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METHODS & TECHNIQUES

A dual transcript-discovery approach to improve the delimitation of
gene features from RNA-seq data in the chicken model
Mickael Orgeur1,2,3, Marvin Martens3, Stefan T. Börno2, Bernd Timmermann2, Delphine Duprez3,*,‡

and Sigmar Stricker1,2,*,‡

ABSTRACT
The sequence of the chicken genome, like several other draft genome
sequences, is presently not fully covered. Gaps, contigs assigned
with low confidence and uncharacterized chromosomes result in
gene fragmentation and imprecise gene annotation. Transcript
abundance estimation from RNA sequencing (RNA-seq) data relies
on read quality, library complexity and expression normalization. In
addition, the quality of the genome sequence used to map
sequencing reads, and the gene annotation that defines gene
features, must also be taken into account. A partially covered
genome sequence causes the loss of sequencing reads from the
mapping step, while an inaccurate definition of gene features induces
imprecise read counts from the assignment step. Both steps can
significantly bias interpretation of RNA-seq data. Here, we describe a
dual transcript-discovery approach combining a genome-guided
gene prediction and a de novo transcriptome assembly. This dual
approach enabled us to increase the assignment rate of RNA-seq
data by nearly 20% as compared to when using only the chicken
reference annotation, contributing therefore to a more accurate
estimation of transcript abundance. More generally, this strategy
could be applied to any organism with partial genome sequence and/
or lacking a manually-curated reference annotation in order to
improve the accuracy of gene expression studies.

KEY WORDS: Chicken genome annotation, Gallus gallus, Gene
prediction, Genome-guided transcript discovery, RNA sequencing,
Transcriptome reconstruction

INTRODUCTION
Since its first release in 2004 and despite significant improvements
over the last past decade, the Gallus gallus genome is presently
incomplete and highly fragmented (Hillier et al., 2004). The chicken
karyotype is composed of 38 autosomal chromosomes (1-38) and
two additional sex chromosomes (W, Z) (Bloom et al., 1993). Out of
these autosomal chromosomes, 10 are macrochromosomes (1-10),
with lengths similar to those in mammals, and 28 are

microchromosomes (11-38), with lengths ranging from 2 to 25 Mb
(Hillier et al., 2004). Chicken microchromosomes display a high
recombination rate, contain an elevated number of repetitive elements
and are GC-rich, which induces significant bias and sequencing
errors when using high-throughput technologies (Chen et al., 2013;
Dohm et al., 2008). In addition, microchromosomes are gene dense
and enriched in CpG islands, which is the result of short intronic
sequences (McQueen et al., 1998; Smith et al., 2000). The fourth
version of theGallus gallus genome (galGal4), released in November
2011, has not fully overcome these issues. Out of the 40
chromosomes, 31 are sequenced (1-28, 32, W, Z) and contain more
than 9000 gaps, while nine chromosomes remain missing (29-31, 33-
38). The genome is also composed of∼16,000 additional contigs that
are not assigned to any chromosome or assignedwith low confidence.
In total, the galGal4 genome sequence has a size of 1.05 Gb.

RNA sequencing (RNA-seq) data processing and results are highly
dependent on the quality of the genome sequence and the associated
gene annotation model. Read mapping is one of the critical steps that
will further influence sample normalization, gene expression
quantification and the identification of relevant genes. Gene
expression profiles rely on the alignment of RNA-seq reads along
the available reference genome or transcriptome, followed by their
assignment to gene features. An incomplete genome sequence
coupled with an inaccurate definition of gene features induce a bias in
the gene expression quantification and transcript abundance
estimation (Jiang and Wong, 2009; Trapnell et al., 2010). Whole
transcriptome sequencing offers valuable resources to detect novel
genes and transcripts as well as to identify alternative splicing variants
(Denoeud et al., 2008; Wang et al., 2008). Depending on the context,
two main strategies are widely used to analyze RNA-seq data (Garber
et al., 2011). One approach consists of the mapping of reads along the
reference genome followed by gene prediction (Guttman et al., 2010;
Trapnell et al., 2010; Yassour et al., 2009). This method can be
combined with an existing reference annotation in order to detect new
transcripts with respect to the provided gene annotation model
(Roberts et al., 2011). The second approach aims at reconstructing the
whole transcriptome independently of the reference genome (Birol
et al., 2009; Grabherr et al., 2011; Robertson et al., 2010). This
method is particularly suitable to studymodels with partial or missing
genome sequence. The choice between these approaches greatly
depends on the biological question andwhether a reference genome is
available (Conesa et al., 2016).

