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1-Loop mass generation by a constant external magnetic field for an electron propagating in a thin medium
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Introduction

Graphene is known as a quasi 2+1 dimensional medium with Dirac-like massless electrons (a gapless medium) -see for example [START_REF] Neto | The electronic properties of graphene[END_REF]. Whether or not and in which circumstances a gap can open has important consequences, for example on electrical and optical properties [START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF]. In addition to purely theoretical motivations, this is one of the reasons why we study in this work the spontaneous emergence of a gap for a model which can naively mimic graphene in the presence of a constant external magnetic field B.

While it is generally admitted that the presence of B is likely to trigger chiral symmetry breaking (see for example [START_REF] Miransky | Quantum field theory in a magnetic field; from quantum chromodynamics to graphene and Dirac semimetals[END_REF]), the demonstrations usually rely on various approximations. In standard QED 3+1 , they are often based on the dimensional reduction that operates in the presence of a strong B [START_REF] Yu | Radiative corrections to the electron mass operator in the twodimensional approximation of quantum electrodynamics[END_REF] [START_REF] Gusynin | Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field", hep-ph/9509320[END_REF] and on resummations of a certain class of diagrams [START_REF] Yu | Behavior of the mass operator in a superstrong magnetic field: summation of the perturbation theory diagrams[END_REF] [START_REF] Kuznetsov | Electron mass operator in a strong magnetic field[END_REF] (which become suspicious after realizing that only double logs have been taken into account, leaving aside large single logs [START_REF] Machet | The 1-loop self-energy of an electron in a strong external magnetic field revisited[END_REF]). Also, various approximations to coupled Dyson-Schwinger equations are invoked, associated to the use of very special gauges to simplify the vertex (see [START_REF] Gusynin | Dynamical Chiral Symmetry Breaking in QED in a Magnetic Field: Toward Exact Results[END_REF]); this makes the demonstrations tedious, not very transparent and possibly controversial. In reduced QED 3+1 on a 2-brane, which is often considered to provide a fair description of graphene, other approximations are invoked, like the dominance of the lowest Landau level [START_REF] Gusynin | Theory of the magnetic catalysis of chiral symmetry breaking in QED", hep-ph/9908320[END_REF] while it was shown, for example in [START_REF] Kuznetsov | Electron mass operator in a strong magnetic field[END_REF], that higher levels are important and trigger charge renormalization; moreover the language that is used is often confusing for people working in Quantum Field Theory.

The calculation of the 1-loop self-energy of an electron propagating in an external B that I present here uses the sole techniques of Quantum Field Theory. The external electron is chosen, for the sake of simplicity, to lie in the lowest Landau level (LLL), and, in this case, analytical (quasi-)exact formulae can be obtained by using the formalism of Schwinger [START_REF] Schwinger | Particles, sources and fields[END_REF] as it is carefully explained in [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF]. I previously tackled the case of standard QED 3+1 in [START_REF] Machet | The 1-loop self-energy of an electron in a strong external magnetic field revisited[END_REF] by calculating the integral of Demeur [START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF] and Jancovici [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] beyond the leading ln |e|B m 2 2 approximation. I demonstrated that large logarithms had been overlooked and, then, neglected; they are tightly connected with the counterterms needed to implement suitable renormalization conditions.

In this case, δm → 0 when m → 0.

These calculations are adapted here to a thin graphene-like medium. They are explained step by step such that they should appear fairly easy to reproduce, with no obscure gap to fill. They mostly go along the lines of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], and differences are outlined. A massive Dirac electron is considered to propagate inside a thin film of thickness 2a, the Hamiltonian of which being deprived of its "p 3 γ 3 " term (see for example [START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF]). B, supposed to be static and uniform is considered to be directed along the z axis orthogonal to the medium strip. To make the calculation simpler and more transparent, no Fermi velocity different from the speed of light is introduced, such that I will be dealing with a special avatar of Quantum Electrodynamics, and extra degeneracies present in graphene [START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF] are eluded. The topic of symmetries will not be dwelt on either (see the review [START_REF] Miransky | Quantum field theory in a magnetic field; from quantum chromodynamics to graphene and Dirac semimetals[END_REF] on this subject).

