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Abstract

The presented work continues the line of recent distributed computing community
efforts dedicated to the theoretical aspects of blockchains. This paper is the first to
specify blockchains as a composition of abstract data types all together with a hierarchy
of consistency criteria that formally characterizes the histories admissible for distributed
programs that use them. Our work is based on an original oracle-based construction
that, along with new consistency definitions, captures the eventual convergence process
in blockchain systems. The paper presents as well some results on implementability of
the presented abstractions and a mapping of representative existing blockchains from
both academia and industry in our framework.

1 Introduction

The paper proposes a new data type to formally model blockchains and their behaviors. We aim
at providing consistency criteria to capture the correct behavior of current blockchain proposals
in a unified framework. It is already known that some blockchain implementations solve eventual
consistency of an append-only queue using Consensus [6, 5]. The question is about the consistency
criterion of blockchains as Bitcoin [26] and Ethereum [31] that technically do not solve Consensus,
and their relation with Consensus in general.

We advocate that the key point to capture blockchain behaviors is to define consistency criteria
allowing mutable operations to create forks and restricting the values read, i.e. modeling the data
structure as an append-only tree and not as an append-only queue. This way we can easily define a
semantics equivalent to eventual consistent append-only queue but as well weaker semantics. More
in detail, we define a semantic equivalent to eventual consistent append-only queue by restricting
any two reads to return two chains such that one is the prefix of the other. We call this consistency
property Strong Prefix (already introduced in [20]). Additionally, we define a weaker semantics
restricting any two reads to return chains that have a divergent prefix for a finite interval of the
history. We call this consistency property Eventual Prefix.

Another peculiarity of blockchains lies in the notion of validity of blocks, i.e. the blockchain
must contain only blocks that satisfy a given predicate. Let us note that validity can be achieved
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through proof-of-work (Dwork and Naor [15]) or other agreement mechanisms. We advocate that
to abstract away implementation-specific validation mechanisms, the validation process must be
encapsulated in an oracle model separated from the process of updating the data structure. Because
the oracle is the only generator of valid blocks and only valid blocks can be appended, it follows that
it is the oracle that grants the access to the data structure and it might also own a synchronization
power to control the number of forks, in terms of branches of the tree from a given block. In this
respect we define oracles models such that, depending on the model, the number of forks from a
given block can be: unbounded, up to k > 1, and k = 1 (no fork) for the strongest oracle model.

The blockchain is then abstracted by an oracle-based construction in which the update and
consistency of the tree data structure depends on the validation and synchronization power of the
oracle.

The main contribution of the paper is a formal unified framework providing blockchain con-
sistency criteria that can be combined with oracle models in a proper hierachy of abstract data
types [29] independent of the underlying communication and failure model. Thanks to the estab-
lishment of the formal framework the following implementability results are shown:

• The strongest oracle, guaranteeing no fork, has Consensus number ∞ in the Consensus
hierarchy of concurrent objects [21] (Theorem 4.2). It must be noted that we considered
Consensus defined in [11, 19, 8], in which the Validity property states that a valid block can
be decided even if sent by a faulty process.

• The weakest oracle, which validates a potential unbounded number of blocks to be appended
to a given block, has Consensus number 1 (Theorem 4.3).

• The impossibility to guarantee Strong Prefix in a message-passing system if forks are allowed
(Theorem 4.8). This means that Strong Prefix needs the strongest oracle to be implemented,
which is at least as strong as Consensus.

• A necessary condition (Theorem 4.7) for Eventual Prefix in a message-passing system, called
Update Agreement stating that each update sent by a correct process must be eventually
received by every correct process. The result implies that it is impossible to implement
Eventual Prefix if even only one message sent by a correct process is dropped.

The proposed framework along with the above-mentioned results helps in classifying existing
blockchains in terms of their consistency and implementability. We used the framework to classify
several blockchain proposals. We showed that Bitcoin [26] and Ethereum [31] have a validation
mechanism that maps to our weakest oracle and then they only implement Eventual prefix, while
other proposals maps to our strongest oracle, falling in the class of those that guarantee Strong
Prefix (e.g. Hyperledger Fabric [5], PeerCensus [12], ByzCoin [24], see Section 5 for further details).
Related Work. Formalisation of blockchains in the lens of distributed computing has been recog-
nized as an extremely important topic [22]. The topic is recent and to the best of our knowledge,
no other attempt proposed a unified framework capturing both Consensus-based and proof-of-work
blockchains, as the presented paper aims at proposing.

In [1], the authors present a study about the relationship of BFT consensus and blockchains. In
order to abstract the proof-of-work mechanism the authors propose a specific oracle, in the same
spirit of our oracle abstraction. While their oracle is more specific then ours, since it makes a
direct reference to proof-of-work properties, it offers as well a fairness property. Note that we do
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not formalize fairness properties in this paper, we only offer a generic merit parameter that can be
used to define fairness. Let us note that apart from the fairness property, our oracle captures the
semantics of [1]’s oracle.

In parallel and independently of the work in [3], [6] proposes a formalization of distributed
ledgers modeled as an ordered list of records. The authors propose in their formalization three
consistency criteria: eventual consistency, sequential consistency and linearizability. They discuss
how Hyperldger Fabric implements eventual consistency and propose implementations for sequen-
tial consistency and linearizability using a total order broadcast abstraction. Interestingly, they
show that a distributed ledger that provides eventual consistency can be used to solve the consensus
problem. These findings confirm our results about the necessity of Consensus to solve Strong Prefix
and corroborate our mapping of Hyperledger Fabric. On the other hand the proposed formaliza-
tion does not propose weaker consistency semantics more suitable for proof-of-work blockchains as
BitCoin. Indeed, [6] continues and it is complementary to the work on the first formalisation of
Bitcoin as a distributed ledger proposed in [4] where the distributed ledger is modelled as a simple
register. These works suggest different abstractions to model proof-of-work and Consensus-based
blockchains, respectively. The presented paper, on the other hand, thanks to our oracle-based con-
struction (not present in [6], [4]) generalizes both [4] and [6] to encompass both kind of blockchains
in a unified framework.

Finally, [20] presents an implementation of the Monotonic Prefix Consistency (MPC) criterion
and showed that no criterion stronger than MPC can be implemented in a partition-prone message-
passing system. Nicely, this result and more in general solvability results for eventual consistency
[13] immediately apply to our Strong Prefix criterion.

2 Preliminaries on shared object specifications based on Abstract
Data Types

The basic idea underlying the use of abstract data types is to specify shared objects using two
complementary facets [28]: a sequential specification that describes the semantics of the object, and
a consistency criterion over concurrent histories, i.e. the set of admissible executions in a concurrent
environment. In this work we are interested in consistency criteria achievable in a distributed
environment in which processes are sequential and communicate through message-passing.

2.1 Abstract Data Type (ADT)

The model used to specify an abstract data type is a form of transducer, as Mealy’s machines,
accepting an infinite but countable number of states. The values that can be taken by the data
type are encoded in the abstract state, taken in a set Z. It is possible to access the object using
the symbols of an input alphabet A. Unlike the methods of a class, the input symbols of the
abstract data type do not have arguments. Indeed, as one authorizes a potentially infinite set of
operations, the call of the same operation with different arguments is encoded by different symbols.
An operation can have two types of effects. First, it can have a side-effect that changes the abstract
state, the corresponding transition in the transition system being formalized by a transition function
τ . Second, operations can return values taken in an output alphabet B, which depend on the state
in which they are called and an output function δ. For example, the pop operation in a stack
removes the element at the top of the stack (its side effect) and returns that element (its output).
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The formal definition of abstract data types is as follows.

Definition 2.1. (Abstract Data Type T )An abstract data type is a 6-tuple T = 〈A,B,Z, ξ0, τ, δ〉
where:

• A and B are countable sets called input alphabet and output alphabet;

• Z is a countable set of abstract states and ξ0 is the initial abstract state;

• τ : Z ×A→ Z is the transition function;

• δ : Z ×A→ B is the output function.

Definition 2.2. (Operation) Let T = 〈A,B,Z, ξ0, τ, δ〉 be an abstract data type. An operation
of T is an element of Σ = A ∪ (A × B). We refer to a couple (α, β) ∈ A × B as α/β. We extend
the transition function τ over the operations and apply τ on the operations input alphabet:

τT :











Z × Σ→ Z

(ξ, α) 7→ τ(ξ, α) if α ∈ A

(ξ, α/β) 7→ τ(ξ, α) if α/β ∈ A×B

2.2 Sequential specification of an ADT

An abstract data type, by its transition system, defines the sequential specification of an object.
That is, if we consider a path that traverses its system of transitions, then the word formed by the
subsequent labels on the path is part of the sequential specification of the abstract data type, i.e.
it is a sequential history. The language recognized by an ADT is the set of all possible words. This
language defines the sequential specification of the ADT. More formally,

Definition 2.3. (Sequential specification L(T )) A finite or infinite sequence σ = (σi)i∈D ∈ Σ∞,
D = N or D = {0, . . . , |σ| − 1} is a sequential history of an abstract data type T if there exists a
sequence of the same length (ξi+1)i∈D ∈ Z∞ (ξ0 has already been defined has the initial state) of
states of T such that, for any i ∈ D,

• the output alphabet of σi is compatible with ξi: ξi ∈ δ−1T (σi);

• the execution of the operation σi is such that the state changed from ξi to ξi+1: τT (ξi, σi) =
ξi+1.