When analyzing RNA-seq data obtained from chick embryonic
limb cell cultures (so-called micromass cultures) by using the
galGal4 reference genome and annotation, we observed that only
62.2% of sequencing read pairs were assigned to gene features,
while 86.7% of the read pairs were mapped against the genome
sequence. By comparison with the human genome, which has been
nearly completely sequenced and accurately annotated, a similar
analysis of RNA-seq data obtained from human blood samplesReceived 20 July 2017; Accepted 22 November 2017
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depicted an assignment rate to gene features of 81.8% with a
mapping rate of 92.3% (Zhao et al., 2015). We hypothesized that
information was lost during the analysis of chick RNA-seq data: (i)
at the mapping step, either due to low-quality sequencing reads or to
missing genome sequence; and (ii) at the read assignment to gene
features, which can be due to missing or partially annotated
transcripts. To address both issues, we performed a dual transcript-
discovery approach by means of genome-guided gene prediction
and de novo transcriptome assembly. The approach described here
enabled us to increase the assignment rate of RNA-seq data by
nearly 20% as compared to when using the chicken reference
annotation, thus contributing to a more robust quantification of gene
expression profiles.

RESULTS
We performed RNA-seq of two independent biological replicates of
chick micromass cultures infected for 5 days with empty RCAS-BP
(A) replication-competent retroviral particles. We generated 61.3
and 70.3 million strand-specific read pairs and mapped them against
the galGal4 version of the chicken genome by using TopHat2 (Kim
et al., 2013) (Table 1). Read assignment was performed by using
featureCounts (Liao et al., 2014) and a gene annotation model
composed of 17,318 genes resulting from the combination of both
UCSC and Ensembl reference annotations that were available at the
time of analysis. Surprisingly, while 86.7% of read pairs were
mapped against the chicken genome, only 62.2% of read pairs were
assigned to gene features (Table 1). Therefore, 28.3% of mapped
read pairs were not counted, including 93.7% of these read pairs that
were not overlapping with any gene feature (Table 1). Close
investigation of these unassigned read pairs highlighted genes that
seemed to be absent or partially covered by the UCSC and Ensembl
reference annotations (Fig. 1A,B), as well as transcripts with
missing or partial exon features (Fig. 1C).
In order to improve the read assignment rate, we first performed a

genome-guided transcript discovery by using Cufflinks (Trapnell
et al., 2010). This approach was intended to determine more
accurately exon-intron junctions, to correct or to complete existing
annotated genes, and to identify unannotated gene candidates from
the UCSC/Ensembl gene annotation model (Fig. 1D,E). Following
this approach, 77.9% of the sequencing read pairs were assigned to
gene features, corresponding to 89.8% of the read pairs that were
mapped against the genome (Table 1). Therefore, the genome-guided
transcript discovery enabled us to raise the read assignment rate by
15.7% as compared to when using both UCSC and Ensembl

reference annotations (Table 1). In contrast to genome-guided
transcript prediction, de novo transcriptome reconstruction relies on
overlaps between the sequencing reads to build consensus transcripts,
independently of the genome sequence. We therefore applied a
genome-independent strategy by using Trinity (Grabherr et al., 2011),
in combination with the genome-guided approach, in order to detect
transcripts or regions that were not recovered from the genome
sequence, such as those located within gaps or uncharacterized
chromosomes (Fig. 1D,E). Reconstructed transcripts thus generated
were then compared to the gene candidates obtained with the
genome-guided approach in order to remove redundant sequences.
Full-length transcripts or transcript regions of at least 400 bp that
were not assigned to any gene candidate were extracted and
grouped as an artificial chromosome. We found that 4.0% of
read pairs were mapped against this additional chromosome and
90.2% of these mapped read pairs were assigned to gene features
(Table 1). By considering both transcript-discovery approaches,
90.7% of the total read pairs were mapped against the galGal4
chicken genome (86.7%) and reconstructed chromosome (4.0%)
(Table 1), and 77.9% and 3.6% of the read pairs were assigned to
gene features from the genome-guided and de novo transcript-
discovery approaches, respectively (Fig. 2A, Table 1). Therefore,
81.5% of the read pairs were assigned to gene features by using this
newly established gene annotation model. Given that 62.2% of
the sequencing read pairs were assigned to gene features by using both
UCSC and Ensembl reference annotations, our transcript reconstruction
model enabled us to assign 19.3% more read pairs to gene features
(Fig. 2A, Table 1).

