with a better precision when the elbow was myoelectrically-controlled, he had to

develop large compensatory trunk movements. Automatic elbow control reduced trunk

displacements, and enabled a more natural body behavior with synchronous shoulder

and elbow motions. However, due to socket impairments, the residual limb amplitudes

were not as large as those of healthy shoulder movements. Therefore, this work also

investigates if a control strategy whereby prosthetic joints are automatized according to

healthy individuals’ coordination models can lead to an intuitive and natural prosthetic

control.

Keywords: upper limb prosthetics, transhumeral amputation, prosthetic elbow control, inter-joint coordination,

compensatory strategies
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1. INTRODUCTION

Prosthetic hands have become more and more anthropomorphic
in the course of the last decades thanks to the progress in
mechatronics, enabling devices to replicate almost perfectly
the human hand. For the past years, a myriad of prosthetic
hand designs have been proposed and commercialized (Belter
et al., 2013), however, fewer solutions have been proposed
for the other upper limb joints. Elbow substitution includes
passive solutions, like the 12K44 ErgoArm R© Hybrid Plus or
the 12K50 ErgoArm Electronic Plus R© (Ottobock©) that can
be mechanically- or myoelectrically- locked into a desired
position, and active prosthetic elbows, like the DynamicArm
12K100 (Ottobock©) or the UtahArm3+ (Motion Control
Inc.). The latters, not covered by social security systems
in most developed countries, are not affordable for most
amputees that are thus fitted with simpler and less expensive
prosthetic elbows. Despite the improvement of mechanical
features to imitate the human upper limb movements, upper
limb amputees, and particularly transhumeral amputees, do not
achieve natural movements. In this study, a natural movement
refers to a movement that is similar to the body behavior of a
healthy individual in terms of shoulder/elbow joint amplitudes,
selectivity and synchronicity (Bernstein, 1967). By opposition,
amputated individuals equipped with an externally-powered
prosthesis perform decomposed upper limb movements, which
consist of successive sequences of shoulder, elbow, and wrist
movements with large compensatory involvement of the whole
body (especially of the trunk), and which require an important
cognitive load. Indeed, they often report that current prosthetic
devices lack functionality and do not provide the expected
assistance in activities of the daily living (ADLs) (Biddiss and
Chau, 2007), which leads to the development of compensatory
strategies involving the rest of the body, causing shoulder,
back, and contralateral limb disorders (Østlie et al., 2011).
Subsequently, transhumeral amputees are more likely to reject
their prosthesis than transradial amputees (Wright et al., 1995;
Biddiss and Chau, 2007).

The counter-intuitive sequential control strategy, along with
the device weight and the absence of feedback, is cited as one of
the main reasons of limited prosthesis usage (Atkins et al., 1996).
Myoelectric control is the most common method to control
an externally-powered prosthetic upper limb. Contractions
of two antagonistic residual muscles (generally biceps and
triceps for transhumeral amputees), measured with surface
electromyographic (sEMG) electrodes, are directly controlling
a prosthetic function, such as hand opening/closing, or wrist
pronation/supination. A combination of muscle contractions, or
a co-contraction (i.e. simultaneous contraction of antagonistic
muscles), is then required to switch from one mode (e.g.,
hand closing/opening) to another (e.g., elbow flexion/extension),
without being associated with direct prosthetic motion. Although
the number of prosthetic joints increases with the amputation
level, the same on/off control strategy is applied to forearm
and arm prostheses, yielding a dimensionality issue with more
controllable degrees of freedom (DoFs) than control inputs.
Transhumeral prosthesis users achieve eventually good control

of hand and wrist, but have difficulties in general when an active
myoelectric elbow is added to the prosthetic arm. Even today, due
to sequential and slow prosthetic control, a prosthetic elbow is
mostly used for lifting motions and then locked, instead of being
involved in global upper limb movements.

Numerous methods like pattern recognition strategies or
neural signal interpretation have been developed recently
(Castellini et al., 2014) to improve the users possibilities with
myoelectric control. However, sEMG signals, often described
as unreliable (Bottomley, 1965; Day, 2002), are impeding the
implementation of advanced processing techniques. Several
studies have investigated alternative control methods to
myoelectric signals, such as sonomyography (Sierra González
and Castellini, 2013; Akhlaghi et al., 2016), mechanomyography
(Silva and Chau, 2003), myokinemetric signals (Abboudi et al.,
1999), myokinetic signals (Cho et al., 2016). One possible and yet
less explored solution relies on the use of residual limb motion
to control a prosthetic limb (Lipschutz et al., 2011; Barton and
Sorkin, 2014).