The sequential specification of T is the set of all its possible sequential histories L(T ).

2.3 Concurrent histories of an ADT

Concurrent histories are defined considering asymmetric event structures, i.e., partial order relations
among events executed by different processes [28].

Definition 2.4. (Concurrent history H) The execution of a program that uses an abstract data
type T =〈 A, B, Z, ξ0, τ, δ〉 defines a concurrent history H = 〈Σ, E,Λ, 7→,≺,ր〉, where

• Σ = A ∪ (A×B) is a countable set of operations;
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• E is a countable set of events that contains all the ADT operations invocations and all ADT
operation response events;

• Λ : E → Σ is a function which associates events to the operations in Σ;

• 7→: is the process order relation over the events in E. Two events are ordered by 7→ if they
are produced by the same process;

• ≺: is the operation order, irreflexive order over the events of E. For each couple (e, e′) ∈ E2,
if e is an operation invocation and e′ is the response for the same operation then e ≺ e′, if e′ is
the invocation of an operation occurred at time t′ and e is the response of another operation
occurred at time t with t < t′ then e ≺ e′;

• ր: is the program order, irreflexive order over E, for each couple (e, e′) ∈ E2 with e 6= e′ if
e 7→ e′ or e ≺ e′ then eր e′.

2.4 Consistency criterion

The consistency criterion characterizes which concurrent histories are admissible for a given abstract
data type. It can be viewed as a function that associates a concurrent specification to abstract
data types. Specifically,

Definition 2.5. (Consistency criterion C) A consistency criterion is a function

C : T → P(H)

where T is the set of abstract data types, H is a set of histories and P(H) is the sets of parts of H.

Let C be the set of all the consistency criteria. An algorithm AT implementing the ADT T ∈ T
is C-consistent with respect to criterion C ∈ C if all the operations terminate and all the admissible
executions are C-consistent, i.e. they belong to the set of histories C(T ).

3 BlockTree and Token oracle ADTs

In this section we present the BlockTree and the token Oracle ADTs along with consistency criteria.

3.1 BlockTree ADT

We formalize the data structure implemented by blockchain-like systems as a directed rooted tree
bt = (Vbt, Ebt) called BlockTree. Each vertex of the BlockTree is a block and any edge points
backward to the root, called genesis block. The height of a block refers to its distance to the root.
We denote by bk a block located at height k. By convention, the root of the BlockTree is denoted by
b0. Blocks are said valid if they satisfy a predicate P which is application dependent (for instance,
in Bitcoin, a block is considered valid if it can be connected to the current blockchain and does not
contain transactions that double spend a previous transaction). We represent by B a countable and
non empty set of blocks and by B′ ⊆ B a countable and non empty set of valid blocks, i.e., ∀b ∈ B′,
P (b) = ⊤. By assumption b0 ∈ B

′; We also denote by BC a countable non empty set of blockchains,
where a blockchain is a path from a leaf of bt to b0. A blockchain is denoted by bc. Finally, F is
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ξ0

ξ0 = {
b0 , f, P}

ξ1

ξ1 = {
b0 b1 , f, P}

append(b1)/true

if b1 ∈ B′

append(b3)/false

if b3 /∈ B′
ξ2

ξ2 = {
b0

b1

b2 , f, P}

append(b2)/true

if b2 ∈ B′

append(b3)/false

if b3 /∈ B′

read()/b⌢
0

b1 read()/b⌢
0

b2

Figure 1: A possible path of the transition system defined by the BT-ADT. We use the following
syntax on the edges: operation/output.

a countable non empty set of selection functions, f ∈ F : BT → BC; f(bt) selects a blockchain bc
from the BlockTree bt (note that b0 is not returned) and if bt = b0 then f(b0) = b0. This reflects
for instance the longest chain or the heaviest chain used in some blockchain implementations. The
selection function f and the predicate P are parameters of the ADT which are encoded in the state
and do not change over the computation.

The following notations are also deeply used: {b0}
⌢f(bt) represents the concatenation of b0 with

the blockchain of bt; and {b0}
⌢f(bt)⌢{b} represents the concatenation of b0 with the blockchain

of bt and a block b;

3.1.1 Sequential specification of the BlockTree

The sequential specification of the BlockTree is defined as follows.

Definition 3.1 (BlockTree ADT (BT -ADT )). The BlockTree Abstract Data Type is the 6-tuple
BT-ADT=〈A = {append(b), read(): b ∈ B}, B = BC∪{true, false}, Z = BT ×F×(B → {true, false}),
ξ0 = (bt0, f), τ, δ〉, where the transition function τ : Z ×A→ Z is defined by

• τ((bt, f, P ), append(b)) = ({b0}
⌢f(bt)⌢{b}, f, P ) if b ∈ B′; (bt, f, P ) otherwise;

• τ((bt, f, P ), read()) = (bt, f, P ),

and the output function δ : Z ×A→ B is defined by

• δ((bt, f, P ), append(b)) = true if b ∈ B′; false otherwise;

• δ((bt, f, P ), read()) = {b0}
⌢f(bt);

• δ((bt0, f, P ), read()) = b0.

The semantic of the read and the append operations directly depend on the selection function
f ∈ F . In this work we let this function generic to suit the different blockchain implementations.
In the same way, predicate P is let unspecified. The predicate P mainly abstracts the creation
process of a block, which may fail or successfully terminate. This process will be further specified
in Section 3.2.
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3.1.2 Concurrent specification of a BT-ADT and consistency criteria

The concurrent specification of the BT-ADT is the set of concurrent histories. A BT -ADT consis-
tency criterion is a function that returns the set of concurrent histories admissible for a BlockTree
abstract data type. We define two BT consistency criteria: BT Strong consistency and BT Eventual
consistency. For ease of readability, we employ the following notations:

• E(a∗, r∗) is an infinite set containing an infinite number of append() and read() invocation
and response events;

• E(a, r∗) is an infinite set containing (i) a finite number of append() invocation and response
events and (ii) an infinite number of read() invocation and response events;

• einv(o) and ersp(o) indicate respectively the invocation and response event of an operation o;
and ersp(r) : bc denotes the returned blockchain bc associated with the response event ersp(r);

• score : BC → N denotes a monotonic increasing deterministic function that takes as input a
blockchain bc and returns a natural number s as score of bc, which can be the height, the
weight, etc. Informally we refer to such value as the score of a blockchain; by convention
we refer to the score of the blockchain uniquely composed by the genesis block as s0, i.e.
score({b0}) = s0. Increasing monotonicity means that score(bc⌢{b}) > score(bc);

• mcps : BC × BC → N is a function that given two blockchains bc and bc′ returns the score of
the maximal common prefix between bc and bc′;

• bc ⊑ bc′ iff bc prefixes bc′.

BT Strong consistency. The BT Strong Consistency criterion is the conjunction of the following
four properties. The block validity property imposes that each block in a blockchain returned by
a read() operation is valid (i.e., satisfies predicate P ) and has been inserted in the BlockTree
with the append() operation. The Local monotonic read states that, given the sequence of read()
operations at the same process, the score of the returned blockchain never decreases. The Strong
prefix property states that for each couple of read operations, one of the returned blockchains is
a prefix of the other returned one (i.e., the prefix never diverges). Finally, the Ever growing tree
states that scores of returned blockchains eventually grow. More precisely, let s be the score of the
blockchain returned by a read response event r in E(a∗, r∗), then for each read() operation r, the
set of read() operations r′ such that ersp(r)ր einv(r

′) that do not return blockchains with a score
greater than s is finite. More formally, the BT Strong consistency criterion is defined as follows:

Definition 3.2 (BT Strong Consistency criterion (SC)). A concurrent history H = 〈Σ, E,Λ, 7→,≺
,ր〉 of the system that uses a BT-ADT verifies the BT Strong Consistency criterion if the following
properties hold:

• Block validity: ∀ersp(r) ∈ E,∀b ∈ ersp(r) : bc, b ∈ B
′ ∧ ∃einv(append(b)) ∈ E,

einv(append(b))ր ersp(r).

• Local monotonic read:

∀ersp(r), ersp(r
′) ∈ E2, if ersp(r) 7→ einv(r

′), then score(ersp(r) : bc) ≤ score(ersp(r
′) : bc′).
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• Strong prefix:

∀ersp(r), ersp(r
′) ∈ E2, (ersp(r

′) : bc′ ⊑ ersp(r) : bc) ∨ (ersp(r) : bc ⊑ ersp(r
′) : bc′).

• Ever growing tree: ∀ersp(r) ∈ E(a∗, r∗), s = score(ersp(r) : bc) then

|{einv(r
′) ∈ E | ersp(r)ր einv(r

′), score(ersp(r
′) : bc′) ≤ s}| <∞.

Figure 2 shows a concurrent history H admissible by the BT Strong consistency criterion. In
this example the score is the length l of the blockchain and the selection function f selects the
longest blockchain, and in case of equality, selects the largest based on the lexicographical order.
For ease of readability, we do not depict the append() operation. We assume the block validity
property is satisfied. The Local monotonic read is easily verifiable as for each couple of read
blockchains one prefixes the other. The first read() r operation, enclosed in a black rectangle, is
taken as reference to check the consistency criterion (the criterion has to be iteratively verified for
each read() operation). Let l be the score of the blockchain returned by r. We can identify two sets,
enclosed in rectangles defined by different patterns: (i) the finite sets of read() operations such that
the score associated to each blockchain returned is smaller than or equal to l, and (ii) the infinite
set of read() operations such that the score is greater than l. We can iterate the same reasoning for
each read() operation in H. Thus H satisfies the Ever growing tree property.

b0 1 2 b0 1 2 3 b0 1 2 3 4

i
t

b0 1 b0 1 2 b0 1 2 3 4

j
t

read(), l=3

set with each bc score l′ ≤ l

set with each bc score l′ > l

Figure 2: Concurrent history that satisfies the BT Strong consistency criterion. In such scenario f
selects the longest blockchain and the blockchain score is length l.