As I will demonstrate by working in position space, this model yields for the electron self-energy the same expression as reduced QED 3+1 on a 2-brane [START_REF] Gorbar | Dynamical chiral symmetry breaking on a brane in reduced QED[END_REF] [START_REF] Sh | Static potential of a point charge in reduced QED 3+1[END_REF]: the effective photon propagator turns out, indeed, to be the one of standard QED 3+1 integrated over its k 3 momentum. For the internal electron propagator in presence of an external B I use Schwinger's [START_REF] Schwinger | Quantum Electrodynamics. II. Vacuum Polarization and Self-Energy[END_REF] and Tsai's [START_REF] Wu-Yang | Modified electron propagation function in strong magnetic fields[END_REF] expression, which accounts for all Landau levels, adapted to the particular situation and Hamiltonian under consideration. The calculations are (and should) be performed with a non-vanishing electron mass m before the limit m → 0 is taken. In the last part I only take into account the LLL of the internal electron, and show that neglecting higher levels is a bad approximation.

To avoid confusion, let me stress that all spinors and γ matrices that are considered in this work are 4-dimensional.

Any eventual connection with QED 2+1 , if any, can accordingly only be quite remote, and we shall not dwell on this any more.

So, though the result that I exhibit will certainly not be a surprise for many, I hope that the rigorous demonstration of a simple and exact formula that anyone can check with standard techniques will bring B-triggered mass generation from radiative corrections on a more solid ground. Like for QED 3+1 , renormalization conditions and the counterterms that must be introduced to fulfill them play important roles 5 .

A major challenge is also, there, to deal with a strongly coupled theory since a 1-loop result is certainly meaningless when the coupling constant gets of order 1. The necessary resummations look highly non-trivial since they do not only concern double and / or simple logs, but more complicated functions, and they have furthermore, of course, to be performed while satisfying at each order appropriate renormalization conditions. To my knowledge this last requirement has never been satisfied and tackling such formidable tasks lies largely beyond the scope of this work.

2 Propagation inside a thin, graphene-like medium; equivalence with reduced QED 3+1 on a 2-brane

A general argumentation concerning reduced QED can be found, for example, in [START_REF] Gorbar | Dynamical chiral symmetry breaking on a brane in reduced QED[END_REF]. A more down-to-earth determination of the effective photon propagator is nevertheless instructive because it provides a simpler understanding of the mechanisms at work, and also because this approach can be applied to vacuum polarization [START_REF] Machet | The 1-loop vacuum polarization for a graphene-like medium in an external magnetic field; corrections to the Coulomb potential[END_REF], yielding less-trivial results.

Let us calculate in position space the electron propagator G(y, x) at 1-loop depicted in Fig. 1 (including external legs).

We call G 0 the tree-level electron propagator in the presence of B6 (described by the double lines in Fig. 1) and ∆ µν the bare photon propagator. 

G(x , x ) ≡ i < 0 | T ψ(x ) ψ(x ) | 0 >= Φ(x , x ) d 4 p (2π) 4 e ip(x -x ) G(p) (1) 
in which the phase [START_REF] Wu-Yang | Modified electron propagation function in strong magnetic fields[END_REF] Φ

(x , x ) = e i|e|q x x dxµA µ (x) (2) 
ensures the gauge invariance of the Green function (A µ is the vector potential).

To avoid confusion, the unit of electric charge we note |e| such that the electron charge is -|e|. In [START_REF] Schwinger | Particles, sources and fields[END_REF] and in [START_REF] Wu-Yang | Modified electron propagation function in strong magnetic fields[END_REF],

this unit of electric charge is instead noted e. In [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], e denotes instead the (negative) electron charge. We shall see that these precisions are important, in particular to get the appropriate propagator for the LLL of an electron.