Upper limb prostheses are built with numerous DoFs in
order to duplicate the human arm mobility. Hence, like a
healthy limb, the prosthesis can perform a movement with an
infinite variety of joints configurations. The difficulty is to select
the most natural kinematic solution. The current approach of
prosthetic devices is based on the association of one neural signal
to a unique prosthetic DoF, supposing that the human brain
controls each muscle group, and thus each joint, voluntarily
and independently. On the contrary, natural limb movements
are explained by a coordination between joint kinematics, result
of a synchronous control of muscle groups from the central
nervous system (Latash et al., 1999). Consequently, healthy
movements are task-centered, whereby one focuses on object
or hand motion without explicitly controlling each muscle or
joint motion. Previous studies have shown evidence of invariant
kinematic characteristics in upper limbmovements (Roby-Brami
et al., 2000; Bockemühl et al., 2010) proving the coordinated
aspect of joint movements, and especially of the shoulder/elbow
coupling (Lacquaniti and Soechting, 1982; Micera et al., 2005).

Replicating a human-like control strategy whereby joint
motion is coupled onto a transhumeral prosthesis is a promising
solution. Thus, residual limb mobility, that most transhumeral
amputees have, can be used to drive automatically the elbow
joint, as originally presented in Gibbons et al. (1987) who
developed a mechanical system that links residual limbmotion to
elbow flexion and wrist rotation. If the inter-joint coordination
relationship is known, then distal joint motion (e.g., elbow
flexion) could be predicted from measurement of proximal
joint kinematics (e.g., shoulder). To this aim, research groups
have been focusing on modeling the healthy shoulder/elbow
coordination during common gestures like pointing or grasping.
Several regression tools have been utilized to approximate
the nonlinear function relating shoulder to elbow kinematics,
however artificial neural networks (ANNs) seem to give the best
prediction results. The study in Kaliki et al. (2008) used an ANN-
based architecture to estimate offline distal joint kinematics
from recordings of healthy individuals’ pointing movements: the
selected set of ANN inputs required the measurement of three
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shoulder angles and two shoulder translations to predict elbow
flexion angle and forearm rotation. In Iftime et al. (2005), an
upper limb inter-joint coordination model was derived from
kinematic data of healthy individuals moving objects placed
on a plane surface: a radial basis functions network (RBFN)-
based regression was used to approximate the shoulder/elbow
relationship. In most previous approaches, the training data
sets were recorded with camera-based motion capture systems,
which cannot be used easily outside laboratory environments,
especially in the prosthesis users environments. It is only
recently that the development of accurate embedded motion
sensors like inertial measurement units (IMUs) and computing
power improvement of micro-controllers have enabled the
implementation of an automatic prosthetic control strategy using
inter-joint coordination models. Nonetheless, the approaches
and models presented in the literature have not yet been tested
on prosthetic devices. In Mijovic et al. (2008) and Farokhzadi
et al. (2017), elbow flexion could be estimated offline with
accelerometer-based shoulder kinematic measurements, yet the
control strategy was not implemented. Similarly, the recurrent
relationship between humerus elevation (i.e. angle between
the humerus longitudinal axis and the trunk vertical axis)
and wrist pronation/supination was investigated in Montagnani
et al. (2015) with an IMU-based training data set and a
principal component analysis (PCA)-based regression method.
Most recent results combine IMU-based shoulder kinematics
data and residual limb’s myoelectric activity to build the inter-
joint coordination model. In Akhtar et al. (2012), EMG signals
from arm and deltoid muscle groups were added to shoulder
angles data as inputs of an ANN-basedmodel: elbow and forearm
rotation angles were estimated offline using a training data
set recorded with healthy participants. Comparably, a set of
coefficients linearly relating the humerus elevation angle and the
EMG signals to the elbow angular velocity was found in the study
in Alshammary et al. (2016); they were used in real time by
healthy individuals to control a virtual prosthesis.

Despite promising offline prediction results, the paradigm
whereby the residual limb motion and the motorized elbow are
coupled based on inter-joint coordination models has not been
tested on a prosthesis since the work of Gibbons et al. (1987).
The aim of the present study is to test a similar paradigm with a
transhumeral amputee using a prosthesis. Preliminary work was
focused on concept validation with healthy subjects controlling
a prosthetic forearm implemented with the participants’ own
model of shoulder/elbow coordinations (Merad et al., 2016a).
Like other studies in the literature, the inter-joint coordination
model was built using the data from healthy gestures recordings.
However, the shoulder/elbow coupling cannot be recorded with
a transhumeral amputee. A possible solution, investigated by
Merad et al. (2016b), combines the inter-joint coordination data
from several healthy individuals to build a generic model. The
present study investigates the outcomes of automatizing the
elbow motion according to residual limb movements during
an experimental session with a transhumeral amputee. The
latter pointed at targets with a prosthesis prototype including
an motorized elbow implemented with a generic inter-joint
coordination model from two healthy persons’ kinematic data.