The genome-independent transcript assembly also enabled us to
correct for gene fragmentation by gathering gene regions located on
multiple chromosomes and contigs together (Fig. 1D,E). In contrast
to genome-guided transcript discovery, de novo reconstruction of
transcripts was not limited by the quality of the reference genome
sequence. By comparing transcripts generated from both
reconstruction approaches, we were able to group dispersed gene
features belonging to a same gene candidate together. Although
19,376 (90.8%) gene candidates were found exclusively on a single
chromosome or unplaced contig, 1971 (9.2%) gene candidates were
identified as being fragmented (Fig. 2B). These fragmented gene
candidates included 478 (2.2%) gene candidates that were located
on multiple ordered chromosomes, 462 (2.2%) gene candidates split
among multiple unplaced contigs, and 1031 (4.8%) gene candidates
with regions located on an ordered chromosome and additional
unplaced contigs (Fig. 2B).

Table 1. RNA-seq read pair assignment

RCAS-BP(A)
genome Chicken reference genome (galGal4)

De novo assembly
(Trinity)

Total gain of
read
assignmentSample

Read
pairs Mapped pairs Mapped pairs

Assigned pairs
[UCSC/Ensembl]

Assigned pairs
[Cufflinks]

Gain of
assigned
pairs

Mapped
pairs

Assigned
pairs

Rep1 61.3 M 1.7 M 53.1 M 38.0 M 47.6 M +9.6 M 2.4 M 2.2 M +11.8 M
Mapped pairs with
no gene feature

14.2 M 4.6 M

Rep2 70.3 M 2.1 M 61.0 M 43.9 M 55.0 M +11.1 M 2.9 M 2.6 M +13.7 M
Mapped pairs with
no gene feature

16.0 M 5.0 M

Average (Rep1/2) 2.9% 86.7% 62.2% 77.9% +15.7% 4.0% 3.6% +19.3% total pairs
Assigned mapped pairs 71.7% 89.8% 90.2% total mapped

pairsUnassigned mapped pairs 28.3% 10.2% 9.8%
Mapped pairs with no gene feature 26.5% 8.4%

M, million read pairs.
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Transcript prediction and reconstruction approaches did not
provide any information on gene name and function. Therefore,
gene candidates identified by the dual transcript-discovery approach
were then annotated by database comparison and protein domain
prediction (Fig. 1E). Gene candidates were first compared to bird
gene sequences, taking advantage of the recent increase of available
genomic data within avian species and their high DNA sequence
conservation (Dalloul et al., 2010; Huang et al., 2013; Jarvis et al.,
2014; Schmid et al., 2015; Shapiro et al., 2013; Warren et al., 2010;
Zhan et al., 2013; Zhang et al., 2014). Undefined gene candidates
were then compared at the protein level to mouse and human
databases. Finally, prediction of open reading frames (ORFs) and
protein domains was performed on remaining unannotated gene
candidates by using homology search against SwissProt and Pfam
databases, and sequence analysis tools to identify transmembrane
domains and signal peptides. Overall, the computed gene annotation
model was mostly constituted of protein-coding gene candidates
(16,716, 78.3%) (Fig. 2C). However, 672 (3.1%) gene candidates

were only partly annotated (putative proteins having at least one
protein domain detected), while 1410 (6.6%) gene candidates
remained unannotated (uncharacterized proteins with no protein
domain identified but an ORF of at least 100 amino acids).
Remaining gene candidates corresponded to miscellaneous genes
(213, 1.0%; such as spliceosome complex members, ribosomal
RNAs and pseudogenes) and non-coding RNAs (ncRNAs; 4418,
20.7%) for which no sufficient ORF could be predicted (Fig. 2C).

The resulting gene annotation model was composed of 21,347
unique gene candidates, encompassing 5989 additional gene
candidates as compared to the UCSC and Ensembl reference
annotations associated with the galGal4 genome version. We then
compared our results with the most recent version of the chicken
genome (galGal5), released in December 2015, which includes 200
additional Mb, three previously missing chromosomes (30, 31, 33)
and 23,400 unplaced contigs (Warren et al., 2017). Firstly, strand-
specific read pairs were mapped against the galGal5 genome version
by using TopHat2 (Kim et al., 2013), and assigned to gene features