Like in [START_REF] Schwinger | Particles, sources and fields[END_REF] and [START_REF] Wu-Yang | Modified electron propagation function in strong magnetic fields[END_REF] we introduce q such that q|e| is the electron charge. Therefore q = -1 7 . This makes the

covariant derivative D µ = ∂ µ -i|e|qA µ such that π µ = 1 i ∂ µ = p µ + |e|A µ . For any 4-vector v = (v 0 , v 1 , v 2 , v 3 ), it is useful to introduce the notations v = (v 0 , v 1 , v 2 , 0), v = (v 0 , 0, 0, v 3 ) and v ⊥ = (0, v 1 , v 2 , 0).
The 1-loop electron propagator depicted in Fig. 1 writes iG(y, x) = -e 2 e i|e|q x y dtµA µ (t)

d 4 u d 4 v d 4 p (2π) 4 e ip(u-x) G 0 (p) d 4 q (2π) 4 e iq(v-u) G 0 (q) γ µ d 4 r (2π) 4 e ir(v-u) ∆ µν (r)γ ν d 4 s (2π) 4 e is(y-v) G 0 (s). (3) 
We now specialize to the medium under concern and consider "graphene-like" electrons propagating inside a thin film of thickness 2a. This situation has two consequences: dv 3 e iv3(q3+r3-s3)

* G 0 (q) = G 0 (q), G 0 (p) = G 0 (p), G 0 (s) = G 0 (ŝ)
d 3 p (2π) 3 e i p(ŷ-x)-ip3x3+is3y3 G 0 (p) d 3 q (2π) 3 G 0 (q)γ µ ∆ µν (p -q, r 3 )γ ν G 0 (p). (4) 
The two integrations du 3 and dv 3 can be performed since

+a -a dx e itx = 2 sin at t , (5) 
which leads to iG(y, x) = -4e sin a(q 3 + r 3 -s 3 ) q 3 + r 3 -s 3 sin a(p 3 -q 3 -r 3 ) p 3 -q 3 -r 3 d 3 p (2π) 3 e i p(ŷ-x)-ip3x3+is3y3 G 0 (p)

d 3 q (2π) 3 G 0 (q)γ µ ∆ µν (p -q, r 3 )γ ν G 0 (p). (6) 
In there the integration dq 3 can also be done explicitly since

dq 3 sin a(q 3 -σ) q 3 -σ sin a(q 3 -τ ) q 3 -τ = π sin a(σ -τ ) σ -τ , (7) 
with σ = s 3 -r 3 , τ = p 3 -r 3 , which has the property to be independent of r 3 . We get now iG(y, x) = -2e 2 e i|e|q x y dtµA µ (t)

dp 3 2π ds 3 2π sin a(s 3 -p 3 ) s 3 -p 3 d 3 p (2π) 3 e i p(ŷ-x)-ip3x3+is3y3 G 0 (p) d 3 q (2π) 3 dr 3 2π G 0 (q)γ µ ∆ µν (p -q, r 3 )γ ν G 0 (p). (8) 
Going to the new variables

h 3 = s 3 + p 3 , l 3 = s 3 -p 3 ⇒ dp 3 ds 3 = 1 2 dh 3 dl 3 yields iG(y, x) = -e 2 e i|e|q x y dtµA µ (t) dl 3 2π sin al 3 l 3 e il3 x 3 +y 3 2 dh 3 2π e ih3 y 3 -x 3 2 d 3 p (2π) 3 e i p(ŷ-x) G 0 (p) d 3 q (2π) 3 dr 3 2π G 0 (q)γ µ ∆ µν (p -q, r 3 )γ ν G 0 (p). (9) 
The condition x 3 + y 3 ≤ 2a is verified because the electrons are constrained to propagate inside the strip, such that

dl 3 2π sin al 3 l 3 e il3 x 3 +y 3 2 = 1 2 . ( 10 
)
This yields iG(y, x) = -e 2 d 4 p (2π) 4 e ip(y-x) G 0 (p) e i|e|q x y dtµA µ (t)

d 3 q (2π) 3 dr 3 2π G 0 (q)γ µ ∆ µν (p -q, r 3 )γ ν G 0 (p). (11) 
The self-energy Σ is obtained from the 1-loop propagator above by chopping off the two external fermion iG 0 propagators, which leads to

Σ(x, y) = Φ(x, y) d 4 p (2π) 4 e ip(y-x) Σ(p), (12) 
with the phase Φ given in (2) and to

iΣ(p) = e 2 d 3 k (2π) 3 dr 3 2π G 0 (p -k)γ µ ∆ µν ( k, r 3 )γ ν , (13) 
in which, to avoid conflicts between notations, we have made the change of variables p -q → k in the momenta, which amounts to labeling them like in [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF].