For comparison, the participant performed also the task with
the prosthesis implemented with his own myoelectric control
strategy.

2. MATERIALS AND METHODS

A novel control approach whereby the prosthetic elbow
motion is automatically-driven by the residual limb motion
was tested with a transhumeral amputated individual. The
study was divided into two phases, performed several days
apart: the training data set acquisition, and the control test.
During the first part of the experiment, healthy individuals
performed the pointing task while their left upper limb
kinematics was recorded. Shoulder and elbow angular
velocities were utilized to build a generic model of the left
inter-joint coordination that included both subjects pointing
strategies. During the control test, a left-amputated transhumeral
participant used a prosthesis prototype implemented with the
healthy data-based coordination model to point at targets.
To further elucidate the outcomes of this automatic control
approach, the participant performed the task also with his
own myoelectric control strategy replicated on the same
prototype.

2.1. Participants
Two healthy individuals and one transhumeral amputee
participated in the study. This study was carried out in
accordance with the recommendations of the Université Paris
Descartes ethic committee CERES, which had approved the
protocol. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. Two right-handed
able-bodied individuals (one male, 1.82 m, and one female, 1.72
m, both 25 years old) were recruited for the training data set
acquisition experiment.

The transhumeral amputated individual who took part in the
experiment was 34 years old (height 1.80 m), and underwent a
transhumeral amputation of the left limb in 2014 after a work-
related accident. The inclusion criteria were a long residual limb,
good residual limb mobility, absence of phantom limb pain,
no brachial plexus damage, myoelectric prosthesis user, and a
prosthesis socket and harness that allowed some residual limb
mobility. The range of motion without socket and harness of
the selected participant’s residual limb was within the values of a
healthy shoulder’s range of motion.When wearing the prosthesis,
he could do a shoulder flexion of 50◦, a shoulder extension
of 30◦, a shoulder abduction of 40◦, but the socket prevented
humeral axial rotation. Since the amputation, the participant was
equipped with an i-Limb Touch Bionics hand and a motorized
wrist rotation. He received a myoelectrically-controlled elbow
(UtahArm3+, Motion Control Inc.) a couple of months before
being recruited for the experiment. Hence, he was considered
to be trained with myoelectric control using biceps and triceps
contractions. However, a poor control over triceps contractions,
and hence co-contractions, limited the participant’s myoelectric
capabilities: his myoelectric control strategy, detailed thereafter,
had to be adapted to ease his daily prosthetic usage.
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2.2. Protocol
The task was the same for all participants; they were instructed to
point at targets with their left limb; healthy individuals used a rod
attached to a wrist splint’s back instead of their index, whereas the
amputated individual achieved the task with the prosthetic index.
The initial position was defined with the left elbow flexed at 90◦,
and the wrist rotated such that the thumb was pointing upward,
as shown in Figure 1. The prosthetic hand was set in the pointing
posture (all fingers except index were flexed) at the beginning of
the trial. Even though hand and wrist could be myoelectrically-
controlled, the amputated individual was instructed to use only
the elbow during the session. The healthy subjects were asked
to maintain the same hand orientation during the movement,
i.e. to maintain the hand with the thumb up, such that they
performed in the same conditions as the amputated participant.
For each pointing movements, the subjects stayed immobile
in the initial position until told the target number to reach,
then brought the finger/rod tip the closest to the target, stayed
immobile until instructed to come back to the initial position.
No particular instruction was given to the subjects concerning
movement duration, speed, or target reaching strategy. Healthy
subjects repeated the task twice. The transhumeral amputated
participant performed the task once with the prosthetic elbow
in myoelectric control mode (ME-mode), and once in automatic
mode (A-mode).

