
HAL Id: hal-01722316
https://hal.sorbonne-universite.fr/hal-01722316v1

Submitted on 3 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature Location Benchmark with ArgoUML SPL
Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi, Jairo

Aponte, Eduardo Figueiredo, Marco Tulio Valente

To cite this version:
Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi, Jairo Aponte, et al.. Feature
Location Benchmark with ArgoUML SPL. Systems and Software Product Line Conference (SPLC) ,
Sep 2018, Gothenburg, Sweden. �hal-01722316�

https://hal.sorbonne-universite.fr/hal-01722316v1
https://hal.archives-ouvertes.fr


Feature Location Benchmark with ArgoUML SPL
Jabier Martinez1, Nicolas Ordoñez2, Xhevahire Tërnava1, Tewfik Ziadi1, Jairo Aponte2,

Eduardo Figueiredo3, Marco Tulio Valente3
1Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, France

2Universidad Nacional de Colombia, Colombia
3Universidade Federal de Minas Gerais, Brazil

jabier.martinez@lip6.fr, nordonezc@unal.edu.co, xhevahire.ternava@lip6.fr, tewfik.ziadi@lip6.fr,
jhapontem@unal.edu.co, figueiredo@dcc.ufmg.br, mtov@dcc.ufmg.br

ABSTRACT
Feature location is a traceability recovery activity to identify the
implementation elements associated to a characteristic of a sys-
tem. Besides its relevance for software maintenance of a single
system, feature location in a collection of systems received a lot
of attention as a first step to re-engineer system variants (created
through clone-and-own) into a Software Product Line (SPL). In this
context, the objective is to unambiguously identify the boundaries
of a feature inside a family of systems to later create reusable assets
from these implementation elements. Among all the case studies
in the SPL literature, variants derived from ArgoUML SPL stands
out as the most used one. However, the use of different settings, or
the omission of relevant information (e.g., the exact configurations
of the variants or the way the metrics are calculated), makes it
difficult to reproduce or benchmark the different feature location
techniques even if the same ArgoUML SPL is used. With the ob-
jective to foster the research area on feature location, we provide
a set of common scenarios using ArgoUML SPL and a set of utils
to obtain metrics based on the results of existing and novel feature
location techniques.

KEYWORDS
Feature location, Software Product Lines, Benchmark, Reverse-
engineering, Extractive Software Product Line Adoption, ArgoUML

1 INTRODUCTION
ArgoUML 1 is an open-source tool for modeling software systems
in UML. It supports all standard UML 1.4 diagram types, such as
use case diagrams, sequence diagrams or class diagrams apart from
other functionalities such as source code generation. A screen-shot
of ArgoUML is shown in Figure 2 presenting the class diagram
editor. In 2011, Couto, Valente, and Figueiredo [5] used the original
Java source code of ArgoUML as a case study to extract a Software
Product Line (SPL) allowing to derive variants of ArgoUML through
the selection of a set of optional features. A feature is defined as a
prominent or distinctive characteristic, quality or user-visible aspect
of a software system or systems [8]. For example, an ArgoUML
variant can be derived without the ClassDiagram feature making it
impossible to use the diagram editor shown in Figure 2, but allowing
to edit any other type of diagram. Their main objective was to
provide the research community with a public 2 and realistic SPL,
and also to report on the major challenges in extracting features
from real-world systems using conditional compilation. Indeed, the
1ArgoUML: http://argouml.tigris.org
2ArgoUML-SPL: https://github.com/marcusvnac/argouml-spl

first step for the extraction in [5] was to manually locate the source
code associated to a feature which is a time-consuming, tedious
and error-prone task.

The location of features is not only intended for software main-
tenance tasks such as a feature’s bug fixing [6], but also in reengi-
neering tasks as the one shown in the transition from ArgoUML to
ArgoUML SPL. This transition was related to feature location in a
single-system. However, beyond ArgoUML, feature location is also
a key activity in reengineering a set of product variants (e.g., vari-
ants created through clone-and-own to satisfy the needs of different
customers) into an SPL [3]. In all of these cases (single-system or
family of systems), the research community has proposed many
approaches to try to automate the feature location activity [3, 13].