This shows the equivalence with reduced QED 3+1 on a 2-brane, in which the "effective" internal photon propagator is (see [START_REF] Gorbar | Dynamical chiral symmetry breaking on a brane in reduced QED[END_REF])

∆µν ( k) = dr 3 2π ∆ µν ( k, r 3 ). (14) 
In the Feynman gauge8 one gets ∆µν ( k) = dr 3 2π

g µν k2 + r 2 3 = 1 2 g µν k2 such that iΣ(p) = - e 2 2 d 3 k (2π) 3 γ µ G 0 (p -k) g µν k2 γ ν . (15) 
which should be compared with eq. (3.9) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF].

No dependence on the thickness a of the medium occurs anymore (unlike for the vacuum polarization [START_REF] Machet | The 1-loop vacuum polarization for a graphene-like medium in an external magnetic field; corrections to the Coulomb potential[END_REF]). This is easily understood since we constrained the fermion to propagate inside the medium (while, for the vacuum polarization, the photon is allowed to also propagate in the "bulk").

3 The self-energy and self-mass of the electron

In the whole paper, we use the metric (-+ + +) like in [START_REF] Schwinger | Particles, sources and fields[END_REF], [START_REF] Wu-Yang | Modified electron propagation function in strong magnetic fields[END_REF] and [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF].

The conventions for γ matrices and Pauli σ matrices are the same as in [START_REF] Wu-Yang | Modified electron propagation function in strong magnetic fields[END_REF], [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] and [START_REF] Schwinger | Particles, sources and fields[END_REF]. In particular, {γ µ , γ ν } = -2g µν . We shall denote (abusively)

σ 3 ≡ σ 12 = 1 2 [γ 1 , γ 2 ] = diag(1, -1, 1, -1) 
; it should not be mistaken for the corresponding 2 × 2 Pauli matrix. With these conventions, for an external magnetic field B along the z axis, the wave function of the lowest Landau

level |LLL > is proportional to         0 1 0 0         ([20] [21]) such that σ 3 |LLL >= (-1)|LLL > and (1 -iγ 1 γ 2 )|LLL >≡ (1 -σ 3 )|LLL >= 2|LLL >.

The self-energy in momentum space

We now proceed to calculating the self-energy expressed in [START_REF] Gorbar | Dynamical chiral symmetry breaking on a brane in reduced QED[END_REF], following the procedure given in [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF]. To that purpose, we introduce 2 Schwinger parameters: s 2 for the photon and s 1 for the electron.

As far as the photon is concerned, instead of 1 k 2 -i = i ∞ 0 ds 2 e -is2(k 2 -i ) (eq. (3.10) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF]), that is used to represent the 4-dimensional photon propagator in the Feynman gauge, we shall use now, according to ( 14) and ( 15)

1 k2 -i = i π ∞ 0 ds 2 e -is2( k2 -i ) √ s 2 . ( 16 
)
However, it is important (see just above [START_REF] Wu-Yang | Modified electron propagation function in strong magnetic fields[END_REF]) to use Tsai's [START_REF] Wu-Yang | Modified electron propagation function in strong magnetic fields[END_REF] formulae and not the ones used in [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF].

As for the electron, in general QED 3+1 , its propagator is given (see eq. ( 6) of [START_REF] Wu-Yang | Modified electron propagation function in strong magnetic fields[END_REF]) by

G 0 (k, B) = i ∞ 0 ds 1 e -is1 m 2 -i +k 2 + tan z z k 2 ⊥ e iqzσ 3 cos z m -k / - e -iqzσ 3 cos z k / ⊥ , z = |e|Bs 1 , (17) 
and, in position space by equations similar to (1) and ( 2). These expressions only need to be trivially adapted to the "truncated" momenta p and k (see section 2).

As shown in appendix A, [START_REF] Schwinger | Quantum Electrodynamics. II. Vacuum Polarization and Self-Energy[END_REF] leads to the adequate propagator for the LLL at the limit B → ∞. It is in particular proportional to the customary projector 1 -iγ 1 γ 2 , This is not the case of eq. (2.47b) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] (in there e < 0), which involves e iσ 3 z instead of e iqσ 3 z and leads to the wrong projector 1 + iγ 1 γ 2 and, later, to confusions and problems.