2.3. Prototype
2.3.1. Hardware
Commercialized pieces like a conventional electronic wrist
rotator (model 10S17, Ottobock©), and an E-TWO electric elbow
(Hosmer, Fillauer) were assembled to form a two-DoF prosthetic
forearm, as depicted in Figure 2. Any myoelectric prosthetic
hand with the Quick Disconnect system could be interfaced with
the prototype. During the experiment, the amputated individual’s
i-Limb hand was mounted on the prototype to perform the
task. A Raspberry Pi 3© controlled the prosthesis electronics, as
well as a motor controller (Ion Motion Control©) in charge of
elbow’s and wrist’s motor speed control. An encoder was added
to the elbow motor for closed-loop control purpose. The forearm
structure, in which most of the electronics was located, had been
printed in ABS and reinforced with metal parts. The prosthetic
forearm weighed 810 g without a prosthetic hand attached to
it. The prosthesis prototype was mounted onto the subject’s
own socket, and his two myoelectric electrodes (Myobock,
Ottobock©), located within his prosthesis socket and placed over
the residual biceps and triceps groups, were connected to the
prototype’s controller. The latter, which also read the data from
two IMUs (x-IMU, x-io Technologies), piloted the prosthetic
joints according to the input signals and the control mode.

2.3.2. Prototype Control
Two control laws were implemented on the prototype. The
myoelectric mode (ME-mode) control corresponded to the
amputated participant’s own myoelectric control strategy that
was duplicated on the prototype’s controller. The selected
participant used the following 2-myoelectric-site sequential
strategy:

- First, a biceps contraction controlled the elbow flexion until
the forearm was positioned. When the contraction stopped,
the control switched automatically to the end-effector control.

- Flexion (resp. extension) of hand fingers was controlled by
slow biceps (resp. triceps) contractions.

- Wrist pronation (resp. supination) was controlled by fast
biceps (resp. triceps) contractions.

- A co-contraction switched back to elbow control, and lead to
a rapid and uncontrolled elbow extension.

Therefore, if an elbow extension or flexion was required after
setting the elbow angle to the 90-degree initial position, the
prosthesis user had to do a co-contraction to unlock the elbow
that extended rapidly, then to do a biceps contraction to flex the
elbow and reach the desired angle. The prototype’s parameters
for myoelectric control were copied from his own prosthesis,
including the velocities for elbow flexion and extension.

The automatic mode (A-mode) control strategy used a
shoulder/elbow coordination model, built from the healthy
subjects’ pointing movements, to estimate the elbow angular
velocity based on IMU-based residual limb’s kinematic data.
Hence, the shoulder joint drove automatically the elbow
flexion/extension movements. Meanwhile, hand and wrist
could still be controlled via the myoelectric signals, but the
transhumeral amputated participant was instructed not to use
these DoFs to achieve the task.

2.4. Setup
Healthy participants pointed at targets with the tip of a rod
attached to a wrist splint’s back, used to prevent wrist flexion
during the movements, while the amputated participant wore
the prosthesis prototype with his own prosthetic hand plugged
in and achieved the pointing task with the prosthetic index’s
tip. The experimental setup is illustrated in Figure 1. The IMUs
were placed on the participants’ chest and arm/socket. They
were connected via USB first to a laptop that recorded the data
in the experimental setup with healthy subjects, then to the
prototype’s controller during the experimental session with the
transhumeral amputee. A camera-based motion capture system,
only used for off-line data analysis, recorded the participants’
upper body kinematics at a frequency of 100Hz: a Codamotion
system (Charnwood Dynamics, Ltd.) was utilized with the
healthy subjects, and a Vicon© system (Vicon Motion System,
Ltd.) was used with the amputated participant. The main
markers locations for both motion capture systems were: left
index’s middle phalanx, left hand’s back, left forearm, left elbow
lateral epicondyle, left upper arm, left and right acromions,
suprasternal notch, xiphoid process, left and right anterosuperior
iliac spines. In the second experimental setup, two additional
video cameras, synchronized with the Vicon’s kinematic data,
recorded the scene. Moreover, two force plates recorded at a
sampling frequency of 1 kHz the force applied by each foot.

The task consisted in pointing at targets, numbered from 1 to
9 and attached to three sticks; they were presented at 2 different
distances (I, II), as illustrated in Figure 1. The targets positions
were adjusted for each subject depending on the arm length
and shoulder height: target 8 was aligned with the subject’s left
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FIGURE 1 | Experimental setup with healthy (Left) and amputated (Middle) participants. All subjects, equipped with two IMUs (chest and arm) measuring the

shoulder kinematics, pointed at 18 targets with the left arm. The targets were distributed such that there were 9 targets at each distance (maximum I, intermediate II)

(Right).