Fig. 1. Dual transcript-discovery approach. (A) Region surrounding the genes RABEP1 and HSD3B7 on chromosome 19. RNA-seq signal on strand plus
(green), which does not overlap any gene from UCSC and Ensembl reference annotations, corresponds to the gene COL26A1. (B) RNA-seq signal (orange) on
strand minus of an uncharacterized contig delimitating three exons of the gene FLNA. (C) Region of the geneWNT11 on chromosome 1. As visible from the RNA-
seq signal on strand plus (green), both UCSC and Ensembl reference annotations lack an exon of the 5′-UTR and display a shorter 3′-UTR. (D) The dual
transcript-discovery approach combined a genome-guided gene prediction with a de novo transcriptome reconstruction. This dual approach enabled us to correct
for gene fragmentation (orange), to identify missing gene candidates (red) and to adjust or validate existing annotated genes (green, blue) thus improving the
assignment rate of RNA-seq read pairs. (E) Workflow to design the comprehensive gene annotation model.
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by using featureCounts (Liao et al., 2014) according to a gene
annotation model combining both UCSC and Ensembl annotations.
This gene annotation model contained 6280 additional genes as
compared to the galGal4 UCSC/Ensembl annotations. Surprisingly,
we did not observe any significant improvement of read pair
mapping (+1.5%) and assignment (−0.9%) rates despite the
increased genome size (Table 2). This indicated that when using
galGal5, similar issues will be encountered as with galGal4. Indeed,
a comparable number of reads pairs (25.5%) was not associated with
any gene feature when mapped against galGal5 (Table 2). Secondly,
we compared the predicted gene candidates from our annotation
model to the RefSeq annotated galGal5 transcripts. We found that
only 52.7% of gene candidates were covered by at least 50% of their
total length by galGal5 reference genes (Table 3). In addition, 3958

(18.5%) gene candidates were not detected at all in galGal5
reference genes (Table 3), and 3151 (79.6%) of these corresponded
to gene candidates absent from galGal4 UCSC/Ensembl
annotations. Lastly, we compared the gene names assigned to
gene candidates with galGal5 reference genes that matched at least
50% of their length. Out of the 15,358 gene candidates that were
identified in the galGal4 UCSC/Ensembl annotations, 74.1% had a
concordant gene name, while 17.9% did not significantly match any
galGal5 reference gene (Table 4). Regarding the 5989 additional
gene candidates, most of these were not significantly detected
among galGal5 reference genes (76.8%) or matched an undefined
gene (12.7%) (Table 4). However, 223 (1.0%) gene candidates
remaining partly annotated with the dual transcript-discovery
approach could be successfully assigned (Table 4).

Fig. 2. Characteristics of the new gene annotationmodel. (A) The dual transcript-discovery approach combining genome-guided gene prediction (light green)
and de novo transcriptome reconstruction (dark green) raised the read-pair assignment rate by 19.3% as compared to when using the UCSC and Ensembl
reference annotations (red). The proportion of read pairs coming from the RCAS-BP(A) replication competent retroviruses is depicted in black. (B) Proportion of
gene locations on chromosomes and contigs of the chicken reference genome galGal4. Of the identified gene candidates, 9.2% are fragmented due to their
location on multiple chromosomes and contigs. (C) Proportion of annotated gene biotypes. Most of the annotated gene candidates potentially encode proteins
(78.3%). Putative proteins correspond to gene candidates for which at least one protein domain could be detected (3.1%). Uncharacterized proteins are gene
candidates with an ORF of ≥100 amino acids without protein domain identified (6.6%). Gene candidates with no sufficient predicted ORF (<100 amino acids) are
classified as non-coding RNAs (20.7%). Gene candidates encoding spliceosome complexmembers and ribosomal RNAs, aswell as pseudogenes, are classified
as miscellaneous genes (1.0%).

Table 2. RNA-seq read pair assignment against galGal5

Reference genome (galGal5) Reference annotations (UCSC/Ensembl)

Sample
Read
pairs

Mapped
pairs

As compared
to galGal4

Assigned
pairs

As compared
to galGal4

Rep1 61.3 M 53.9 M +0.8 M 37.3 M −0.6 M
Mapped pairs with no gene feature 13.9 M −0.3 M

Rep2 70.3 M 62.2 M +1.2 M 43.4 M −0.5 M
Mapped pairs with no gene feature 15.6 M −0.4 M

Average (Rep1/2) 88.2% +1.5% 61.3% −0.9% total pairs
Assigned mapped pairs 69.5% −2.2% total mapped pairs
Unassigned mapped pairs 30.5% +2.2%
Mapped pairs with no gene feature 25.5% −1.0%

M, million read pairs.
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Altogether, this dual transcript-discovery approach enabled us to
define an annotation model of 21,347 gene candidates that includes
additional genes as compared to the reference annotation of the
chicken genome. Most importantly, it enabled us to retrieve 19.3%
more information from the RNA-seq data.