ArgoUML SPL is widely used to create software variants to eval-
uate feature location techniques. It is the most used case study
by the extractive SPL adoption community [3] and the catalog of
extractive SPL adoption case studies [10] counts more than a dozen
publications that have used it for evaluating their approaches. This
practice of deriving variants from an SPL to evaluate feature loca-
tion techniques receives several criticism, because it is presented as
a way to simulate real-world clone-and-owned variants from where
we aim to locate features. On the one hand, variants “synthetically”

Figure 1: ArgoUML screen-shot from the documentation

http://argouml.tigris.org
https://github.com/marcusvnac/argouml-spl


created from an SPL are not realistic cases of clone-and-own prac-
tices (e.g., the features are already “modularized” and there are no
bug fixes or evolutions which are not propagated to all variants).
On the other hand, it allows to have a non-ambiguous ground-truth
from which evaluation metrics can be obtained.

Despite all the work using ArgoUML SPL as case study, it is not
possible to compare them directly. There is no public, documented
and common ground-truth used by all of them. For example, they
use different views of the granularity of the implementation ele-
ments, there are differences in the number of ArgoUML variants
used as input and in their feature configurations, or the metrics
are computed in different ways. Also, some of them overlook the
importance of feature interactions (some way in which a feature or
features modify or influence another feature in describing or gen-
erating the system’s overall behavior [16]) and negations (source
code fragments needed when a feature is not present). These facts
prevent the correct benchmarking of techniques even if all of them
use ArgoUML variants. Given that we need more common bench-
marking frameworks in our field, it is still interesting to provide
synthetic cases like ArgoUML SPL variants.

This benchmark is challenging for feature location techniques
because:

• ArgoUML is a project of considerable size which is the result
of a real software development process with several involved
developers.

• The retrieved traces must consider not only features to code
mappings, but also feature interactions and feature negations.
Dealing with feature interactions has been already reported as
challenging for reasoning and detection [2].

• The granularity of the retrieved traces must be fine-grained and
not coarse-grained as just source code files. The trace granularity
is not exactly at the level of source code statements, however, it
is needed to identify traces to complete Java classes or methods
and more fine-grained cases where there is at least one statement
associated to a feature inside a Java class or method.

• Different predefined scenarios enable to check optimistic cases
(high number of variants and high diversity of feature combina-
tions among the variants) and less optimistic cases, as well as
checking techniques’ scalability regarding the number of vari-
ants.

The ArgoUML SPL Benchmark with the ground-truth, the scenar-
ios and the automatic calculation of the feature location metrics
can be found at:
https://github.com/but4reuse/argouml-spl-benchmark
including technical information for how to use it.

This paper is structured as follows: Section 2 presents back-
ground information on feature location and ArgoUML SPL. Section
3 details the benchmark and Section 4 concludes the paper.

2 BACKGROUND
We present background information on feature location and more
details about the ArgoUML SPL.

2.1 Feature location
Themain goal of a feature location technique is to identify and estab-
lish the mapping between features and their respective implemen-
tation in the system (or in the family of systems as it is usually the
case in extractive SPL adoption). This mapping is usually referred to
as feature to code traces. Feature location is gaining an increasing
interest by the research community with a high proliferation of
techniques using different approaches such as intersection-based
approaches in the case of several variants (e.g., Formal Concept
Analysis) static analysis (e.g., Program Dependency Graphs), infor-
mation retrieval (e.g., Latent Semantic Indexing), dynamic analysis
(e.g., execution traces), search-based approaches or combinations of
them [1, 3, 4, 7, 11, 13]. In the case of a family of systems, most of
the feature location techniques assume that the feature presence or
absence in the product variants is known upfront (e.g., [7, 12]). We
use this assumption also in this benchmark so the feature location
technique can use this information to locate the implementation
elements associated to a feature, i.e., the benchmark provides this
information.