FIGURE 2 | The two-DoF forearm prototype includes a motorized elbow (1)

and an electronic wrist rotator (3). The participant’s prosthetic hand is

connected to the forearm (4). The prosthetic components are controlled by a

Raspberry Pi 3 (2) reading the myoelectric signals from the participant’s

surface electrodes, and from two IMUs.

shoulder such that the subject could reach it by extending fully
the left arm, as shown in Figure 1. Target 2 was placed below
target 8 at the left anterosuperior iliac spine height, and target
5 was placed halfway between target 2 and 8. The distance II
corresponded to the distance I (arm length) to which 15 cm were
subtracted, as illustrated in Figure 1. The distance between the
center and the lateral targets, i.e. between targets 1 and 2, and 2
and 3, was arbitrary fixed to 30 cm for all subjects.

2.5. Data Processing
2.5.1. Generic Model
Kinematic data from the two healthy subjects were recorded
while they performed the pointing movements. The two
IMUs (trunk and arm) provided information on their own
orientation with respect to an initial reference frame. The
latter was defined during a calibration phase whereby the two
sensors were aligned such that they shared the same initial
reference frame. The orientation information was represented
by a quaternion value, result of each IMU’s embedded fusion

algorithm (Madgwick, 2010). The rotation matrix was derived
from the relative orientation between the two IMUs. The rotation
matrix coefficients were then utilized to compute the Euler
angles ψ , θ , φ (ZYX sequence) which were chosen to describe
the arm kinematics with respect to the trunk. The angle β ,
which represented the elbow flexion angle, was derived from
the Codamotion measurements. Shoulder and elbow angular
velocities were computed numerically from the shoulder and
elbow angles. They were partitioned for each movement (9
targets, 2 distances, 2 trials, i.e. 36 movements), and low-pass
filtered with a cutoff frequency of 2Hz. The shoulder angular
velocities are depicted in Figure 3 that shows that the two able-
bodied individuals had different pointing strategies.

An inter-joint coordination model, built from the two able-
bodied subjects’ kinematic information, served as mapping
between the shoulder angular velocities and the elbow angular
velocity. This model was a combination of the healthy subjects’
coordinations, and thus was referred to as generic model.
As commonly performed in the literature, an RBFN-based
regression method was implemented in a MATLAB script to
model the nonlinear relationship between the shoulder and
elbow angular velocities; the relationship’s analytic form was a
linear combination of Gaussian components chosen as the radial
functions, as explained by Stulp and Sigaud (2015). A training
phase utilized the training data set (measured quadruplets (ψ̇ , θ̇ ,
φ̇, β̇) of selected movements) to compute the model’s coefficients.
The obtained relationship was implemented on the prosthesis
controller, and was used to estimate the elbow angular velocity
β̇ from online IMU-based shoulder angular velocities (ψ̇ , θ̇ , φ̇),
also calculated with respect to the trunk orientation.

2.5.2. Data Analysis
The transhumeral amputated participant performed 18
movements (9 targets, 2 distances) for each control mode
(ME-mode, and A-mode). The video recordings, synchronized
with the Vicon© data, were utilized to cut the position and force
recordings into short data segments, one for each movement
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toward a target. Since the participant never actuated the
prosthetic elbow during the pointing movement itself, but always
prior to the movement, the data segment for movements with
ME-mode were started after the forearm pre-positioning phase.
The data segments were analyzed to compare the participant’s
body behavior when the task was done with a myoelectrically-
driven elbow or with an automatically-driven elbow. The task
performance was assessed with the precision error and the
task completion time. The precision error was defined as the
distance between the target and the end-effector’s position when
the subject stopped the movement. The movement duration
corresponded to the time needed to do the movement without
considering the forearm pre-positioning in ME-mode; it was
calculated based on the end-effector’s velocity norm.

FIGURE 3 | Measured angular velocities, inputs of the generic model, for the

healthy and amputated participants. The light-colored forms represent the

projection of the solid forms on a plane for better 3D representation. The

angles φ, θ , and ψ represent the 3 Euler angles. The angular velocities

represented on the graph were fed to the RBFN-based regression algorithm

either to build the inter-joint coordination model (in the case of healthy

subjects’ data), or to estimate online the elbow motion with the measured

shoulder kinematics (with the amputee’s data).

The analysis was also focused on the compensatory strategies
developed by the subject to achieve the task. Trunk movements
were assessed with the trunk inclination angle, i.e. the angle
between the final and initial position of the trunk’s main
axis. The latter was defined as the line going through
the pelvic center (barycenter of the sacrum, right and left
anterosuperior iliac spines markers), and the thorax center (in
between the C7 and clavicle markers). The trunk displacements
were also evaluated with the cumulative path of the thorax
center, calculated as the sum of the distances between two
consecutive points of the trajectory, and with the hip forward
displacements, i.e. the range of motion of the pelvic center
in the anteroposterior direction. In addition, changes in the
weight distribution during the movements were assessed by
computing the difference between the final and initial amounts
of force applied by the left foot with respect to the total
force applied by both feet. The amplitude of the residual
limb motions was evaluated with the humerus elevation angle,
i.e. the angle between the humerus longitudinal axis and
the trunk main axis, derived from the IMUs measurements.
Residual limb movements were compared to the healthy
arm movements from the generic model’s training data
set.