DISCUSSION
The work presented here describes a dual transcript-discovery
approach combining genome-guided gene prediction and de novo
transcriptome reconstruction, which was applied to improve the
assignment rate of RNA-seq data obtained from chicken samples.
For the first approach, sequencing read pairs are mapped along the
genome followed by a genome-dependent transcript discovery,
which computes read coverage and exon-intron junctions from
gapped alignments, and distance between both reads of each pair.
By contrast, the second approach is carried out independently of the
reference genome. Sequencing reads are de novo assembled by
relying on their overlaps to reconstruct full-length transcripts.
Genome-guided transcript discovery is more sensitive than de novo
transcript reconstruction, but requires a reference genome along
which RNA-seq reads are mapped for gene prediction (Garber et al.,
2011; Roberts et al., 2011). Therefore, the choice of the latter
method is obvious when no or incomplete genome sequence is
available. In the case of the chicken model with its partial and
fragmented genome sequence, the choice of a complementary
transcript-discovery approach, combining both genome-guided and
-independent methods, appears suitable to improve RNA-seq data

quantification and analysis. While the genome-guided approach
contributes to correct existing annotated genes and to identify novel
gene candidates, the de novo transcript reconstruction compensates
for gene fragmentation by associating gene parts located on multiple
chromosomes or contigs together; and it identifies gene regions or
complete gene candidates that do not belong to the genome
sequence due to the presence of gaps or uncharacterized fragments.
The new annotation model is composed of 21,347 gene candidates,
accounting for 5989 additional gene candidates as compared to the
UCSC and Ensembl reference annotations associated with the
galGal4 genome version. Of these gene candidates, 1971 (9.2%)
have parts spread on multiple locations, while 3340 (15.6%) are
identified among the 16,000 unplaced contigs that are not assigned
to any ordered chromosome. In addition, the resulting gene
annotation model increased the assignment rate of RNA-seq read
pairs by 19.3% as compared to when using both galGal4 reference
annotations (UCSC and Ensembl), thus contributing to a more
accurate estimation of transcript abundance.

It is noteworthy to take into consideration that de novo assembly of
short reads is prone to cause artefacts and to generate false chimeric
transcripts (Yang and Smith, 2013). Such errors can be corrected for
instance by comparing reconstructed transcripts with transcripts/
proteins of the same organism, closely related organisms, or more
accurately annotated organisms. In addition, transcriptome
assemblers tend to create multiple transcript sequences per gene,
which would cause reads to map at multiple locations and be
subsequently ignored during read counting. Several programs have
been developed in order to cluster transcript sequences into genes and
to remove redundancy. TGICL (Pertea et al., 2003) and CD-HIT-EST
(Fu et al., 2012), which were originally designed for clustering of
expressed sequence tags (EST), can be used to create consensus gene
sequences. However, since both programs perform their clustering
based on all transcript sequences, paralogous genes may be
erroneously merged. In contrast, Corset (Davidson and Oshlack,
2014) identifies sequence similarity between transcripts by
identifying multi-mapped reads resulting from re-mapping of reads
against the reconstructed transcriptome. Although this program
accurately clusters transcripts into genes, it falls short of building
consensus genes from transcript sequences. To overcome these
limitations, we applied a strategy that consists in a pairwise
comparison of transcript sequences belonging to the same gene
candidates followed by incremental concatenation of identical and
unique transcript sequences to build full-length gene candidates. Very
recently, a similar approach has been reported under the name of
superTranscripts (Davidson et al., 2017).We observed that 99.95%of
consensus gene sequences generated by superTranscripts were
identical to our results. However, we note that superTranscripts
tends to remove sequences specific to a unique transcript that do not
overlap with any other transcript sequences although being indicated
as belonging to the same gene candidates.

Approaches combining genome-dependent and -independent
gene prediction have already been proposed before and reported to
better recover the transcriptome of a given organism (Davidson
et al., 2017; Jain et al., 2013; Visser et al., 2015). However, the
approach presented here also includes a method to assign a putative
name or function to the gene candidates resulting from gene
prediction, which helps with the identification of relevant target
genes in downstream analysis. The recent genome sequencing of the
zebra finch (Warren et al., 2010), the turkey (Dalloul et al., 2010),
the pigeon (Shapiro et al., 2013), the falcon (Zhan et al., 2013), the
duck (Huang et al., 2013), and a wide range of additional avian
species (Jarvis et al., 2014; Zhang et al., 2014) have provided

Table 3. Length coverage of gene candidates as compared to galGal5
reference genes

Length coverage
Number of gene
candidates

Cumulative
number

Cumulative
percentage

100% 3620 3620 17.0%
≥75% and <100% 4822 8442 39.5%
≥50% and <75% 2801 11,243 52.7%
≥25% and 50% 3282 14,525 68.0%
>0% and <25% 2864 17,389 81.5%
0% 3958 21,347 100%