BT Eventual consistency. The BT Eventual consistency criterion is the conjunction of the
block validity, the Local monotonic read and the Ever growing tree of the BT Strong consistency
criterion together with the Eventual prefix which states that for each blockchain returned by a
read() operation with s as score, then eventually all the read() operations will return blockchains
sharing the same maximum common prefix at least up to s. Say differently, let H be a history with
an infinite number of read() operations, and let s be the score of the blockchain returned by a read
r, then the set of read() operations r′, such that ersp(r)ր einv(r

′), that do not return blockchains
sharing the same prefix at least up to s is finite.

Definition 3.3 (Eventual prefix property). Given a concurrent history H = 〈Σ, E(a, r∗),Λ, 7→,≺
,ր〉 of the system that uses a BT-ADT, we denote by s, for any read operation r ∈ Σ such that
∃e ∈ E(a, r∗),Λ(r) = e, the score of the returned blockchain, i.e., s = score(ersp(r) : bc). We
denote by Er the set of response events of read operations that occurred after r response, i.e.
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Er = {e ∈ E | ∃r′ ∈ Σ, r′ = read, e = ersp(r
′) ∧ ersp(r) ր ersp(r

′)}. Then, H satisfies the Eventual
prefix property if for all read() operations r ∈ Σ with score s,

|{(ersp(rh), ersp(rk)) ∈ E2
r |h 6= k,mpcs(ersp(rh) : bch, ersp(rk) : bck) < s}| <∞

The Eventual prefix properties captures the fact that two or more concurrent blockchains can
co-exist in a finite interval of time, but that ly all the participants adopts a same branch for each
cut of the history. This cut of the history is defined by a read that picks up a blockchain with a
given score.

Based on this definition, the BT Eventual consistency criterion is defined as follows:

Definition 3.4 (BT Eventual consistency criterion EC). A concurrent history H = 〈Σ, E,Λ, 7→,≺
,ր〉 of the system that uses a BT-ADT verifies the BT Eventual consistency criterion if it satisfies
the Block validity, Local monotonic read, Ever growing tree, and the Eventual prefix properties.

b0

1

2 4 b0 2 4

1 3

b0 2 4

1 3 5

i
t

b0

1

b0

1 3

2 b0

1 3 5

2 4

j
t

read(), l=3

set with each bc score l′ ≤ l

set with each bc score l′ > l

(a) Sets for the Ever Growing Tree property.

b0

1

2 4 b0 2 4

1 3

b0 2 4

1 3 5

i
t

b0

1

b0

1 3

2 b0

1 3 5

2 4

j
t

read(), l=3

set with blockchains mcps l′ < l

set with blockchains mcps l′ ≥ l

(b) Sets for the Eventual Prefix Property.

Figure 3: Concurrent history that satisfies the Eventual BT consistency criterion. In such scenario
f selects the longest blockchain and the blockchain score is the length l. In case (a) and case (b)
the concurrent history is the same but different sets are outlined.

Figure 3 shows a concurrent history that satisfies the Eventual prefix property but not the
Strong prefix one. Strong Prefix is not satisfied as blockchain1 b⌢0 1 returned from the first read()
at process j is not a prefix of blockchain b⌢0 2⌢4 returned from the first read at process i. Note
that we adopt the same conventions as for the example depicted in Figure 2 regarding the score,
length and append() operations. We assume that the Block validity property is satisfied. The

1For ease of readability we extend the notation b⌢i bj to represent concatenated blocks in a blockchain.
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Local monotonic read property is easily verifiable. In both Figures 3a and 3b, the first read() r
operation at i, enclosed in a black rectangle, is taken as reference to check the consistency criterion
(the criterion has to be iteratively verified for each read() operation). Let l be the score of the
blockchain returned by r. In Figure 3b we can identify two sets, enclosed in rectangles defined by
different patterns: (i) the finite set of read() operations sharing a maximum common prefix score
(mcps) smaller than l (the set to check for the satisfiability of the Eventual Prefix property), and
(ii) the infinite set of read() operations such that for each couple of them bc, bc′, mcps(bc, bc′) ≥ l.
We can iterate the same reasoning for each read() operation in H. Thus H satisfies the Eventual
Prefix property. Figure 4 shows a history that does not satisfy any consistency criteria defined so
far.

b0

1

2 4 b0 2 4

1 3

b0 2 4 6

1 3

i
t

b0

1

b0

1 3

2 b0

1 3 5

2 4

j
t

read(), l=3

set with each bc score l′ ≤ l

set with each bc score l′ > l

(a) Sets for the Ever Growing Tree property.

b0

1

2 4 b0 2 4

1 3

b0 2 4 6

1 3

i
t

b0

1

b0

1 3

2 b0

1 3 5

2 4

j
t

read(), l=3

set with blockchains mcps l′ < l

(b) Sets for the Eventual Prefix Property.

Figure 4: Concurrent history that does not satisfy any BT consistency criteria. In such scenario f
selects the longest blockchain and the blockchain score is the length l.

Relationships between EC and SC. Let us denote by HEC and by HSC the set of histories
satisfying respectively the EC and the SC consistency criteria.

Theorem 3.1. Any history H satisfying SC criterion satisfies EC and ∃H satisfying EC that
does not satisfy SC, i.e., HSC ⊂ HEC .

Proof. EC ≤ SC implies that HSC ⊂ HEC , and HSC ⊂ HEC implies that ∀H ∈ HSC ⇒ H ∈
HEC . By hypothesis, H verifies the Ever Growing Tree property, thus ∀ersp(r) ∈ E(a∗, r∗) with
s = score(ersp(r) : bc) then set {einv(r

′) ∈ E|ersp(r) ր einv(r
′), score(ersp(r

′′) : bc) ≤ s} is finite,
and thus, there is an infinite set {einv(r

′) ∈ E|ersp(r) ր einv(r
′), score(ersp(r

′′) : bc) > s}. The
Strong prefix property guarantees that ∀ersp(r), ersp(r

′) ∈ H, (ersp(r) : bc ⊑ ersp(r) : bc
′)∨ (ersp(r) :
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bc ⊑ ersp(r
′) : bc′), thus in this infinite set, all the read() operations return blockchains sharing the

same maximum prefix whose score is at least s+1, which satisfies the Eventual prefix property. The
Eventual Prefix property demands that for each ∀ersp(r) ∈ E(a, r∗) with s = score(ersp(r) : bc)
there is an infinite set defined as {(ersp(rh), ersp(rk)) ∈ E2

r |h 6= k,mpcs(ersp(rh) : bch, ersp(rk) :
bck) ≥ s} where Er denotes the set of response events of read operations that occurred after r
response. To conclude the proof we need to find a H ∈ HEC and H 6∈ HSC . Any H in which at
least two read() operations return a blockchain sharing the same prefix but diverging in their suffix
violate the Strong prefix property, which concludes the proof.

Let us remark that the BlockTree allows at any time to create a new branch in the tree, which
is called a fork in the blockchain literature. Moreover, an append is successful only if the input
block is valid with respect to a predicate. This means that histories with no append operations
are trivially admitted. In the following we will introduce a new abstract data type called Token
Oracle that when combined with the BlockTree will help in (i) validating blocks and (ii) controlling
forks. We will first formally introduce the Token Oracle in Section 3.2 and then we will define the
properties on the BlockTree augmented with the Token Oracle in Section 3.4.

3.2 Token oracle Θ-ADT

In this section we formalize the Token Oracle Θ to capture the creation of blocks in the BlockTree
structure. The block creation process requires that the new block must be closely related to an
already existing valid block in the BlockTree structure. We abstract this implementation-dependent
process by assuming that a process will obtain the right to chain a new block bℓ to bh if it successfully
gains a token tknh from the token oracle Θ. Once obtained, the proposed block bℓ is considered
as valid, and will be denoted by btknh

ℓ . By construction btknh

ℓ ∈ B′. In the following, in order
to be as much general as possible, we model blocks as objects. More formally, when a process
wants to access a generic object objh, it invokes the getToken(objh, objℓ) operation with object
objℓ from set O = {obj1, obj2, . . . }. If getToken(objh, objℓ) operation is successful, it returns an
object objtknh

ℓ ∈ O′, where (i) tknh is the token required to access object objh and (ii) each object
objk ∈ O

′ is valid with respect to predicate P , i.e. P (objk) = ⊤. We say that a token is generated
each time it is provided to a process and it is consumed when the oracle grants the right to connect
it to the previous object. Each token can be consumed at most once. To consume a token we define
the token consumption consumeToken(objtknh

ℓ ) operation, where the consumed token tknh is the
token required for the object objh. A maximal number of tokens k for an object objh is managed by
the oracle. The consumeToken(objtknh

ℓ ) side-effect on the state is the insertion of the object objtknh

ℓ
in a set Kh as long as the cardinality of such set is less than k.