3. RESULTS

3.1. Functional Assessment
A typical pointing movement is illustrated in Figure 4. The
pictures represent the initial and final postures of the movement
performed with the prosthetic elbow in ME-mode (ME1 and
ME2), and in A-mode (A1 and A2). The participant could not
reach all the targets with A-mode, as confirmed by the precision
error results depicted in Figure 5. The overall error values,
averaged over all targets and distances, was 41.5 ± 18.3mm in
ME-mode, and 193.9 ± 101.2mm in A-mode. To limit marker
occlusion, the finger marker was placed on the middle phalanx of
the prosthetic index. Hence, there was an offset of 20mm when
the finger touched the target.

FIGURE 4 | Pointing movement toward target 5 at distance I performed with myoelectric control (ME1-ME2), and automatic control (A1-A2).
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FIGURE 5 | Precision errors in ME-mode and A-mode for all targets. The red

dotted line represents the precision error offset of 20mm that accounts for the

finger marker position. The targets distribution can be seen in Figure 1.

The movement durations were similar for the two control
modes: the pointing motion lasted 1.82 ± 0.46 s with ME-mode,
and 1.92 ± 0.68 s in A-mode. As a comparison, the movements
of the two healthy subjects recruited for the generic model
data acquisition lasted 1.37 ± 0.30 s in average. However, the
calculation did not account for the reconfiguration time needed
by the participant to position the prosthetic forearm in ME-
mode. As explained in section 2.3.2, the participant did not have
control over elbow extension with his own myoelectric control
strategy: elbow flexion was controlled by biceps contractions, and
the release of passive elbow extension was triggered by a co-
contraction.When considering the forearm re-positioning before
the actual pointingmotion, themovements duration increased by
up to 9 s in ME-mode.

3.2. Overall Movement Strategy
Assessment
The control mode of the prosthetic elbow influenced the
overall body behavior. Large compensatory movements were
observed in ME-mode, and they were reduced when shoulder
and elbow motions were coupled (A-mode). Indeed, since

end-effector position was mostly adjusted with trunk motions
with myoelectric control, body displacements were larger in
ME-mode: the thorax center’s cumulative trajectory, shown in
Figure 6A was 170.2 ± 56.2 mm in ME-mode, and 37.6 ± 21.8
mm in A-mode, averaged over all targets and distances. When
the elbowwasmyoelectrically-controlled, the participant brought
the end-effector close to the target by leaning toward the targets,
yielding large body inclinations (Figure 6B): the range of motion
of the body inclination angle was 9.1± 5.7◦ in ME-mode, and 3.1
± 2.6◦ in A-mode, averaged over all distances and targets. The
values of the hip displacements in the anteroposterior direction
(Figure 6C) also illustrates larger trunk mobility when doing
movements with myoelectric control. Behavior modifications
between the ME-mode and the A-mode could also be observed
with changes in the forces distribution: using an automatically-
driven elbow reduced inequalities between the forces applied by
the feet. The values in Figure 7 represent the variations of the
amount of force exerted by the left foot with respect to the total
force. They showed some important differences between the two
control conditions: indeed, the participant’s weight shifted more
toward the left foot (i.e. the amputation side) during pointing
movements performed with myoelectric control.

The residual limb motion was different from one condition
to another. The A-mode required the participant to use his
residual limb to achieve the task, whereas most movements with
myoelectric control were performed with the trunk after setting
the prosthetic forearm into the adequate position. Consequently,
humerus elevation values were very different from one control
condition to the other: averaged values over targets targets and
distances were 7.1 ± 3.9◦ in ME-mode, and 17.9 ± 11.0◦ in A-
mode. For comparison, the pointing movements of the two able-
bodied subjects recruited in the experiment’s first part were also
analyzed. The overall arm elevation values are 40.5 ± 12.6◦ for
the healthy subjects. The Figure 8 depicts the humerus elevation’s
ranges of motion of the healthy and amputated participants,
averaged over the targets of each distance. In addition to
the shoulder kinematics of the able-bodied individuals, the
transhumeral amputated participant’s shoulder angular velocities
used as inputs of the inter-joint coordination model are shown in
Figure 3.