Table 4. Comparison of galGal4 gene candidates to galGal5 reference
genes

Gene candidates Number Percentage

galGal4 reference genes 15,358
-concordant assignment 11,384 74.1%
-concordant and undefined assignmentsa 368 2.4%
-partly annotated with assignmentb 41 0.3%
-assigned with different gene symbol 126 0.8%
-undefined assignmentc 441 2.9%
-discordant assignmentd 244 1.6%
-without assignment 2754 17.9%
galGal4 additional genes 5989
-concordant assignment 376 6.3%
-concordant and undefined assignmenta 29 0.5%
-partly annotated with assignmentb 182 3.0%
-assigned with different gene symbol 28 0.5%
-undefined assignmentc 760 12.7%
-discordant assignmentd 16 0.3%
-without assignment 4598 76.8%
aGene candidates matching a correct gene and one or several undefined
genes (LOC, ORF).
bGene candidates resulting from ORF and protein domain prediction.
cGene candidates matching one or several undefined genes (LOC, ORF).
dIncludes highly repeated genes such as those encoding histone proteins and
myosin heavy chains.
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extensive insights into evolutionary and adaptive traits within birds.
DNA conservation of protein-coding genes among avian species
considerably facilitated the annotation of the 21,347 gene
candidates identified by the dual transcript-discovery approach.
By combining DNA sequence comparison against avian genes with
protein sequence comparison against mammal species and protein
domain prediction, 14,847 (69.6%) gene candidates could be
assigned and 672 (3.1%) putative protein-coding gene candidates
could be identified. The 5828 (27.3%) remaining gene candidates
were divided between uncharacterized proteins and ncRNAs
depending on the length of the predicted ORF. However, gene
candidates encoding uncharacterized proteins could be also
potentially non-coding since none of the protein domains
investigated was detected within their putative ORF. On the other
hand, ncRNAs remain challenging to annotate according to a recent
study comparing an extensive repertoire of long multi-exonic
ncRNAs across 11 tetrapods separated by up to 370 million years
(Necsulea et al., 2014). Besides their overall weak conservation as
compared to protein-coding sequences, long ncRNAs display high
tissue specificity and rapidly diverge through evolution, which
renders their annotation difficult by comparing with other species.
Since the first draft released in 2004, considerable efforts have been

made to improve theGallus gallus reference genome and its annotation
(Hillier et al., 2004; Kuo et al., 2017; Schmid et al., 2015; Thomas
et al., 2014; Warren et al., 2017). In December 2015, the fifth version
of the chicken genome (galGal5) was released (Warren et al., 2017).
As compared to the fourth version, this release is 200 Mb longer and
includes three additional chromosomes (30, 31, 33) but remains highly
fragmented. Indeed, this fifth version is still composed of 15,400
unassigned contigs and 8000 contigs assigned with low confidence,
accounting for ∼17% of the total genome size. While we found that
some gene candidates still remain missing or partly annotated in this
new release, our gene prediction is consistent with other comparisons
identifying novel genes absent from galGal4 reference annotation but
present in galGal5 reference annotation or other birds (Bornelöv et al.,
2017; Hron et al., 2015; Lovell et al., 2014; Warren et al., 2017).
Improvement of the chicken genome is an ongoing project and a new
version should be released within the next few years. It is reasonable to
believe that continuing efforts will contribute to elucidate the full
sequence of the chicken genome in a near future. Until then, applying
the dual transcript-discovery approach described here prior to the
analysis of RNA-seq data per se enhances the sensitivity of gene
expression profiles. This is particularly relevant considering that genes
and splicing variants are specifically expressed in certain cell types or
tissues, at different developmental stages and conditions within a
single organism. For instance, we used the gene annotation model
presented here as guide in a recent study, where we aimed at
identifying genes that were regulated upon overexpression of
connective tissue-associated transcription factors in chick micromass
cultures (M.O., D.D., S.S., unpublished). More broadly, this approach
could be also employed to analyse RNA-seq data of other organisms
lacking manually-curated, high-quality reference annotation.

MATERIALS AND METHODS
A complete description of tools, command lines, parameters and database
links used for this study is provided as Supplementary Methods. The gene
annotation model and Python scripts are accessible via SourceForge: https://
sourceforge.net/projects/dualtranscriptdiscovery/.

Chick embryos
Fertilized chick eggs were obtained from VALO BioMedia (Lohmann
Selected Leghorn strain, Osterholz-Scharmbeck, Germany). Chick embryos
were staged according to the number of days in ovo at 37.5°C.