In the following we specify two token oracles, which differ in the way tokens are managed.
The first oracle, called prodigal and denoted by ΘP , has no upper bound on the number of tokens
consumed for an object, while the second oracle ΘF , called frugal, and denoted by ΘF , assures
controls that no more than k token can be consumed for each object.

ΘP when combined with the BlockTree abstract data type will only help in validating blocks,
while ΘF manages tokens in a more controlled way to guarantee that no more than k forks can
occur on a given block.

11



3.2.1 ΘP -ADT and ΘF -ADT definitions

For both oracles, when getToken(objk , objh) operation is invoked, the oracle provides a token with a
certain probability pαi

> 0 where αi is a “merit” parameter characterizing the invoking process i. 2

Note that the oracle knows αi of the invoking process i, which might be unknown to the process
itself. For each merit αi, the state of the token oracle embeds an infinite tape where each cell of
the tape contains either tkn or ⊥. Since each tape is identified by a specific αi and pαi

, we assume
that each tape contains a pseudorandom sequence of values in {tkn,⊥} depending on αi.

3 When
a getToken(objk , objh) operation is invoked by a process with merit αi, the oracle pops the first cell
from the tape associated to αi, and a token is provided to the process if that cell contains tkn.

Both oracles also enjoy an infinite array of sets, one for each object, which is populated each
time a token is consumed for a specific object. When the set cardinality reaches k then no more
tokens can be consumed for that object. For a sake of generality, ΘP is defined as ΘF with k =∞
while for ΘF a predetermined k ∈ N is specified.

{}1 {}2 {}3 {}4 . . .K
obj1 obj2 obj3 obj4 . . . tkn ⊥ ⊥ tkn ⊥ ⊥ ⊥ . . .tapeα2

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ tkn . . .tapeα1

...

Figure 5: The ΘF abstract state. The infinite K array, where at the beginning each set is initialized
as empty and the infinite set of infinite tapes, one for each merit αi in A.

We first introduce some definitions and notations.

• O = {obj1, obj2, . . . }, infinite set of generic objects uniquely identified by their index i;

• O′ ⊂ O, the subset of objects valid with respect to predicate P , i.e. ∀obj′i ∈ O
′, P (obj′i) = ⊤.

• T = {tkn1, tkn2, . . . } infinite set of tokens;

• A = {α1, α2, . . . } an infinite set of rational values;

• M is a countable not empty set of mapping functions m(αi) that generate an infinite pseudo
random tape tapeαi

such that the probability to have in a cell the string tkn is related to a
specific αi, m ∈ M : A → {tkn,⊥}∗;

• K[ ] is a infinite array of sets (one per object) of elements in O′. All the sets are initialized as
empty and can be fulfilled with at most k elements, where k ∈ N is a parameter of the oracle
ADT;

• pop : {tkn,⊥}∗ → {tkn,⊥}∗, pop(a · w) = w;

• head : {tkn,⊥}∗ → {tkn,⊥}∗, head(a · w) = a;

2The merit parameter can reflect for instance the hashing power of the invoking process.
3We assume a pseudorandom sequence mostly indistinguishable from a Bernoulli sequence consisting of a finite or

infinite number of independent random variables X1, X2, X3, . . . such that (i) for each k, the value of Xk is either

tkn or ⊥; and (ii) ∀Xk the probability that Xk = tkn is pαi
.
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ξ0

ξ0 = {

{} {} {} . . .K

tkn ⊥ ⊥ . . .

tapeα2
⊥ ⊥ tkn . . .

tapeα1

... , k}

ξ1

ξ1 = {

{} {} {} . . .K

⊥ ⊥ ⊥ . . .

tapeα2
⊥ ⊥ tkn . . .

tapeα1

... , k}

getToken(obj1 , objk)/obj
tkn1

k

if pop(tapeα1
) = tkn

ξ2

ξ2 = {

{objtkn1

k } {} {} . . .K

⊥ ⊥ ⊥ . . .

tapeα2
⊥ ⊥ tkn . . .

tapeα1

... , k}

consumeToken(objtkn1

k
)/{objtkn1

k
}

if |K[1]| < k ∧ btkn1

k
∈ T

Figure 6: A possible path of the transition system defined by the ΘF and ΘP -ADTs. We use the
following syntax on the edges: operation/output.

• add : {K} × N × O′ → {K}, add(K, i, objtknh

ℓ ) = K : K[i] = K[i] ∪ {objtknh

ℓ } if |K[i]| < k;
else K[i] = K[i];

• get : {K} × N→ N, get(K, i) = K[i];

Definition 3.5. (ΘF -ADT Definition). The ΘF Abstract Data type is the 6-tuple ΘF -ADT
=〈 A= {getToken(objh , objℓ), consumeToken(objtknh

ℓ ) : objh, obj
tknh

ℓ ∈ O′, objℓ ∈ O, tknh ∈ T}, B=
O′ ∪Boolean, Z= m(A)∗ × {K} × k ∪ {pop, head, dec, get}, ξ0, τ, δ〉, where the transition function
τ : Z ×A→ Z is defined by

• τ(({tapeα1
, . . . , tapeαi

, . . . },K, k), getToken(objh, objℓ)) = ({tapeα1
, . . . , pop(tapeαi

), . . . },K, k)
with αi the merit of the invoking process;

• τ(({tapeα1
, . . . , tapeαi

, . . . },K, k), consumeToken(objtknh

ℓ )) = ({tapeα1
, . . . , tapeαi

, . . . }, add(K,h, objtknh

ℓ )),
if tknh ∈ T ; {({tapeα1

, . . . , tapeαi
, . . . },K, k)} otherwise.

and the output function δ : Z ×A→ B is defined by

• δ(({tapeα1
, . . . , tapeαi

, . . . },K, k), getToken(objh, objℓ)) = objtknh

ℓ : objtknh

ℓ ∈ O′, tknh ∈ T, if
head(tapeαi

) = tkn with αi the merit of the invoking process; ⊥ otherwise;

• δ(({tapeα1
, . . . , tapeαi

, . . . },K, k), consumeToken(objtknh

ℓ )) = get(K,h).

Definition 3.6. (ΘP -ADT Definition). The ΘP Abstract Data type is defined as the ΘF -ADT
with k =∞.

Figure 6 shows a possible path of the transition system defined by the ΘF and ΘP -ADTs.

3.3 BT-ADT augmented with Θ Oracles

In this section we augment the BT-ADT with Θ oracles and we analyze the histories generated
by their combination. Specifically, we define a refinement of the append(bℓ) operation of the BT-
ADT with the oracle operations which triggers the getToken(bh ←last block(f(bt)), bℓ) operation
as long as it returns a token on bk, i.e., bℓ

tknh which is a valid block in B′. Once obtained, the
token is consumed and the append terminates, i.e. the block bℓ

tknh is appended to the block h in
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the blockchain f(bt) ({b0}
⌢f(bt)|⌢h {bℓ}). Notice that those two operations and the concatenation

occur atomically.
We say that the BT -ADT augmented with ΘF or ΘP oracle is a refinement R(BT -ADT,ΘF ) or
R(BT -ADT,ΘP ) respectively.

Let us define the following auxiliary function:

• evaluate: B×BΘ → bool. evaluate(b, δb ◦δ
∗
a )= true if (∃h : btknh ∈ δb∧(∃X : btknh ∈ X∧X ∈

δ∗a)); false otherwise.

Definition 3.7. [R(BT -ADT,ΘF ) refinement] Given the BT-ADT=〈A,B,Z, ξ0, τ, δ〉, and the ΘF -
ADT =(AΘ, BΘ, ZΘ, ξΘ0 , τ

Θ, δΘ), we have R(BT − ADT,ΘF )=〈A
′ = A ∪ AΘ, B′ = B ∪ BΘ, Z ′ =

Z ∪ ZΘ, ξ′0 = ξ0 ∪ ξΘ0 , τ
′, δ′〉, where the transition function τ ′ : Z ′ ×A′ → Z ′ is defined by

• τa = τ ′(({tapeα1
, . . . , tapeαi

, . . . },K, k, bt, f, P ), getToken(bk ← last block(bt), bℓ)) =
({tapeα1

, . . . , pop(tapeαi
), . . . },K, k, bt, f, P );

• τb = τ ′(({tapeα1
, . . . , tapeαi

, . . . },K, k, bt, f, P ), consumeToken(btknh

ℓ )) =

({tapeα1
, . . . , tapeαi

, . . . }, add(K,h, btknh

ℓ ), k, {b0}
⌢f(bt)|⌢h {bℓ}, f, P ) if tknh ∈ T ∧ btknh

ℓ ∈
get(K, l) ; ({tapeα1

, . . . , tapeαi
, . . . },K, k, bt, f, P ) otherwise;

• τ ′(({tapeα1
, . . . , tapeαi

, . . . },K, k, bt, f, P ), append(b)) = τb ◦ τ
∗
a

where τb ◦ τ
∗
a is the repeated application of τa until

δa(({tapeα1
, . . . , tapeαi

, . . . },K, k, bt, f, P ), getToken(bk ← last block(bt), bℓ)) = btknh

ℓ con-
catenated with the τb application;

• τ ′({tapeα1
, . . . , tapeαi

, . . . },K, k, bt, f, P ), read() = bt.

and the output function δ′ : Z ′ ×A′ → B′ is defined by:

• δa = δ′(({tapeα1
, . . . , tapeαi

, . . . },K, k, bt, f, P ), getToken(bk ← last block(bt), bℓ)) = btknh

ℓ :

btknh

ℓ ∈ B′, tknh ∈ T, if head(tapeαi
) = tkn with αi the merit of the invoking process; ⊥

otherwise;

• δb = δ′(({tapeα1
, . . . , tapeαi

, . . . },K, k, bt, f, P ), consumeToken(objtknh

ℓ )) = get(K,h);

• δ′(({tapeα1
, . . . , tapeαi

, . . . },K, k, bt, f, P ), append(b)) = evaluate(b, δb◦δ
∗
a), where δb◦δ

∗
a is the

repeated application of δa until δa(({tapeα1
, . . . , tapeαi

, . . . },K, k, bt, f, P ), getToken(last block(bt), b)) =

btknh

ℓ concatenated with the δb application;

• δ′(({tapeα1
, . . . , tapeαi

, . . . },K, k, bt, f, P ), read()) = {b0}
⌢f(bt);

• δ′(({tapeα1
, . . . , tapeαi

, . . . },K, kbt0, f, P ), read()) = b0.