4. DISCUSSION

A transhumeral amputated individual was asked to point at
18 targets split in 2 groups, one for each distance. The
subject performed the task with a motorized elbow controlled
either by his own myoelectric control strategy (ME-mode),
or by an RBFN-based regression model of healthy inter-joint
coordinations coupling residual limb motion to prosthetic elbow
flexion/extension (A-mode).

4.1. Precision Error
The task performance assessment showed that the precision
error values were larger when the task was performed with an
automatically-driven elbow. Even though the participant was
selected for his residual limb’s mobility, high-located targets were
out of reach because he could not lift the residual limb and the
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FIGURE 6 | Analysis of compensatory trunk movements. The cumulative trajectory of the thorax center is represented in (A) quantifying the trunk’s displacements

during all movements and for the two conditions of control. The range of motion of the trunk main axis is represented in (B). The hip anteroposterior displacements are

depicted in (C); a forward motion is represented by a negative values (see reference frame in Figure 1).

prosthesis to the appropriate height. This limitation was due to
either the pain exerted by the prosthesis on the residual limb’s
distal part, or to the prosthesis socket and harness that prevented
residual limb movements of large amplitude, especially shoulder
flexion, abduction, and external rotation. Hence, a large precision
error was measured for numerous targets, especially high-located
targets like targets 7, 8, and 9 of distance I.

4.2. Completion Time
The participant achieved the pointing task with a high precision
with the prosthetic elbow control in ME-mode. However, the
forearm position was not adjusted during the pointingmovement
itself, but only prior to the movement, making the overall
reaching strategy unnatural. The participant’s own myoelectric
control strategy was particular and adapted to his difficulties
to do triceps contractions and co-contractions. If he wanted to
change the elbow angle after setting the elbow in the starting
position of 90◦, he had to do first a co-contraction to fully extend
the forearm, then a biceps contraction to flex the elbow and
reach the desired position. Therefore, the completion time for
movements with ME-mode when the forearm pre-positioning
phase was included were increased due to the participant’s
complex myoelectric control strategy. The participants in the
studies of Hussaini et al. (2016) and Metzger et al. (2012)
had a similar behavior before starting the actual tasks: the
elbow angle of the objects themselves were pre-positioned before
the movements such that it was easier to achieve the task.
Nonetheless, pre-positioning the prosthesis did not reduce the
compensatory behavior, and neither reduced the movement
duration.

4.3. Compensatory Strategies in ME-Mode
The pointing strategy chosen by the participant with a
myoelectrically-driven elbow, whereby he brought the prosthetic
fingertip to the target by leaning the trunk over the table, was
the costliest in terms of trunk compensatory movements, as
shown in Figure 6. Especially, larger compensatory movements
were observed for left-located targets (1, 4, and 7) since
the participant’s socket prevented external humerus rotation.
The analysis of hip anteroposterior motion showed that the
participant had an inverted pendulum-type of body behavior
whereby ankle dorsiflexion drove the whole body forward,
yielding large body inclination angles and trunk displacements.
The force distribution analysis showed an important shift
toward the left foot during movements with a myoelectrically-
driven elbow. The participant’s whole body was involved in the
movements to compensate for the lack of mobility at the shoulder
and elbow joints. Elbow impairment, and even full locking as it
is the case of most transhumeral amputees wearing a prosthesis,
yields trunkmovements of large amplitudes (de Groot et al., 2011;
Metzger et al., 2012; Deijs et al., 2016). Metzger et al. (2012)
measured trunk displacements of 35 cm in the anteroposterior
and mediolateral directions, and shoulder marker cumulative
path of 50 cm during reaching movements of transhumeral
amputees. Such important modifications of the natural behavior
can lead to severe musculoskeletal disorders.

4.4. Inter-Joint Coordination-Based Control
The results obtained in the present study show that automatic
elbow control diminishes trunk compensations. The body
inclination were reduced during pointing movements with the
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FIGURE 7 | Variation between the beginning and the end of the movement of

the amount of force applied by the left foot with respect to the total force.