From [START_REF] Gorbar | Dynamical chiral symmetry breaking on a brane in reduced QED[END_REF] and using ( 16) and ( 17), one gets instead of (3.11) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] ("c.t." means "counter terms)

Σ(p) = - i π e 2 2 ∞ 0 ds 1 ∞ 0 ds 2 √ s 2 d 3 k (2π) 3 e -is2( k2 -i ) e -is1 m 2 +( p-k) 2 + tan z z ( p-k) 2 ⊥ γ µ e iqzσ 3 cos z m -(p / -k /) - e -iqzσ 3 cos z (p / -k /) ⊥ γ µ + c.t., with z = |e|Bs 1 , (18) 
Since the Hamiltonian of the Dirac electron is presently considered to be deprived of its

γ 3 (p -k) 3 part, (p -k) 2 = -(p 0 -k 0 ) 2 , (p / -k /) = -γ 0 (p 0 -k 0 ), while preserving (p -k) 2 ⊥ = (p 1 -k 1 ) 2 + (p 2 -k 2 ) 2 and (p / -k /) ⊥ = γ 1 (p 1 -k 1 ) + γ 2 (p 2 -k 2 ).
One performs the same change of variable as (3.12) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] 

s 1 = su, s 2 = s(1 -u) ⇒ ds 1 ds 2 √ s 2 = ds √ s du √ 1 -u , (19) 
and one still introduces y = |e|Bsu.

The exponentials are then re-expressed in view of performing the d 3 k integration. Following a procedure identical to that in [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] yields, instead of their (3.17)

Σ(p) = -i e 2 2 i π ∞ 0 ds √ s 1 0 du √ 1 -u 1 cos y d 3 k (2π) 3 e -isχ γ µ e iqyσ 3 m -(1 -u)p / + e -iqyσ 3 cos y 1 -u 1 -u + u tan y/y p / ⊥ γ µ + c.t., (20) 
in which χ and ϕ are still given by (3.14), (3.15) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] 

χ = um 2 + ϕ + (k -up ) 2 + 1 -u + u tan y y k ⊥ - u tan y/y 1 -u + u tan y/y p ⊥ 2 , ϕ = u(1 -u) p 2 + u y (1 -u) sin y (1 -u) cos y + u sin y/y p 2 ⊥ . (21) 
The shifts in the integration variables are naturally k → k -up and k ⊥ → k ⊥ --u tan y/y 1-u+u tan y/y p ⊥ .

One has to redo the k integrations (which only concerns the integral inside curly brackets in ( 20)) since it is now 4 for standard QED 3+1 . This is simple with the aid of the standard integral

d 3 k (2π) 3 instead of d 4 k (2π)
+∞ -∞ dx e ±iAx 2 = e ±iπ/4 π A 1/2 , A > 0, (22) 
and leads to

Σ(p) = - me 2 16π 2 ∞ 0 ds s 1 0 du √ 1 -u e -is(um 2 +ϕ) (1 -u) cos y + u sin y/y γ µ e iqyσ 3 1 -(1 -u) p / m + e -iqyσ 3 cos y 1 -u 1 -u + u tan y/y p / ⊥ m γ µ + c.t. (23) 
It is then simple matter to perform the Dirac algebra, which leads, instead of eq. (3.27) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], to

Σ(p) = αm 4π ∞ 0 ds s 1 0 du √ 1 -u e -is(um 2 +ϕ) (1 -u) cos y + u sin y/y e iqyσ 3 1 + e -2iqyσ 3 + (1 -u)e -2iqyσ 3 p / m + (1 -u) e -iqyσ 3 (1 -u) cos y + u sin y/y p / ⊥ m + c.t. (24) 
Quite remarkably, in addition to the replacement σ 3 y → qσ 3 y in the exponentials, which originates from our taking the original Tsai's formula for G 0 instead of that of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], and to a global factor 1/2, it only differs from (3.27) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] by du √ 1 -u instead of du and by the fact that, in the present situation, p 2 = -p 2 0 , p / = -γ 0 p 0 . We thus see that, after these lengthy but straightforward transformations have been done, the electron self-energy for QED 3+1 reduced on a 2-brane is formally very close to the one for QED 3+1 . The difference between the two integration measures for u is however at the origin of the completely different behaviors of the corresponding δm LLL at the limit m → 0, as we shall see in subsection 4.2.