For the evaluation of techniques, several case studies have been
used such as ArgoUML, Linux kernel, eCos kernel or FreeBSD [4,
6, 10]. Some of those more extensively used case studies are also
proposed and publicly available as benchmarks. As such, available
feature location benchmarks are the Linux kernel for C code [15]
or Eclipse for component-based (plugins) systems [12]. ArgoUML
SPL stands out as the most used case study for evaluating feature
location techniques but there is no common or established way
to use it. We provide a common benchmark providing a ground-
truth, a way to calculate and compare the result metrics and a set
of predefined scenarios. This benchmark is complementary to the
previous benchmarks mentioned before.

2.2 ArgoUML SPL
ArgoUML is a Java-based open source tool with 120 KLOC [5] and
ArgoUML SPL is an extracted SPL from ArgoUML [5]. The respec-
tive code for the implementation of its eight studied features has
been annotated using conditional compilation directives. The an-
notated features are State Diagrams, Activity Diagrams, Use
Case Diagrams, Collaboration Diagrams, Sequence Diagrams,
Use Case Diagrams, Deployment Diagrams, Sequence Diagrams,
Cognitive Support and Logging. Cognitive Support is some-
times referred in ArgoUML to as Design critics so it was added
as a synonym for the benchmark. Figure 2 presents the feature
model of ArgoUML SPL with these eight optional features.

Figure 2: ArgoUML-SPL feature model [5]

2

https://github.com/but4reuse/argouml-spl-benchmark


Table 1 shows a brief definition and the number of LOC required
to implement each of these optional features. Other metrics related
to the granularity of the annotations or the place of the annotations
inside the source code can be consulted [5].

Among all the features in ArgoUML, these features were selected
in [5] because (1) they represent both relevant functional require-
ments (e.g., UML diagrams) and non-functional requirements (e.g.,
Logging) and (2) Logging and Cognitive features are crosscutting in
ArgoUML. This crosscutting behavior means that the implementa-
tion of each feature requires a considerable amount of code spread
over several methods, classes, and packages that might belong to
other features. This is challenging for feature location techniques if
we compare it with loosely coupled features making little use (e.g.,
source code dependencies) of other source code beyond the feature
source code.

Since Java does not provide native support for preprocessor
directives, javapp 3 was used to annotate the feature code. This
tool extends Java by supporting preprocessor directives similar
to the ones that exist in C/C++, including #ifdef, #ifndef, and
#else. These directives indicate to the preprocessor whether the
code fragment they delimit should be passed to the compiler or not.
In this way, it is possible to define different configurations (feature
combinations) and generate different variants of ArgoUML SPL
(e.g., all features except one optional feature). The feature model of
ArgoUML SPL enables to define 256 different configurations and

3javapp: http://www.slashdev.ca/javapp

the preprocessor directives enable their derivation into ArgoUML
variants.

The granularity of the fragments can range from coarse-grained
(e.g., annotating a whole class) to fine-grained (e.g., a source code
statement). For example, the excerpt at the first line of the actual
Java class SequenceDiagramGraphModel will make that the class
will only be present if Sequence diagram was selected:
//#if defined(SEQUENCEDIAGRAM)

As another actual example, this time of the fine-grained category,
the following source code statement will be only included in the
Java class ArgoEventPump if the Logging feature was selected.
//#if defined(LOGGING)
LOG.error("Invalid event:" + event.getEventType());
//#endif

1,287 pieces of Logging code like this one are annotated with
conditional compilation directives. The ArgoUML SPL has feature
interactions as result of preprocessor directives like the following
annotation:
//#if defined(COGNITIVE) and defined(DEPLOYMENTDIAGRAM)

This is an example how the classCrInterfaceWithoutComponent is
annotated, meaning that it will be present in the final software prod-
uct only when both features Cognitive and DeploymentDiagram
are selected. Another case where certain code is only present with
a combination of features is when, for example, in a class where
having the annotation for the whole class to a feature, we also
have a method inside this class annotated with another feature. The
method will only be present when both features are selected (e.g.,
the class ActionAddClassifierRole).