prosthetic elbow in A-mode, especially toward targets located
at the maximal distance (12.3 ± 5.5◦ in ME-mode, and 4.5
± 3.2◦ in A-mode, averaged over the 9 targets of distance I).
Movements with an automatically-driven prosthetic elbow were
more natural with synchronous shoulder and elbow motions, as
observed in healthy movements. Although the feature was not
investigated in this study, the A-mode elbow control strategy
enabled simultaneous elbow and end-effector control since
residual limb motion drove solely the prosthetic elbow, and
myoelectric signals were directed toward wrist and prosthetic
hand control. However, residual limb movements were limited
by the prosthesis socket and the pain exerted on the stump’s
extremity due to the prosthesis weight. When compared to
able-bodied subjects doing the same movements, the residual
limb amplitude was half the amplitude of a healthy arm, as
shown in Figure 8. The inter-joint coordination model was
implemented on the prosthesis with the assumption that residual
limb kinematics were similar to the healthy kinematics included
in the generic model training data set. Unfortunately, the residual
limb motion assessment demonstrated that it was not the
case: important kinematic differences were measured between

healthy shoulder movements and residual limb motions. The
data sets corresponding to the subjects’ shoulder kinematics in
Figure 3 were located in different areas of the input data space,
and had different shapes. In addition to having the residual
limb movement’s amplitude reduced by the prosthesis socket
and by the harness, the loss of a limb affected the residual
limb kinematics by altering the whole sensorimotor loop. The
analysis highlighted the fact that residual limb motions and
healthy armmotions were significantly different. Also, the weight
distribution of a prosthesis is fundamentally different from the
one of a healthy limb, especially at the level of the hand and
forearm, which generates different dynamical effects such as
reaction forces on the prosthesis users’ body. The approach tested
synthesized two different inter-joint coordinations of able-bodied
individuals into one generic coordination model used by the
transhumeral amputated participant to control automatically the
prosthetic elbow. By combining healthy individuals’ data sets,
the generic model assimilates the inter-individual variability,
but remains different from the prosthesis user’s own pointing
strategy. Thus, the paradigm whereby the shoulder/elbow
coordinations from healthy individuals are driving an elbow
prosthesis may not be adapted to prosthesis users, and the
presented results justify for the need of a model tailored to the
user’s residual movements.

4.5. Study Limitations
The generic model’s output depended on the shoulder
kinematics, and thus, the prosthetic elbow extended until
the residual limb was immobilized. As a result, any adjustment to
bring the prosthetic fingertip close to the target after performing
the general pointing gesture evoked an elbow extension or
flexion, depending on the small residual limb movements.
Therefore, before starting the recording, the transhumeral
amputated participant was instructed not to adjust the fingertip
position once the main residual limb movement was over, which
can explain the large precision error. In order to reach the targets
with a small error, the participant would have had to know
perfectly how to move the residual limb to evoke the adequate
prosthetic elbow motion. The A-mode control method of future
experiments will include an elbow-locked phase to allow the
participant to move the residual limb to adjust the prosthetic
end-effector position.

The transhumeral amputated individual that was recruited in
the study had received no prior training with automatic elbow
control. Before starting the recording, he had 5 min to explore
the novel control method. Better results, especially in terms of
precision and completion times, could have been expected with
training. However, the study was focused on the intuitiveness
of the tested control method. More amputated participants will
be included in future experiments to investigate the influence
of subjects’ height and experience with a prosthetic device on
the control performance. However, socket designs are a major
limitation since they prevent complete residual limb mobility.
Also, more gestures will be included in the model to improve its
generalization and functionality; the presented automatic control
strategy will be tested on functional tasks such as the SHAP test
(Wright, 2006; Miller and Swanson, 2009), the clothespin test
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FIGURE 8 | Comparison of arm elevation’s range of motion between the mean of two healthy participants, and a transhumeral amputee using a residual limb

motion-driven elbow (A-mode), or a myoelectrically-driven elbow (ME-mode).

(Hussaini et al., 2016), or the 400 points assessment test (Gable
et al., 1997).

5. CONCLUSION

A transhumeral amputee achieved a pointing task with a
prosthetic prototype that included an externally-powered elbow
driven by an inter-joint coordination model from healthy
individuals’ data. The control strategy presented in several studies
of the literature was never tested on a device yet. The experiment
results showed that the presented approach was beneficial to
the prosthesis user as it reduced compensatory movements,
and enabled simultaneous control of the elbow (via residual
limb motion) and the end-effector (via myoelectric control).
Pointing movements became generally more natural when the
elbow was automatically-driven by the residual limb. However,
the residual limb’s amplitudes were limited by the socket and by
the pain exerted on the residual limb’s extremity. Because of the
socket-related impairments and post-amputation sensorimotor
modifications, the residual limb movements did not correspond
to the expected inputs of the inter-joint coordination model.
Therefore, the study illustrates that the utilization of a model of
healthy inter-joint coordinations to control prosthetic joints is
limited by the residual limb movements that are kinematically
different from healthy upper limb movements. It shows the need
for novel modeling methods and mapping designs that bring the
user back to the center of the control development process in
order to achieve a more natural prosthetic motion.
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