Transforming the space representation of Σ

Unlike for the vacuum polarization in which the two opposite phases cancel, the phase Φ, given in [START_REF] Goerbig | Electronic properties of graphene in a strong magnetic field[END_REF], which occurs in the space representation [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] of the self-energy plays an important role. This makes the calculations all the more tedious as, like for QED 3+1 , the integrations on s and u for Σ(p) obtained in [START_REF] Kuznetsov | The exact electron propagator in a magnetic field as the sum over Landau levels on a basis of the Dirac equation exact solutions[END_REF] cannot be done explicitly.

It is however possible, along the lines of p. 47-52 of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] to get from the space representation Σ(x , x ) as written in [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] a useful expression for Σ(π) defined by

Σ(x , x ) =< x | Σ(π) | x > . (25) 
Σ(π), which now depends on the covariant derivative π, has somewhat "swallowed" the phase Φ, and is the essential ingredient to get the self-mass δm of an electron on mass-shell (π / + m = 0).

The d 4 p in [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], which is at the root of the corresponding formal manipulations stays unchanged. One has to go through the steps of p. 34-36 and p. 47-50 of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], which use in particular eq. (2.41) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] <

X | e -isπ 2 | X >= Φ(X , X ) d 4 k (2π) 4 e ik(X -X ) 1 cos q|e|Bs e -is k 2 +k 2 ⊥
tan q|e|Bs q|e|Bs [START_REF] Yu | Massovii operator : adnologarifmitcheskaja polevaja asimptotika[END_REF] and its avatars, (2.45) and more specially (2.46)

< X | e -is a0π0π 0 +a3π3π 3 +a ⊥ π 2 ⊥ 1, γ 0 π 0 , γ 3 π 3 , γ ⊥ π ⊥ | X > = Φ(X , X ) d 4 k (2π) 4 e ik(X -X ) 1 cos q|e|Bsa ⊥ e -is a0k0k 0 +a3k3k 3 +a ⊥ tan q|e|Bsa ⊥ q|e|Bsa ⊥ 1, γ 0 k 0 , γ 3 k 3 , 1 cos q|e|a ⊥ Bs e -iq|e|Bsa ⊥ σ 3 γ ⊥ p ⊥ . (27) 
They entail, by simple changes of variables (ϕ is given in ( 21))

Φ(X , X ) d 4 p (2π) 4 e ip(X -X ) e -isϕ = cos β < X | e -isu(1-u)p 2 e -i β q|e|B π 2 ⊥ | X >, Φ(X , X ) d 4 p (2π) 4 e ip(X -X ) e -isϕ a p / + b p / ⊥ = cos β < X | e -isu(1-u)p 2 e -i β q|e|B π 2 ⊥ ap / + b cos β e iqσ 3 β p / ⊥ | X > (28)
in which ∆(u, y) and the angle β have been introduced, which satisfy [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] 

sin β = (1 -u) sin y ∆(u, y) 1/2 , cos β = (1 -u) cos y + u sin y/y ∆(u, y) 1/2 , ∆(u, y) = (1 -u) 2 + 2u(1 -u) sin y cos y y + u 2 sin y y 2 . ( 29 
)
After all terms inside [START_REF] Kuznetsov | The exact electron propagator in a magnetic field as the sum over Landau levels on a basis of the Dirac equation exact solutions[END_REF] have been transformed via (28), one gets the result

Σ(π) = αm 4π ∞ 0 ds s 1 0 du √ 1 -u e -isu 2 m 2 e -isΘ ∆(u, y) 1 + e -2iqyσ 3 + (1 -u)e -2iqyσ 3 π / m + (1 -u) 1 -u ∆(u, y) + u ∆(u, y) sin y y e -iqyσ 3 -e -2iqyσ 3 π / ⊥ m + c.t. , Θ = u(1 -u)(m 2 -π / 2 ) + u y β -(1 -u)y π 2 ⊥ -u 2 |e|q 2 σ µν F µν , (30) 
which differs from (3.38a) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] by the absence of γ 3 π 3 from π /, the same factor 1 2 that we already mentioned concerning [START_REF] Kuznetsov | The exact electron propagator in a magnetic field as the sum over Landau levels on a basis of the Dirac equation exact solutions[END_REF], and the presence of q ≡ -1 in the exponentials (that was omitted in [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF]).