Table 1: Optional features in ArgoUML SPL. Feature names and descriptions from [5], and number of lines of code (LOC)

Feature Description LOC

State Diagrams State diagrams are used to describe the behavior of a system. State diagrams describe all of the possible
states of an object as events occur. Each diagram usually represents objects of a single class and track
the different states of its objects through the system.

3,917

Activity Diagrams Activity diagrams describe the workflow behavior of a system. Activity diagrams are similar to state
diagrams because activities are the state of doing something. The diagrams describe the state of activities
by showing the sequence of activities performed.

2,282

Use Case Diagrams A use case is a set of scenarios that describing an interaction between a user and a system. A use case
diagram displays the relationship among actors and use cases. The two main components of a use case
diagram are use cases and actors.

2,712

Collaboration Diagrams Collaboration diagrams are used to show how objects interact to perform the behavior of a particular
use case, or a part of a use case. Along with sequence diagrams, collaborations are used by designers to
define and clarify the roles of the objects that perform a particular flow of events of a use case. They are
the primary source of information used to determining class responsibilities and interfaces.

1,579

Deployment Diagrams A deployment diagram models the run-time architecture of a system. It shows the configuration of
the hardware elements (nodes) and shows how software elements and artifacts are mapped onto those
nodes.

3,147

Sequence Diagrams Interaction diagrams model the behavior of use cases by describing the way groups of objects interact
to complete the task. Sequence Diagram displays the time sequence of the objects participating in the
interaction. This consists of the vertical dimension (time) and horizontal dimension (different objects).

5,379

Cognitive Support, Design critics Simple agents that continuously execute in a background thread of control. They analyze the design as
the designer is working and suggest possible improvements. These suggestions range from indications
of syntax errors, to reminders to return to parts of the design that need finishing, to style guidelines, to
the advice of expert designers.

16,319

Logging The purpose of debug log and trace messages is to provide a mechanism that allows the developer to
enable output of minor events focused on a specific problem area and to follow what is going on inside
ArgoUML.

2,159

3

http://www.slashdev.ca/javapp


3 ARGOUML SPL BENCHMARK
The challenge of the ArgoUML SPL benchmark is to implement
feature location techniques maximizing information retrieval met-
rics: precision, recall, F1 score, and time performance detailed in
Section 3.4.

For this, the benchmark provides:
• The list of features to locate based on the eight optional features
defined in ArgoUML SPL. Also their descriptions as presented
in ArgoUML SPL. Names and descriptions are the same as in
Table 1.

• A set of scenarios with a set of ArgoUML variants each. We
describe the scenarios in Section 3.1.

• A common ground-truth to be used for all the techniques based on
the analysis of ArgoUML SPL’s feature annotations. The feature
location results should be adapted to have the same format as
the ground-truth. We describe this format in Section 3.2 and
we present details about how the ground-truth was extracted in
Section 3.3.

• A Java program to automatically calculate and plot the metrics
based on the feature location results and the ground-truth. We
describe the metrics in Section 3.4.

3.1 Scenarios
We defined and provided the utils to create the following set of
scenarios from the ArgoUML SPL. This diversity of scenarios can
help to better characterize feature location techniques so authors
should provide the results for each of them.
• Traditional scenario. A set of 10 variants that was used in some
of the references in the literature (e.g., [1]). One variant without
all the optional features, one with all the features, and then, for
each feature, one variant with all the features enabled and this
feature disabled.