Chick micromass cultures
Two independent biological replicates of micromass cultures were prepared
from limb buds of embryonic day (E) 4.5 chick embryos, infected with
RCAS-BP(A) retroviruses carrying no recombinant protein and cultivated
for 5 days as described previously (Solursh et al., 1978; Ibrahim et al.,
2013). Briefly, ectoderm was dissociated by using a Dispase solution
(Gibco) at 3 mg/ml and limb mesenchyme was digested by using a solution
composed of 0.1% Collagenase type Ia (Sigma-Aldrich), 0.1% Trypsin
(Gibco) and 5% FBS (Biochrom, Berlin, Germany) in DPBS (Gibco). Prior
to seeding, mesenchymal cells were mixed with retroviruses (1:1) and
maintained in culture for 5 days at 37°C in DMEM/Ham’s F-12 (1:1)
medium (Biochrom) supplemented with 10% FBS, 0.2% chicken serum
(Sigma-Aldrich), 1% L-glutamine (Lonza, Basel, Switzerland) and 1%
penicillin/streptomycin (Lonza).

RNA sequencing
For both replicates, RNA extracts were obtained by harvesting 6 micromass
cultures with RLT buffer (Qiagen). Total RNAs were purified by using the
RNeasymini kit (Qiagen) in combination to a DNase I (Qiagen) treatment to
prevent genomic DNA contamination. RNA libraries were prepared by
using the TruSeq Stranded mRNA Library Preparation kit (Illumina, San
Diego, CA, USA), which enables the RNA strand orientation to be
preserved. Strand-specific 50-bp paired-end reads were generated by using a
HiSeq 2500 sequencer (Illumina) with a mean insert size of 150 bp.

Genome-guided transcript discovery
RNA-seq data obtained from both biological replicates of micromass
cultures were processed independently. Strand-specific read pairs were
mapped against the chicken genome galGal4 (Hillier et al., 2004) by using
TopHat2 v0.14 (Kim et al., 2013) (parameters: -r 150; -N 3; –read-edit-dist
3; –library-type fr-firststrand; -i 50; -G). UCSC (galGal4) and Ensembl
(release 75) annotations were downloaded from Illumina iGenomes (http://
support.illumina.com/sequencing/sequencing_software/igenome.html) and
compared by using Cuffcompare from the Cufflinks suite v2.1.1 (Trapnell
et al., 2010). Identical genes were retrieved only once and merged with the
unique genes from each annotation. In case of discordant genes, the gene
annotation with the best coverage was selected. The resulting gene
annotation model composed of 17,318 genes was used as input for
TopHat2 mapping. Transcript discovery was performed for each replicate by
using Cufflinks v2.1.1 (Trapnell et al., 2010) (parameters: -b; -u; -library-
type, fr-firststrand; -g) and the combined gene annotation model as guide.
Resulting annotations were merged into a single model by using the
Cufflinks tool Cuffmerge v2.1.1 (Trapnell et al., 2010).

De novo transcript discovery
A second transcript-discovery approach was led independently of the genome
sequence. Low-quality RNA-seq reads from each replicate of micromass
cultures were first filtered out by using the FASTX-Toolkit v0.0.13 (http://
hannonlab.cshl.edu/fastx_toolkit/). Reads with a median quality value lower
than 28 were discarded. Filtered read pairs were then trimmed by using
Trimmomatic v0.32 (Bolger et al., 2014) (parameters: ILLUMINACLIP
TruSeq3 paired-end for HiSeq, seedMismatches 2, palindromeClipThreshold
30, simpleClipThreshold 10; LEADING 5; TRAILING 5; MINLEN 36).
Complete read pairs were then assembled by using Trinity r20140717
(Grabherr et al., 2011) (default parameters except for the strand-specific library
orientation set at RF).

Gene fragmentation correction
Contigs resulting from the de novo assembly were compared to the gene
candidate sequences obtained by the first approach by using BLASTN from
BLAST+ v2.2.31+ (Camacho et al., 2009) (parameters: -strand plus; -dust
no; -soft_masking no). Contigs were assigned to a given gene candidate if
they matched at least 40 bp that were not covered by a previous hit with a
percentage of identities higher than 90%. Assigned contigs that were not
fully covered by a given gene candidate were further processed to extract
continuous uncovered regions of at least 400 bp. Remaining contigs were
mapped against the galGal4 genome by using BLASTN (parameters:
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-perc_identity 90; -dust no; -soft_masking no). Contigs were assigned to a
given gene candidate if they were located between two gene features,
potentially corresponding to an exon missed by Cufflinks, or in the vicinity
of a first or last exon, potentially corresponding to a missing 5′- or 3′-
untranslated region (UTR), respectively. Remaining unmapped contigs were
retrieved as they could correspond to non-defined genomic regions.
Unmapped, unassigned and non-covered contigs or regions of at least
400 bp were further processed to remove redundant sequences between
multiple isoforms. This step was necessary to prevent read pairs to be
mapped on multiple gene features and to be consequently discarded during
fragment counting. Isoforms belonging to the same gene candidates defined
by Trinity were compared to the longest isoforms by using BLASTN
(parameters: -perc_identity 90; -strand plus; -dust no; -soft_masking no;
-ungapped). Sequence alignments were then examined to build consensus
gene sequences by merging identical sequences between two isoforms and
by adding sequences unique to each isoform. Pairwise sequence comparison
was performed until all isoforms of the same gene candidates were
processed and concatenated. Resulting contig sequences were gathered
together as an artificial chromosome and separated to each other by 250 bp
of nucleotides N, corresponding to the total length of read pairs (50 bp for
each read and 150 bp as insert size).