Renormalization conditions and counterterms

The electron mass we define as the pole of its propagator, which is the only gauge invariant definition.

We briefly recall here the general procedure to fix the counterterms. It is then straightforwardly adapted to our concern by replacing everywhere p with p and π with π (π µ = p µ + |e|A µ ).

At B = 0, the renormalized electron mass is defined by

m = m 0 + δm, δm = Σ(p) p /+m=0 , (31) 
in which m 0 is the bare mass and Σ(p) the bare self-energy.

In the presence of and external field A µ , the propagator of a Dirac electron is

iG = i π / + m 0 + Σ(π) , (32) 
and we define, in analogy with (31) the mass of the electron as the pole of its propagator by

m = m 0 + Σ(π) π /+m=0 , δm = Σ(π) π /+m=0 . ( 33 
)
δm depends on the external B.

The on mass-shell renormalization conditions write9 

lim π /+m=0 lim B→0 Σ ren (π) = 0, lim π /+m=0 lim B→0 ∂Σ ren (π) ∂π / = 0, (34) 
in which the superscript "ren" denotes the renormalized quantities.

They lead to the same counterterms as in [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] but for the simple modifications p → p, π → π, and one gets

Σ(π) = αm 4π ∞ 0 ds s 1 0 du √ 1 -u e -isu 2 m 2 e -isΘ √ ∆ 1 + e -2iqyσ 3 + (1 -u)e -2iqyσ 3 π / m + (1 -u) 1 -u ∆ + u ∆ sin y y e -iqyσ 3 -e -2iqyσ 3 π / ⊥ m -(1 + u) -(m + π /) 1 -u m -2imu(1 -u 2 )s c.t. , (35) 
in which y, Θ, ∆ are given in (30) and (29).

The 2nd counterterm vanishes on mass-shell (since it must satisfy the 1st renormalization condition), and can therefore be forgotten in the calculation of δm.

The self-mass δm LLL for an electron in the lowest Landau level

The spectrum of a Dirac electron in a pure magnetic field directed along z is [START_REF] Berestetskii | Quantum Electrodynamics[END_REF] 2

n = m 2 + p 2 z + (2n + 1 + σ z ) |e|B, (36) 
in which σ z = ±1 is 2 × the spin projection of the electron on the z axis. So, at n = 0,

σ z = -1, p z = 0, n = m:
this is the lowest Landau level.

We can consider 

A µ =         A 0 = 0 A x = 0 A y = xB A z = 0         such that F 12 = B is
ψ n=0,s=-1,py=pz=0 = 1 √ N |e|B π 1/4 e -|e|B 2 x 2         0 1 0 0         , N [21] 
= L y L z dimensions along y and z .

Following (33), in order to determine δm for the (on mass-shell) LLL, we shall sandwich the general self-energy operator (35) between two states | ψ > defined in (37) and satisfying (π / + m)| ψ >= 0.

The expression (35) involves π / that we shall replace by -m, ∆ that needs not be transformed, and Θ which involves

m 2 -π / 2 , π 2 ⊥ and σ µν F µν . The only non-vanishing component of F µν being F 12 = B, σ µν F µν = σ 12 F 12 + σ 21 F 21 = 2σ 12 F 12 ≡ 2σ 3 B.
Since the electron is an eigenstate of the Dirac equation in the presence of B, m 2 -π / 2 can be taken to vanish.

π 2 ⊥ ≡ π 2 1 + π 2 2
is also identical, since the LLL has p z = 0 and we work in a gauge with

A z = 0, to π 2 ≡ π 2 + π 2 0 . One has π / 2 = -π 2 + q|e| 2 σ µν F µν such that π 2 ⊥ = -π / 2 + π 2 0 + σ 3 q|e|B.
Since our gauge for the external B has A 0 = 0, π 2 0 = p 2 0 , which is the energy squared of the electron, identical to m 2 for the LLL. Therefore, on mass-shell,