• Randomly selected variants. A set of eleven scenarios of 100,
50, 10, 9, 8, 7, 6, 5, 4, 3 and 2 variants respectively created through
a random selection of features. The random selection process
consists of two steps: 1) randomly selecting the desired number of
configurations without repetition from the 256 possible variants,
2) checking if the eight features of ArgoUML SPL are covered
in the selected configurations and going back to step 1 if they
are not covered. These scenarios aim to show how sensible is the
feature location technique to the number of variants. An example
of the interest of this kind of scenarios can be observed in [7].

• Pair-wise feature coverage. A set of 9 variants. From the fea-
ture model, we used the T-wise algorithm from FeatureIDE [14]
(version 3.3.0) to get these pair-wise configurations. Given the
variants diversity, these 9 variants can show differences with the
scenario of 9 variants that were randomly selected.

• Original ArgoUML: Only one system, the one that was used
by Couto et al. [5] to create ArgoUML SPL. This case is repre-
sentative to show the results when we can implement an SPL
from a single-system instead of from previous clone-and-owned
variants.

• All variants. The 256 possible variants of ArgoUML SPL ob-
tained from FeatureIDE [14]. This case is mainly intended to
show the scalability of the technique regarding the number of
variants.

The benchmark provides ant scripts to create the scenarios.
These scripts internally use a modification of the ant scripts from
SPLEvo [9]. The benchmark script also removes all the variability-
related source code comments as Couto et al. added extra meta-data
in each variability annotation. This way, techniques relying on
comments in the source code will not be “polluted” by variability-
related comments and they will be able to use all the other source
code comments.

This pre-processing is needed to prevent that techniques using
source code comments will use this information.

3.2 Expected format for the results of the
feature location technique

The results of the feature location technique should be adapted
to conform to the same format as the provided ground-truth. The
ground-truth (the actual mapping from features to implementation
elements) of the ArgoUML SPL is extracted from the pre-processor
directives through an automatic program that we make available.
However, to use the benchmark, there is only need to consume the
provided ground-truth.

The expected format of any feature location technique using
the benchmark is a set of txt files where the file name is the name
(id) of the feature (e.g., COLLABORATIONDIAGRAM), or feature com-
bination (e.g., LOGGING_and_USECASEDIAGRAM) or negation (e.g.,
not_COGNITIVE). In the case of feature combinations, the order
must be alphabetical. Then, inside of these files, there is a set of
lines where each line represents a trace that can be of four types:
• Class qualified name: The whole class is only present if the
feature is selected.
Example: org.argouml.uml.ui.ActionCollaborationDiagram
This class is only present if COLLABORATIONDIAGRAM is selected.

• Method qualified name: The whole method is only present if
the feature is selected.
Example: org.argouml.uml.ui.ActionNewDiagram createCollabo-
ration(Object)
This method is only present if COLLABORATIONDIAGRAM is se-
lected. The class containing this method (ActionNewDiagram)
will be present independently of this feature, i.e., it is only the
method presence which depends on this feature and not the class.
Given that different methods can have the same name (method
overloading), the comma-separated list of the types of the argu-
ment list must be provided.

• Class qualified name plus “Refinement” tag: The class has
imports or variable declarations which are only present if the
feature is selected. This does not include when a whole method
depends on a feature as this will correspond to the Method quali-
fied name type.
Example: org.argouml.ui.explorer.ExplorerPopup Refinement
The ExplorerPopup class does not belong to any of the features
but it imports classes belonging to features. For example, in the
import declarations we find the source code line
import org.argouml.uml.diagram.activity.ui.UMLActivityDiagram;
which will be present only if the ACTIVITYDIAGRAM feature is
selected.

• Method qualified name plus “Refinement” tag:
The method has statements which are only present if the feature
is selected.

4



Example: org.argouml.ui.explorer.ExplorerPopup initMenuCreate-
Diagrams() Refinement
This method has the following statement
createDiagrams.add(new ActionActivityDiagram());

that will be present only if ACTIVITYDIAGRAM is selected.