Definition 3.8 (R(BT -ADT,ΘP ) refinement). Same definition as the R(BT -ADT,ΘF ) refine-
ment.

Definition 3.9 (k-Fork Coherence). A concurrent history H = 〈Σ, E,Λ, 7→,≺,ր〉 of the BT-ADT
composed with ΘF -ADT satisfies the k-Fork Coherence if there are at most k append() operations
that return ⊤ for the same token.
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ξ0

ξ0 = {
b0 , f, P}

ξ1

ξ1 = {
b0 bk , f, P}

append(bk)/true

if bk ∈ B
′

append(b3)/false

if b3 /∈ B′
ξ2

ξ2 = {
b0

bk

b2 f, P}

append(b2)/true

if b2 ∈ B′

append(b4)/⊥

if b4 /∈ B′

read()/b0 ⌢ bk read()/b0 ⌢ b2

ξ′0

{

{} {} . . .K

tkn ⊥ . . .

tapeα2
⊥ tkn . . .

tapeα1

... ,k, b0 , f, P}

ξ′1/a

{

{} {} . . .

⊥ ⊥ . . .

⊥ tkn . . .
... ,k, b0 , f, P}

getToken(b1 ←last block(f(bt)), bk)/b
tkn1

k

if pop(tapeα1
) = tkn

ξ′1/b

{

{btkn1

k } {} . . .

⊥ ⊥ . . .

⊥ tkn . . .
... ,k, b0 b1 , f, P}

consumeToken(btkn1

k
)/{btkn1

k
}

if |K[1]| < k ∧ btkn1

k
∈ T

Figure 7: Refinement of the append() operation. We use the following syntax on the edges: opera-
tion/output.

Theorem 3.2 (k-Fork Coherence). Each concurrent history H = 〈Σ, E,Λ, 7→,≺,ր〉 of the BT-
ADT composed with a ΘF -ADT satisfies the k-Fork Coherence.

Proof. We prove the theorem by considering the defined refinement (Definition 3.7) where (i) there
are a infinite number of getToken() invocations for object obj and (ii) given a valid block as input
parameter, the consumeToken() operation successfully terminates if it has been invoked less than k
times for the same token. From the properties of the pseudo random sequences of tapes, if there are
an infinite number of getToken() invocations for object obj then there exists at least one response for
which getToken() operation returns a token t, which, when passed as input of the consumeToken()
operation it successfully terminates if at most k − 1 tokens t have been already consumed.

Let us notice, the ΘF -ADT guarantees by construction the safety property (Theorem 3.2).
Liveness properties (i.e., the Termination) for ΘF -ADT and ΘP -ADT depend on the communication
model and failure model in which those are implemented.

3.4 Hierarchy

In this section we define a hierarchy between different BT-ADT satisfying different consistency
criteria when augmented with different oracle ADT. We use the following notation: BT-ADTSC

and BT-ADTEC to refer respectively to BT-ADT generating concurrent histories that satisfies
the SC and the EC consistency criteria. When augmented with the oracles we have the follow-
ing four typologies, where for the frugal oracle we explicit the value of k: R(BT-ADTSC ,ΘF,k),
R(BT-ADTSC ,ΘP ), R(BT-ADTEC ,ΘP ), R(BT-ADTEC ,ΘF,k).
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R(BT-ADTSC ,ΘF,k=1)

R(BT-ADTEC ,ΘF,k>1)

R(BT-ADTSC ,ΘP )

R(BT-ADTSC ,ΘF,k>1)

R(BT-ADTEC ,ΘP )

Theorem 3.4
Theorem 3.3

Theorem 3.3

Corollary 3.4.1

Corollary 3.4.1

Figure 8: R(BT-ADT,Θ) Hierarchy.

In the following we want study the relationship among the different refinements. Without
loss of generality, let us consider only the set of histories ĤR(BT-ADT,Θ) such that each history
ĤR(BT-ADT,Θ) ∈ ĤR(BT−ADT,Θ) is purged from the unsuccessful append() response events (i.e., such
that the returned value is ⊥). Let ĤR(BT-ADT,ΘF,k) be the concurrent set of histories generated
by a BT-ADT refined with ΘF,k-ADT and let ĤR(BT-ADT,ΘP ) be the concurrent set of histories
generated by a BT-ADT refined with ΘP -ADT.

Theorem 3.3. ĤR(BT-ADT,ΘF ) ⊆ ĤR(BT-ADT,ΘP ).

Proof. The proof follows from Theorem 3.2 considering that R(BT,ΘP ) can generate histories
with an infinite number of append() operations that successfully terminate while R(BT,ΘF ) can
generate history with at most k append() operations that successfully terminate.

Theorem 3.4. If k1 ≤ k2 then ĤR(BT-ADT,ΘF,k1
) ⊆ ĤR(BT-ADT,ΘF,k2

).

Proof. The proof follows from Theorem 3.2 applying the same reasoning as for the proof of Theorem
3.3 with k1 ≤ k2.

Finally, from Theorem 3.1 the next corollary follows.

Corollary 3.4.1. Ĥ(R(BT-ADTSC ,Θ) ⊆ ĤR(BT-ADTEC ,Θ).

Combining Theorem 3.1 and Theorem 3.3 we obtain the hierarchy depicted in Figure 8.

4 Implementing BT-ADTs

4.1 Implementability in a concurrent model

In this Section we show that ΘF,k=1 has consensus number ∞ and that ΘP has consensus number
1.

We consider a concurrent system composed by n processes such that up to f processes are
faulty (stop prematurely by crashing), f < n. Moreover, processes can communicate through
atomic registers.
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(1) consumeToken(b
tknh

ℓ
) :

(2) previous value ← K[h];
(3) if (previous value == {} ∧ tknh ∈ T)then;

(4) K[h]← K[h] ∪ {b
tknh

ℓ
};

(5) endIf

(6) return K[h]

(1) compare&swap(register, old value, new value) :
(2) previous value ← register;
(3) if (previous value == old value)then;
(4) register← new value;
(5) endIf

(6) return previous value

Figure 9: Compare&Swap() and consumeToken() in the case of ΘF,k=1.

4.1.1 Frugal with k = 1 at least as strong as Consensus

In the following we prove that there exists a wait-free implementation of the Consensus [25] by the
ΘF,k=1 Oracle object. In particular, in this case ΘF,k=1 = 〈 A= {getToken(bh, bℓ), consumeToken(btknh

ℓ ) :

bh, b
tknh

ℓ ∈ B′, bℓ ∈ B, tknh ∈ T}, B= B′ ∪ Boolean, Z= m(A)∗ × {K} × k ∪ {pop, head, dec, get},
ξ0, τ, δ〉. We explicit consider blocks and valid blocks (B and B′) rather than objects and valid
objects (O and O′). Moreover, we consider a version of the Consensus problem for the blockchain.
Thus, we consider the Validity property as in [11] such that the decided block b satisfies the predi-
cate P .

Definition 4.1. Consensus C:

• Termination. Every correct process eventually decides some value.

• Integrity. No correct process decides twice.

• Agreement. If there is a correct process that decides a value b, then eventually all the
correct processes decide b.

• Validity[11]. A decided value is valid, it satisfies the predefined predicate denoted P .

To this aim, we first prove that there exists a wait-free implementation of Compare&Swap()
object by consumeToken() object in the case of ΘF,k=1, implying that consumeToken() has the
same Consensus number as Compare&Swap() which is ∞ (see [21]). Finally we compose the
consumeToken() with the getToken() object proving that there exist a wait-free implementation
of C by ΘF,k=1.

Figure 9 describes consumeToken() (CT), as specified by the Θ-ADT, along with the Compare&Swap()
(CAS). Compare&Swap() takes three parameters as input, the register, the old value and the
new value. If the value in register is the same as old value then the new value is stored in register
and in any case the operation returns the value that was in register at the beginning of the op-
eration. In comparison with consumeToken(btknh

ℓ ) we have that btknh

ℓ is the new value, register is
K[h] and the implicit old value is {}. That is, add(K,h, b) stores b in K[h] if |K[h]| < k = 1, then
if K[h] = {}. In any case the operation returns the content of K[h] at the end of the operation
itself. Figure 10 describes and algorithm that reduces CAS to consumeToken().

Theorem 4.1. If input values are in B′ then there exists an implementation of CAS by CT in the
case of ΘF,k=1.