Functional annotation
Gene candidate sequences retrieved from both transcript-discovery
approaches were then compared to existing databases for gene name
assignment. First, gene candidates were compared to the NCBI RefSeq
transcript database by using BLASTN (parameters: -strand plus; -dust no;
-soft_masking no). Comparison was limited to Aves (birds) sequences (taxid
8782). Gene candidates with a percentage of identities >90% for chicken
genes or 75% for bird genes, and bidirectionally covered on at least 50% of
their length were assigned to the corresponding hits. Gene candidates
matching several discordant gene names, such as chimeric and fused gene
candidates, were manually investigated and corrected. Non-annotated gene
candidate sequences were then compared to the NCBI human (taxid 9606)
and mouse (taxid 10090) non-redundant protein database by using BLASTX
from BLAST+ v2.2.31+ (Camacho et al., 2009) (parameters: -strand, plus;
-seg, no). Gene candidates with a percentage of homology of at least 30% and
covered by at least 50% of their length were filtered. Matching protein
accession numbers were converted into gene accession numbers by using the
Hyperlink Management System (Imanishi and Nakaoka, 2009). ORF
prediction was finally performed on remaining gene candidates by using
TransDecoder v2.1.0 (Haas et al., 2013) (strand specificity parameter: -S).
ORFs of at least 100 amino acids were annotated by using Trinotate v3.0.1
(https://trinotate.github.io/). Functional annotationwas based on the following
protein predictions: (i) BLASTX and BLASTP homology search against the
SwissProt database (Bairoch et al., 2004); (ii) protein domain prediction
against the Pfam database (Punta et al., 2012) by using HMMER v3.1b2
(Finn et al., 2011); (iii) signal peptide prediction by using SignalP v4.1
(Petersen et al., 2011); and (iv) transmembrane domain prediction by using
tmHMM v2.0c (Krogh et al., 2001). Resulting functional annotation was
divided into three categories: (i) putative proteins, for which at least one
protein domain could be identified; (ii) uncharacterized proteins,
corresponding to ORFs for which no protein domain could be identified;
and (iii) ncRNAs, corresponding to genes with an ORF shorter than
100 amino acids.

Comparison with galGal5
UCSC (galGal5) and Ensembl (release 89) reference annotations associated
with the galGal5 genome version were downloaded from the UCSC browser
and merged by using the Cufflinks tool Cuffmerge v2.1.1 (Trapnell et al.,
2010). RNA-seq strand-specific read pairs were mapped against the chicken
genome galGal5 (Warren et al., 2017) by using TopHat2 v0.14 (Kim et al.,
2013) (parameters: -r 150; -N 3; –read-edit-dist 3; –library-type
fr-firststrand; -i 50; -G) and the merged reference annotations as guide.
Sequences of annotated galGal5 transcripts were retrieved from the
RefSeq database (ftp://ftp.ncbi.nih.gov/genomes/Gallus_gallus/RNA/) and
compared to the predicted gene candidates by using BLASTN (parameters:
-perc_identity 90; -strand plus; -dust no; -soft_masking no). On one hand,

the total length coverage of predicted gene candidates was assessed by
identifying all regions matching with galGal5 gene sequences. On the other
hand, gene name assignment between predicted gene candidates and
annotated galGal5 genes was compared by retrieving only the hits that
matched at least 50% of their length.

Fragment counting
Strand-specific read pairs mapped against the chicken genome and the
artificial chromosome generated from the de novo transcript discovery were
first split by strand by using SAMtools v1.2 (Li et al., 2009) according to their
FLAG field (strand plus: -f 128 -F 16, -f 80; strand minus: -f 144, -f 64 -F 16).
Fragments (both reads of a pair) mapped on gene features were counted by
using featureCounts v1.4.6-p3 (Liao et al., 2014) (parameters: -p; -s 2;
–ignoreDup; -B; -R). Chimeric fragments aligned on different chromosomes
were taken into consideration to overcome the gene fragmentation due to the
location of gene parts on multiple chromosome contigs.
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