In this benchmark, we do not consider the location of the exact
statements, but the feature location technique should be able to de-
tect, at least, that a refinement is happening at method or class level
(“Refinement” tag). The information about the exact statements
is available in ArgoUML SPL through the annotations, however,
we decided not to require this level of detail in this version of the
benchmark as it might highly complicate the expected format of
the feature location results. We also do not consider the ordering of
the traces (e.g., [7]), that means that in our format, the trace lines
inside a file can be provided in any order.

The benchmark provides a simplistic example of a feature lo-
cation technique to illustrate how they can be implemented. This
technique, just uses the first name of each feature and visits the
variants (those from the scenario containing this feature) to create
class traces for the Java classes containing this feature name in the
class name. Only the feature traces that are present in all variants
containing this feature are kept.

3.3 The ground-truth and its extractor
The ground-truth contains a total of 24 txt files corresponding
to each feature (8 files), existing feature combinations (13 files
of pair-wise feature interactions and 1 file of three-wise feature
interaction) and feature negations (2 files). In these 24 files, the
ground-truth has a total of 439 traces to complete classes, 44 traces
to complete methods, 388 traces of class refinements and 871 traces
of method refinements. We present the ground-truth extractor that
we implemented to clarify how the ground-truth was obtained and
to give more details about the traces’ format and granularity. The
following source code is an illustrative example of a Java class with
javapp annotations:

//#if defined(A)
package myPackage;
public class HelloWorld {

//#if defined(B)
public int x = 0;
//#endif
//#if defined(C)
public static void sayHello() {

System.out.print("Hello");
//#if defined(D)
System.out.println("World");
//#endif

}
//#endif

}
//#endif

The resulting traces for the extracted ground-truth will be:

• A: myPackage.HelloWorld
• A_and_B: myPackage.HelloWorld Refinement
• A_and_C: myPackage.HelloWorld.sayHello()
• A_and_C_and_D: myPackage.HelloWorld.sayHello() Refinement

In the second case, it is A_and_B because the whole class will
not exist if A is not present. As an example to illustrate feature
negations, we can have:
package myPackage;
public class HelloWorld {

public static void sayHello() {
System.out.println("Hello");
//#if defined(A)
System.out.println("World");
//#else
System.out.println();
//#endif

}
}

Given the javapp annotation //#else, the method has statements
that must be there if A is not selected. The resulting traces for the
extracted ground-truth will be:
• A: myPackage.HelloWorld.sayHello() Refinement
• not_A: myPackage.HelloWorld.sayHello() Refinement

If the technique is using the Java JDT parser (as the ground-truth
extractor does), we provide a helper class to obtain the expected
class and method qualified names. Otherwise, the developers will
need to find a way to conform to this format.

3.4 Metrics
We use two traditional measures for retrieval effectiveness: preci-
sion and recall. A feature location technique assigns a set of traces
to each feature. From now onwards, we will use the word features
to indicate features, feature combinations and feature negations.
Correctly retrieved traces are true positives (TP) which are also
known as hit, and incorrect ones are false positives (FP) which are
also known as false alarms. Precision, as shown in Equation 1, is
the percentage of hits relative to the total of retrieved traces by the
technique.

precision =
TP

TP + FP
=

traces hit

traces hit + traces f alse alarm
(1)

Ground-truth traces which are not included in the retrieved set
are false negatives (FN) which are also known as miss. Recall, as
shown in Equation 2, is the percentage of correctly retrieved traces
from the set of the ground-truth.

recall =
TP

TP + FN
=

traces hit

traces hit + traces miss
(2)

The feature location technique precision and recall is then calcu-
lated as the average of the precision and recall of all the features in
the ground-truth. The benchmark also provides the traditional F1
score (F-measure) which relates precision and recall as shown in
Equation 3.