Proof. The proof simply follows by construction. Let us consider the algorithm in Figure 10. When
the Compare&Swap() operation is invoked, if K[h] is empty, then when consumeToken() is invoked
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(1) compare&swap(K[h], {}, b
tknh

ℓ
) :

(2) returned value←consumeToken(b
tknh

ℓ
);

(3) if (returned value == b
tknh

ℓ
)then;

(4) return {};
(5) else return returned value;
(6) endIf

Figure 10: An implementation of CAS by CT in the case of ΘF,k=1.

upon event propose(b):
(1) validBlock ← ⊥;
(2) validBlockSet← ∅; % since k = 1 then it contains only one element.
(3) while (validBlock = ⊥):
(4) validBlock ← getToken(b0, b);
(5) validBlockSet← consumeToken(validBlock); % it can be different from validBlock
(6) trigger decide(validBlockSet);

Figure 11: The Protocol A that reduces the Consensus problem to the Frugal Oracle with k = 1.

with btknh

ℓ (valid by hypothesis) K[h] is populated with btknh

ℓ . Such value is later returned by the

consumeToken() operation in retuend value. Since it is the same value as btknh

ℓ (line 3) then the
Compare&Swap returns the value of K[h] at the beginning of the operation, {}. If the condition at
line (line 3) does not hold, then this means that K[h] did not change during the operation and its
value, in returned value is returned.

Figure 11 describes a simple implementation of Consensus by ΘF,k=1. When a correct process
pi invokes the propose(b) operation it loops invoking the getToken(b0, b) operation as long as a
valid block is returned (lines 3-4). In this case the getToken() operation takes as input some
block b0 and the proposed block b. Afterwards, when the valid block has been obtained pi invokes
the consumeToken(validBlock) operation whose result in stored in the tokenSet variable (line 5).
Notice, the first process that invokes such operation is able to successfully consume the token, i.e.,
the valid block is in the Oracle set corresponding to b0, which cardinality is k = 1, and such set is
returned each time the consumeToken() operation is invoked for a block related to b0. Finally, (line
6) the decision is triggered on such set (with contains one element).

Theorem 4.2. ΘF,k=1 Oracle has Consensus number ∞.

Proof. The proof proceeds by construction, let us consider the implementation in Figure 11. All
correct processes performing the Consensus are looping on the getToken(b0, b) operation. From the
properties of the pseudo random sequences of tapes, if there are an infinite number of getToken()
invocations for an block b0 then there exists at least one response for which getToken() operation
returns a valid block btkn0 . Thus, all correct process i can invoke the consumeToken(btkn0 ) operation
with valid values. Since all the processes invoke such operation with valid values with can apply
Theorem 4.1 which concludes the proof considering that CAS has Consensus number ∞ ([21]).
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(1) consumeTokenk (tkn) :
(2) Rh,m ←update(Rh,m , tknm)
(3) returned value← scan(Rh,1,Rh,2, . . . ,Rh,m, . . .Rh,n)
(4) return returned value;

Figure 12: An implementation of CT by Atomic Snapshot in the case of ΘP .

4.1.2 Prodigal not stronger than an Atomic Register

In order to show that the Prodigal oracle ΘP has consensus number 1, it suffices to find a wait-free
implementation of the oracle by an object with consensus number 1. To this end we present a
straightforward implementation of the Prodigal oracle by Atomic Snapshot[7].

Let us firstly simplify the notation of the consume token operation. Let us consider a consume
token invoked for a given block bh, denoted as consumeTokenh(tknm), which simply writes a token
from the set T = {tkn1, tkn2, . . . , tknm, . . . } in the setK[h]. Without loss of generality let us assume
that: (i) tokens are uniquely identified , (ii) cardinality of T is n finite but not known and (iii) the
set K[h] is represented by a collection of n atomic registers K[h = {Rh,1, Rh,2, . . . , Rh,m, . . . Rh,n},
where Rh,m is assigned to the tknm token, i.e. Rh,m can contain either ⊥ or tknm.

It can be observed that the consumeTokenh(tknm) in the case of k infinite, always allows to
write the token tknm in Rh,m, i.e. there always exists a register Rh,m for the proposed token tknm.
By the oracle definition, moreover, the consumeTokenh(tknm) returns a read of the n registers that
includes the last written token. Figure 12 shows a trivial implementation of commit token CT
using Atomic Snapshot that offers update(Ri, value), scan(R1, R2, . . . , Rn) operation to update a
particular register and perform an atomic read of input registers, respectively.

Theorem 4.3. ΘP Oracle has Consensus number 1.

Proof. The proof trivially follows from implementation in Figure 12 of the consensus token operation
of the Prodigal oracle by the Atomic Snaposhot object and from [7].

4.2 Implementability in a message-passing system model

We consider a message-passing system composed of an arbitrary large but finite set of n processes,
Π = {p1, . . . , pn}. The passage of time is measured by a fictional global clock (e.g., that spans the
set of natural integers). Processes in the system do not have access to the fictional global time. Each
process of the distributed system executes a single instance of a distributed protocol P composed
of a set of algorithms, i.e., each process is running an algorithm. Processes can exhibit a Byzantine
behavior (i.e., they can arbitrarily deviate from the protocol P they are supposed to run). A process
affected by a Byzantine behavior is said to be faulty, otherwise we refer to such process as non-faulty
or correct. We make no assumption on the number of failures that can occur during the system
execution. Processes communicate by exchanging messages via communication channels. We say
that a communication channels are asynchronous if the is no upper bound on the message delivery
delay. Contrarily, communication channels are synchronous if messages sent by correct processes at
time t are delivered by correct processes by time t+ δ. Finally, communication channels are weakly
synchronous if there exist an unknown a priori time τ after which the communication channels
behave as synchronous. We specify time to time the channels synchrony assumption considered,
when left untold we consider asynchronous channels.
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The BlockTree being now a shared object replicated at each process, we note by bti the local copy
of the BlockTree maintained at process i. To maintain the replicated object we consider histories
made of events related to the read and append operations on the shared object, i.e. the send and
receive operations for process communications and the update operation for BlockTree updates. We
also use subscript i to indicate that the operation occurred at process i: updatei(bg, bi) indicates
that i inserts its locally generated valid block bi in bti with bg as a predecessor. Updates are
communicated through send and receive operations. An update related to a block bi generated on
a process pi, sent through sendi(bg, bi), and received through a receivej(bg, bi), takes effect on the
local replica btj of pj with the operation updatej(bg, bi).

We assume a generic implementation of the update operation: when process i locally updates
its BlockTree bti with the valid block bi (returned from the consumeToken() operation), we write
updatei(b, bi). When a process j execute the receivej(b, bi) operation, it locally updates its BlockTree
btj by invoking the updatej(b, bi) operation.

In the remaining part of the work we consider implementations of BT-ADT in a Byzantine
failure model where the set of events is restricted as follows.

Definition 4.2. The execution of the system that uses the BT-ADT =(A, B, Z, ξ0, τ, δ) in a
Byzantine failure model defines the concurrent history H = 〈Σ, E,Λ, 7→,≺,ր〉 (see Definition 2.4)
where we restrict E to a countable set of events that contains (i) all the BT-ADT read() operations
invocation events by the correct processes, (ii) all BT-ADT read() operations response events at the
correct processes, (iii) all append(b) operations invocation events such that b satisfies the predicate
P and, (iv) send, receive and update events generated at correct processes.

In this Section we consider a message passing system model and we show the
(i) impossibility to achieve Strong Prefix without Consensus and impossibility to achieve Even-

tual Prefix if at least one message sent by a correct process is lost.
TBC: (ii)Eventual Prefix is impossible in an asynchronous system (iii)Eventual Prefix is impos-

sible if the interval between the generation of two successive blocks is less than the upper bound
on the message delay. (iv) Impossible to solve Strong Prefix without the Frugal oracle with k = 1.

4.3 Communication Abstractions

We now define the properties that each history H generated by a BT-ADT satisfying the Eventual
Prefix Property has to satisfy and then we prove their necessity.

Definition 4.3 (Update Agreement). A concurrent history H = 〈Σ, E,Λ, 7→,≺,ր〉 of the system
that uses a BT-ADT satisfies the Update Agreement if satisfies the following properties:

• R1. ∀updatei(bg, bi) ∈ H,∃sendi(bg, bi) ∈ H;

• R2. ∀updatei(bg, bj) ∈ H,∃receivei(bg, bj) ∈ H such that receivei(bg, bj) 7→ updatei(bg, bj);

• R3. ∀updatei(bg, bj) ∈ H, ∃receivek(bg, bj) ∈ H,∀k.

Figure 13 depicts a concurrent history that satisfies the Update Agreement properties.
In the following, for ease of notation we consider that the selection function f ∈ F returns

directly also the genesis block.

Lemma 4.4. Property R1 or Property R2 are necessary conditions for any protocol P to implement
a BT-ADT generating histories H satisfying the Eventual Prefix property.
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Figure 13: Example of concurrent history that satisfies R1,R2 and R3, the Update Agreement
properties.