F1score = 2 ∗ precision ∗ recall
precision + recall

(3)

In addition to these metrics, we provide others that can help
in comparing the effectiveness of a technique. There can be cases
where, for a given ground-truth feature, the feature location tech-
nique does not retrieve any trace. In the case where there are no

5



traces hit nor false alarm, the equation for precision is not appli-
cable as the denominator is zero. We decided that the benchmark
will return zero precision for this feature. However, for not to omit
this information, the benchmark metrics also report the features
from the ground-truth where nothing was retrieved (no correct
nor incorrect). We refer to the total number of these cases as fea-
tures without retrieved. In addition, it also reports the number
of retrieved features which do not correspond to any feature in
the ground-truth (e.g., the technique retrieves traces for Y_and_Z
but there is no Y_and_Z in the ground-truth). We refer to the total
number of these cases as inexistent features retrieved.

The Java program for the calculation of the metrics also outputs
a gnuplot script to create boxplot graphs for precision, recall and
F1 score. Finally, the time performance of the feature location
technique should be measured separately by the providers of the
feature location technique and reported with a description of the
system used to launch it.

3.5 Extra assets and human-in-the-loop
The benchmark provides the variants and the feature information
that will enable to use automatic static analysis and information
retrieval techniques. However, some techniques may want to use ex-
tra assets. The following list is not exhaustive but it shows examples
of available assets:
• Documentation such as the user manual 4
• Architectural information and technical documents that can be
found in the developer resources wiki 5

• Version control system and commits information found in the
official software versioning and revision control system 6 or in
reports of open source projects’ analysis tools 7

• Information of enhancement requests and bug reports found in
the issue tracking system 8

• Execution traces from existing ArgoUML tests or from real usage
• Software engineering ontologies
Any extra assets beyond the ones that we provide can be used but
they should be clearly mentioned and explained. If the feature lo-
cation technique is semi-automatic, it should be clearly explained
which are the steps that requires the user and which is the interac-
tion protocol and the provided visualizations.

4 CONCLUSION
We have presented a feature location benchmark that uses the
source code base of ArgoUML and ArgoUML variants as a chal-
lenging ground for feature location techniques. A public and un-
ambiguous ground-truth of feature to code traces is provided in an
easy format. This ground-truth was automatically extracted thanks
to a program that analyzed the conditional compilation directives
available in ArgoUML SPL. The benchmark provides several sce-
narios regarding the number of variants and their characteristics,
and a program to calculate and plot common comparable metrics
is provided as well.

4ArgoUML user manual: http://argouml-stats.tigris.org/documentation
5ArgoUML developers designs: http://argouml.tigris.org/wiki/Design
6ArgoUML svn: http://argouml.tigris.org/source/browse/argouml/trunk/src/
7ArgoUML open source project metrics: https://www.openhub.net/p/argouml
8ArgoUML bug tracking system: http://argouml.tigris.org/project_bugs.html

Several authors of feature location techniques have been using
ArgoUML SPL variants. However, and given that they used different
settings and scenarios among them, this benchmark is the first
opportunity to share a common framework towards an unbiased
comparison of precision, recall and F1 score that can foster the
research on the field of feature location for extractive SPL adoption.

ACKNOWLEDGMENTS
We would like to thank Marcus Vinicius Couto for creating Ar-
goUML SPL as well as Benjamin Klatt for creating helpful build
scripts to ease the derivation of ArgoUML SPL variants. This work
was partially supported by the ITEA3 15010 REVaMP2 project: FUI
the Île-de-France region and BPI in France.

REFERENCES
[1] Ra’Fat Al-Msie’deen, Abdelhak Seriai, Marianne Huchard, Christelle Urtado,

Sylvain Vauttier, and Hamzeh Eyal Salman. 2013. Feature Location in a Collection
of Software Product Variants Using Formal Concept Analysis. In ICSR (Lecture
Notes in Computer Science), Vol. 7925. Springer, 302–307.