Proof. Let us assume that there exists a protocol P implementing a BT-ADT that generates his-
tories H satisfying Eventual Prefix property but not Property R1 or Property R2. Thus, in H
there is some update u that is not sent to the other processes (R1) or once received, u is not locally
applied (R2). Let us consider the following history where R1 is not verified and process i issues
the first update event in H.
Let us construct the following execution history H. i issues the updatei(b0, b

′
i) (thus bti = b⌢0 b′i)

but not the sendi(b0, b
′
i) event. It follows that if there is no sendi(b0, b

′
i) event in H then in H are

no present any receivej(b0, b) events, j 6= i and thus not process j 6= i can issue updatej(b0, b
′
i) (on

the other side, if R2 is not satisfied, even if the the receivej(b0, b) event occur then updatej(b0, b
′
i)

may not occur), thus ∀j 6= i, btj = b0. Let us assume that i performs a read() operation, the
selection function f ∈ F is applied on bti = b⌢0 b′i. By the score function definition it follows
that score(b⌢0 b′i) > score(b0). Thus if i issues a read() operation after updatei(b0, b

′
i) it returns a

blockchain such that score(b⌢0 b) and the possible infinite read() operations issued by other pro-
cesses always return blockchain such that score(b0), violating the Eventual Prefix property. The
construction of H can be completed iterating the same reasoning for an infinite number of append()
operation issued by i, thus H violates the Eventual Prefix Property leading to a contradiction.

Lemma 4.5. Property R3 is a necessary condition for any protocol P to implement a BT-ADT
generating histories H satisfying the Eventual Prefix property.

Proof. Let us assume that there exists a protocol P implementing a BT-ADT that generates his-
tories H satisfying Eventual Prefix property but not Property R3. Thus, in H there is some
updatei(b, b

′
i) u at some process i such that the receivej(b, b

′
i) events do not occur at all processes

j 6= i.
Let us consider a system composed by three processes, i, j and k. The system execution generates
the following history H where R3 is not verified. In particular, in H are present the updatei(b0, b

′
i),

receivej(b0, b
′
i) events but there is no any receivek(b0, b

′
i) event. It follows that bti = btj = b0 ⌢ b′i

and btz = b0. We apply the same argument as for Lemma 4.4. Let us assume that j and k per-
form read() operations. Such operation returns the result of f(btj) and f(btk) respectively. By the
score function definition it follows that score(b⌢0 b′i) > score(b0). If j issues a read() operation after
updatej(b0, b

′
i) it returns a blockchain with score(b⌢0 b) and the other read() operations issued by k
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will always return blockchain with score(b0). The construction of H can be completed iterating
the same reasoning for an infinite number of append() operation issued by i, thus H violates the
Eventual Prefix Property leading to a contradiction.

Theorem 4.6. The update agreement property is necessary to construct concurrent histories H =
〈Σ, E,Λ, 7→,≺,ր〉 generated by a BT-ADT that satisfy the BT Eventual Consistency criterion.

Proof. The proof follows directly from Lemma 4.4, Lemma 4.5 and the definition of Eventual BT
consistency criterion.

Considering Theorem 4.6 and Theorem 3.1 the next Corollary follows.

Corollary 4.6.1. There not exists a concurrent history H = 〈Σ, E,Λ, 7→,≺,ր〉 of the system that
uses a BT-ADT that satisfies the Strong BT consistency criterion but not the Update Agreement.

In the following we consider a communication primitive that is inspired by the Liveness prop-
erties of the reliable broadcast [9]. We will prove that this abstraction is necessary to implement
Eventual BT Consistency.

Definition 4.4 (Light Reliable Communication (LRC)). A concurrent history H satisfies the
properties of the LRC abstraction if and only if:

• (Validity): ∀sendi(b, bi) ∈ H,∃receivei(b, bi) ∈ H;

• (Agreement): ∀receivei(b, bj) ∈ H,∀k∃receivek(b, bi) ∈ H

In other words, if a correct process i sends a message m then i eventually receives m and if
a message m is received by some correct process (e.g., i itself), them m is eventually received by
every correct process.

Theorem 4.7. The LRC abstraction is necessary to for any BT-ADT implementation that gener-
ates concurrent histories that satisfies the BT Eventual Consistency criterion.

Proof. The proof done by generating a concurrent history H that violates the LRC properties and
showing that H also violate the Update Agreement properties. For Theorem 4.6 the Update Agree-
ment properties are necessary condition to implement BT-ADT that generates concurrent histories
that satisfies the BT Eventual Consistency criterion.
Let us consider H where at process n occurs the event updaten(b, bn) and sendn(b, bn) and where
the LRC2 property is not satisfied. If LRC2 is violated then in H we can have that there exist
some process i at which occurs the receivei(b, bn) event and some process j at which never occurs
the receivej(b, bn) event. Since at process n occurred the event updaten(b, bn), then, for the R3
property, for each process k updaten(b, bn) has to occur. For R2 the updatem(b, bn) event at some
process m has to be preceded by a receivem(b, bn) event at the same process m. Since by hypothesis
not at all processes m the receivem(b, bn) occurs then the property is violated, violating the Update
Agreement properties, which are necessary conditions to implement BT-ADT that generates con-
current histories that satisfies the BT Eventual Consistency criterion, which concludes the proof.

Finally, from Theorem 3.1 and Theorem 4.7 the next Corollary follows.

Corollary 4.7.1. The LRC abstraction is necessary to for any BT-ADT implementation that
generates concurrent histories that satisfies the BT Strong Consistency criterion.
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4.4 System model and hierarchy

Observation. Following our Oracle based abstraction (Section 3.4) we assume by definition that
the synchronization on the block to append is oracle side and takes place during the append
operation. It follows that when a process takes the token to append a block it can only use the
LRC communication abstraction.

Theorem 4.8. There does not exist an implementation of R(BT-ADTSC ,Θ) with Θ 6= ΘF,k=1

that uses a LRC primitive and generates histories satisfying the BT Strong consistency.

Proof. Let us assume that there exist a BT-ADT implementation that satisfies the BT Strong
consistency criterion refined with a Θ-ADT different from ΘF,k=1, which implies that forks in the
bt can occur. Let us now construct the following history H generated by the system execution at
two correct processes i and j. At the beginning bti = btj = b0. At the same time instant t0 both
processes invoke append(b1) and append(b2) operations respectively and b1, b2 ∈ B

′. By definition,
the append() operation applies a selection function f ∈ F to select the block from the BlockTree
to which the new block has to be appended, in this case such block is f(bti) = f(btj) = f(b0) = b0.
By construction, bi, bj ∈ B

′, let us assume that a fork occurs and both append() operations take
place and update events are triggered. Since an LRC primitive is used, each update is sent to
the other processes. Since synchronous channels are employed, then by time t0 + δ the update
events are delivered by i and j. Let us consider that H contains the following ordered events:
updatei(b0, bj) 7→ updatei(b0, bi) and updatej(b0, bi) 7→ updatej(b0, bj). It follows that at a time
instant t < t0 + δ it can occur that bti = b⌢0 bj and btj = b⌢0 bi. Let us finally assume that at time
t both i and j issue a read() operation. By definition it returns the result of the selection function
f to the BlockTree. For both processes the BlockTree is a blockchain, thus the read() operations
returns b⌢0 bj at i and b⌢0 bi at j violating the Strong Prefix property leading to a contradiction.
Thus, there no exists an implementation of a BT-ADT refined with a Θ-ADT different from ΘF,k=1

that generates histories satisfying the BT Strong consistency even in a fault-free environment.

From Theorem 4.8 the next Corollary follows.

Corollary 4.8.1. ΘF,k=1 is necessary for any implementation of any R(BT-ADTSC ,Θ) that gen-
erates histories satisfying the BT Strong consistency.

Thanks to Theorem 4.2 the next Corollary also follows.

Corollary 4.8.2. Consensus is necessary for any implementation of a BT-ADT that generates
histories satisfying the BT Strong consistency.

As direct implication of the Theorem 4.8 we can eliminate from the hierarchy in Figure 8 both
R(BT-ADTSC ,ΘP ) and R(BT-ADTSC ,ΘF,k>1), since in both cases the Θ-ADT employed allows
forks, thus such enriched ADTs can not generate histories that satisfies the BT Strong consistency
criterion. The resulting hierarchy is depicted in Figure 14.

5 Mapping with existing Blockchain-like systems

This section completes this work by illustrating the mapping between different existing systems
and the specifications and abstractions presented in this paper. The following table summarizes
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R(BT-ADTSC ,ΘF,k=1)

R(BT-ADTEC ,ΘF,k>1)

R(BT-ADTSC ,ΘP )

R(BT-ADTSC ,ΘF,k>1)

R(BT-ADTEC ,ΘP )

Theorem 3.4

Theorem 4.8
Theorem 3.3

Theorem 4.8

Theorem 3.3

Corollary 3.4.1

Corollary 3.4.1

Figure 14: R(BT-ADT,Θ) Hierarchy. In gray the combinations impossible in a message-passing
system

the mapping between different existing systems and these abstractions. More details are given in
the following sections. In those sections we refer to a permissionless system as a system where the
cardinality of the process set is not a-priori known and each process can read and append into the
blockchain. When we do not consider permissionless systems we explicitly state the differences.

Table 1: Mapping of existing systems. Each of these systems assumes at least a light reliable
communication.

References Refinement

Bitcoin [26] R(BT -ADTEC ,ΘP )
Ethereum [31] R(BT -ADTEC ,ΘP )
Algorand [19] R(BT -ADTSC ,ΘF,k=1) SC w.h.p
ByzCoin [24] R(BT -ADTSC ,ΘF,k=1)
PeerCensus [12] R(BT -ADTSC ,ΘF,k=1)
Redbelly [11] R(BT -ADTSC ,ΘF,k=1)
Hyperledger [5] R(BT -ADTSC ,ΘF,k=1)

5.1 Bitcoin

Bitcoin [26] is the pioneer of blockchain systems. Any process p ∈ V is allowed to read the
BlockTree and append blocks to the BlockTree. Processes are characterized by their computational
power represented by αp, normalized as

∑

p∈V αp = 1. Processes communicate through reliable
FIFO authenticated channels (implemented with TCP), which models a partially synchronous
setting [14]. Valid blocks are flooded in the system. The getToken operation is implemented by a
proof-of-work mechanism. The consumeToken operation returns true for all valid blocks, thus there
is no bounds on the number of consumed tokens. Thus Bitcoin implements a Prodigal Oracle. The
f selects returns the blockchain which has required the most computational work, guaranteeing that
concurrent blocks can only refer to the most recently appended blocks of the blockchain returned by
a read() operation. Garay and al [17] have shown, under a synchronous environment assumption,
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that Bitcoin ensures Eventual consistency criteria. The same conclusion applies as well for the
FruitChain protocol [27], which proposes a protocol similar to BitCoin except for the rewarding
mechanism.

5.2 Ethereum

Ethereum [31] is a permissionless blockchain. Processes are characterized by their merit parameter
represented by αp (once normalized as

∑

p∈V αp = 1). Contrarily to Bitcoin, where this merit
parameter is representative of a computational power, that is this ability to quickly compute hash
functions, in Ethereum this merit is bounded by the ability to move data in memory. This proof-of-
work mechanism is especially designed for commodity hardware. Any process p ∈ V is allowed to
read the BlockTree and append blocks to the BlockTree. Processes communicate through reliable
FIFO authenticated channels (implemented with TCP), which models a partially synchronous
setting [14]. Valid blocks are flooded in the system. The getToken operation is implemented by
a proof-of-work mechanism. The consumeToken operation returns true for all valid blocks, thus
there is no bounds on the number of consumed tokens. Thus Ethereum implements a Prodigal
Oracle. The f selects returns the blockchain which has required the most work (see Section 10
of [31]), guaranteeing that concurrent blocks can only refer to the most recently appended blocks
of the blockchain returned by a read() operation. This function is implemented through GHOST
algorithm [30]. Kiayias has shown [23], under a synchronous environment assumption, that GHOST
protocol enjoys both common prefix and chain growth properties. Ethereum thus ensures the
Eventual consistency criteria.

5.3 ByzCoin

ByzCoin [24] is a permissionless blockchain. Processes are characterized by their computational
power represented by αp (once normalized as

∑

p∈V αp = 1). Byzcoin assumes a semi synchronous
environment, that is, in every period of length b there must be a strongly synchronous period of
length s < b. The block creation process is separated from the transaction validation one. The
former one is realized by a proof-of-work mechanism (similar to the Bitcoin’s one), and the latter
one is achieved by a Byzantine tolerant algorithm (i.e., a variant of PBFT [10]) which creates micro
blocks made of transactions.

The getToken operation is implemented by a proof-of-work mechanism. Due to the PoW mech-
anism, several key blocks can be concurrently created. The consumeToken operation guarantees
that during the synchronous periods of the semi-synchronous setting (those synchronous periods
ensure that everyone receives all the concurrent key blocks in a short period of time), a single key
block will be appended to the BlockTree by relying on a deterministic function f which selects the
key block whose digest (fingerprint) has the smallest least significant bits among the concurrent key
blocks. Under those assumptions, Byzcoin is an implementation of a strongly consistent BlockTree
composed with a Frugal Oracle, with k = 1.

Note that transactions do not belong to key blocks but to microblocks which are created by
a variant of PBFT where (i) the committee members are the miners of the last w appended key
blocks in the BlockTree as returned by a read() operation; (ii) each committee member receives a
voting share for each block it has created blocks among these w ones, and (iii) committee members
are organized on a tree rooted at the leader, and (iv) this leader is the process that invoked the
last successful consumeToken operation.
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5.4 Algorand

Algorand [19] is an algorithm dedicated to permisionless blockchains. Users are characterized by the
quantity of coins (stake) they own, represented by αp once normalized as

∑

p∈V αp = 1. Algorand
assumes a synchronous setting (rounds) in order to ensure that (i) with overwhelming probability
all users agree on the same transactions (safety property) and (ii) new transactions are added to
the blockchain (liveness property). Note that safety holds even in a semi synchronous environment.
Users communicate among themselves through reliable communication channels (implemented via
TCP). Algorand algorithm relies on two main ingredients: a cryptographic sortition and a variant of
a Byzantine agreement algorithm. The cryptographic sortition implements the getToken operation
by selecting the block proposer. This is achieved by selecting at random a committee (that is
a small fraction of users weighed by their currency balance αp, which boils down to a proof-of-
stake mechanism) and providing them a random priority, so that with high probability, the highest
priority committee member will be in charge of proposing the new block for the current round.
The variant of Byzantine agreement algorithm BA* implements the consumeToken operation, that
is the commitment to append this new valid block in the blockchain. BA* guarantees that in a
favorable environment (strongly synchronous environment augmented with synchronized clocks), if
all honest participants have received the same valid block, then this block will be appended to the
blockchain (see Lemma 2 [18]). On the other hand, if there is no agreement on that block (because
the highest priority committee member is malicious or the network is not strongly synchronous),
then BA* may create forks with probability less than 10−7 (Theorem 2 [18]). This makes Algorand
a probabilistic implementation of a strongly consistent BlockTree composed with a Frugal Oracle,
with k = 1.

5.5 PeerCensus

PeerCensus [12] is a permissionless blockchain. Processes are characterized by their computational
power represented by αp (once normalized as

∑

p∈V αp = 1). PeerCensus assumes a semi syn-
chronous environment, that is, in every period of length b there must be a strongly synchronous
period of length s < b. PeerCensus is not strictly speaking a blockchain-based algorithm (as Bitcoin
or Byzcoin), in the sense that it does not store a sequence of application transactions, but provides
a secure and fully distributed timestamping service. This service is implemented by a dynamic
Byzantine tolerant consensus algorithm which tracks the committee members of the consensus al-
gorithm through the creation of chained key blocks. The getToken operation is implemented by
a proof-of-work mechanism, and the consumeToken operation, implemented by the Byzantine con-
sensus, commits a single key block among the concurrent ones, that is returns true for a single
token, as long as no more than a 1/3 of the committees members are Byzantine (secure state).
Theorem 1 [12] states that the secure state is reachable with high probability if the computational
power owned by the adversary, αA, is less than 1/3. Thus under these assumptions PeerCensus
implements a strongly consistent BlockTree composed with a Frugal Oracle, with k = 1. Note
however that in [2] the authors have analyzed the probability that PeerCensus reaches a secure
state by examing the composition of successive quorums, and have shown that this probability is
decreasing as a function of αA. For instance, if αA = 1/4, then the probability that PeerCensus
reaches a secure state is only equal to 1/3.
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5.6 Red Belly

Red Belly [11] is a consortium blockchain, meaning that any process p ∈ V is allowed to read the
BlockTree but a predefined subset M ⊆ V of processes are allowed to append blocks. Each process
p ∈M as a merit parameter set to αp = 1/|M | while each process p ∈ V \M has a merit parameter
αp = 0. Processes are asynchronous (i.e., there is no assumption on their respective computational
speed) and are connected with partially synchronous [14] (i.e., messages are delivered in unknown
but finite time), reliable and authenticated communication channels. Each process p ∈ M can
invoke the getToken operation with their new block and will receive a token. The consumeToken
operation, implemented by a Byzantine consensus algorithm run by all the processes in V , returns
true for the uniquely decided block. Thus Red Belly BlockTree contains a unique blockchain,
meaning that the selection function f is the trivial projection function from BT 7→ BC which
associates to the BT-ADT its unique existing chain of the BlockTree. As a consequence Red Belly
relies on a Frugal Oracle with k = 1, and by the properties of Byzantine agreement implements a
strongly consistent BlockTree (see Theorem 3 [11]).

5.7 HyperLedger Fabric

HyperLedger Fabric [5] is a system allowing to deploy and operate persmissioned blockchains. Any
process p ∈ V is allowed to read the BlockTree, however, only a subset of M ⊆ V is allowed to
append blocks to the BlockTree. Every process of M has the same merit parameter αM = 1/|M |
while processes of V \ M have a null merit parameter. HyperLedger Fabric assumes eventual
synchrony and reliable channels. Transactions are executed by a dedicated set of processes called
endorsers. Executed transactions are then ordered through atomic broadcast primitive so as to
gather them into a block. HyperLedger Fabric relies on a leader election to determine which
process will generate the next block. Transactions are appended in a block until a stop condition is
met. A stop condition refers either on a maximal number of transactions in a block or a maximal
elapsed time since the first transaction included in the block. The block is then broadcasted and
a new block is created to gather new incoming transactions. By construction, HyperLedger Fabric
ensures that a unique token (k = 1) is consumed, thus HyperLedger Fabric implement a strongly
consistent BlockTree.

6 Conclusions and Future Work

The paper presented an extended formal specification of blockchains and derived interesting con-
clusion on their implementability. Let us note that the presented work is intended to provide the
groundwork for the construction of a sound hierarchy of blockchain abstractions and correct imple-
mentations. Future work will focus on several open issues, such as the solvability of Eventual Prefix
in message-passing, the synchronization power of other oracle models, and fairness properties for
oracles.
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