[2] Sven Apel, Sergiy S. Kolesnikov, Norbert Siegmund, Christian Kästner, and
Brady Garvin. 2013. Exploring feature interactions in the wild: the new feature-
interaction challenge. In 5th International Workshop on Feature-Oriented Software
Development, FOSD ’13, Indianapolis, IN, USA, October 26, 2013, Andreas Classen
and Norbert Siegmund (Eds.). ACM, 1–8. https://doi.org/10.1145/2528265.2528267

[3] Wesley K. G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.
Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into
software product lines: a systematic mapping. Empirical Software Engineering 22,
6 (2017), 2972–3016.

[4] Wesley Klewerton Guez Assunção and Silvia Regina Vergilio. 2014. Feature
location for software product line migration: a mapping study. In Proceedings of
the 18th International Software Product Line Conference: Companion Volume for
Workshops, Demonstrations and Tools-Volume 2. ACM, 52–59.

[5] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo. 2011.
Extracting Software Product Lines: A Case Study Using Conditional Compilation.
In 15th European Conference on Software Maintenance and Reengineering, CSMR
2011, 1-4 March 2011, Oldenburg, Germany. IEEE Computer Society, 191–200.

[6] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. Journal of Software:
Evolution and Process 25, 1 (2013), 53–95. https://doi.org/10.1002/smr.567

[7] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In ICSME. IEEE Computer Society, 391–400.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report.
Carnegie-Mellon University Soft. Eng. Institute.

[9] Benjamin Klatt. 2014. Consolidation of Customized Product Copies into Software
Product Lines. Ph.D. Dissertation. Karlsruhe Institute of Technology, Germany.
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687

[10] Jabier Martinez, Wesley K. G. Assunção, and Tewfik Ziadi. 2017. ESPLA: A
Catalog of Extractive SPL Adoption Case Studies. In SPLC. ACM, 38–41.

[11] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le
Traon. 2015. Bottom-up adoption of software product lines: a generic and exten-
sible approach. In Proceedings of the 19th International Conference on Software
Product Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015. ACM, 101–110.
https://doi.org/10.1145/2791060.2791086

[12] Jabier Martinez, Tewfik Ziadi, Mike Papadakis, Tegawendé F. Bissyandé, Jacques
Klein, and Yves Le Traon. 2016. Feature Location Benchmark for Software Families
Using Eclipse Community Releases. In 15th International Conference, ICSR 2016,
Limassol, Cyprus, June 5-7, 2016, Proceedings (Lecture Notes in Computer Science),
Vol. 9679. Springer, 267–283.

[13] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques.
In Domain Engineering. Springer, 29–58.

[14] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: an extensible framework for feature-
oriented software development. 79, 0 (2014), 70–85.

[15] ZhenchangXing, Yinxing Xue, and Stan Jarzabek. 2013. A large scale Linux-kernel
based benchmark for feature location research. In 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013. IEEE
Computer Society, 1311–1314.

[16] Pamela Zave. 2009. Modularity in Distributed Feature Composition. In Software
Requirements and Design: The Work of Michael Jackson.

6

http://argouml-stats.tigris.org/documentation
http://argouml.tigris.org/wiki/Design
http://argouml.tigris.org/source/browse/argouml/trunk/src/
https://www.openhub.net/p/argouml
http://argouml.tigris.org/project_bugs.html
https://doi.org/10.1145/2528265.2528267
https://doi.org/10.1002/smr.567
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687
https://doi.org/10.1145/2791060.2791086

	Abstract
	1 Introduction
	2 Background
	2.1 Feature location
	2.2 ArgoUML SPL

	3 ArgoUML SPL Benchmark
	3.1 Scenarios
	3.2 Expected format for the results of the feature location technique
	3.3 The ground-truth and its extractor
	3.4 Metrics
	3.5 Extra assets and human-in-the-loop

	4 Conclusion
	Acknowledgments
	References