π 2 ⊥ = σ 3 q|e|B. When sandwiched between LLL, < ψ | σ 3 | ψ >= 0 1 0 0 diag(1, -1, 1, -1)         0 1 0 0        
= -1 such that σ 3 can be replaced by (-1). Θ shrinks to u(β/y -1)q|e|Bσ 3 , which gives, replacing σ 3 with (-1), Θ → u(1 -β/y)q|e|B. σ 3 can also be replaced by (-1) in the exponentials of (35). Σ(π) in (35) also involves a term proportional to π / ⊥ . Since the LLL has p z = 0 and we work at A z = 0, this is also

equal to γ. π = γ µ πµ -γ 0 π 0 = π / + γ 0 p 0 . < ψ | π / | ψ >= -m such that < ψ | π / ⊥ | ψ >=< ψ | -m + γ 0 p 0 | ψ >. Since γ 0 = diag(1, 1, -1, -1), eq. (37) yields < ψ | π / ⊥ | ψ >= -m + p 0 .
The energy p 0 of the LLL | ψ > being equal to m, this term vanishes. Gathering all information and simplifications leads finally to

δm LLL ≡ Σ(π) π /+m=0 = αm 4π ∞ 0 ds s 1 0 du √ 1 -u e -isu 2 m 2 e -isΘ(u,y) ∆(u, y) (1 + u e 2iqy ) -(1 + u) f rom c.t. , (38) 
in which y = |e|Bsu as before, ∆(u, y) is the same as in (30), β the same as in (29), and Θ has shrunk down to

Θ(u, y) = uq|e|B 1 - β(u, y) y = uq|e|B - qβ(u, y) s . ( 39 
)
4

The "reduced" Demeur-Jancovici integral Î(L)

General expression

We define Î(L) by

δm LLL = α m 4π Î(L) with L = |e|B m 2 . ( 40 
)
such that

Î(L) = ∞ 0 ds s 1 0 du √ 1 -u e -isu 2 m 2 e -isΘ(u,y) ∆(u, y) (1 + u e 2iqy ) -(1 + u) f rom c.t. (41) 
By a successive change of variables, we cast it in a form similar to I(L) deduced by Jancovici in [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] from the formula obtained by Demeur in [START_REF] Demeur | Étude de l'interaction entre le champ propre d'une particule et un champ electro-magnétique homogène et constant[END_REF], and that was revisited in [START_REF] Machet | The 1-loop self-energy of an electron in a strong external magnetic field revisited[END_REF]. The calculations, which are detailed in appendix B, lead to

Î(L) = ∞ 0 dz 1 0 dv √ 1 -v e -z m 2 |e|B 2 1 + v e -2z/v 2z(1 -v) + v 2 1 -e -2z/v - 1 + v z f rom c.t. , (42) 
which is the expression which we shall focus on hereafter.

Calling

f (v, z) = 2(1 + ve -2z/v ) 2z(1 -v) + v 2 (1 -e -2z/v ) - 1 + v z , (43) 
Î(L) in (42) can be cast in the form

Î(L) = ∞ 0 dz e -z/L 1 0 dv √ 1 -v f (v, z). ( 44 
)
That Î(L) would be divergent at z = 0 without the counterterm can be easily seen by expanding

2(1+v e -2z/v ) 2z(1-v)+v 2 (1-e -2z/v ) z→0 ∼ 1+v z + v -1 + O(z)

Analytical evaluation of Î(L)

We split ∞ 0 dz (...) in Î(L) given by (42) into z0 0 dz (...) + ∞ z0 dz (...), with: * z 0 large enough such that, in the 2nd integral, in which z > z 0 , f (v, z)

2 2z(1 -v) + v 2 - 1 + v z
, that is, the exponentials can be neglected; * z 0 small enough for z0 0 dz (...) ∞ 0 dz (...) ∞ z0 dz (...) and can be neglected. In practice, z 0 = 1 fits perfectly and, even down to L = 20, the ratio of the 2 integrals is ≤ 1/100. z0 0 dz (...) involves two canceling divergent integrals, and, for proper numerical evaluation, one has to set the lower bound of integration to = 0, checking stability when decreases from 10 -3 down to 10 -12 . . .. Likewise, to numerically evaluate ∞ z0 1 (. . .), avoiding to deal with too small numbers requires to set the upper bound of integration at a large but finite number (which depends on the value of L) instead of infinity and to check stability by varying this bound inside a large interval.

The result is that, for L ≥ 20 and z 0 1 one can approximate at a precision better than 1/100

Î(L) ≈ ∞ z0 1 dz e -z/L 1 0 dv √ 1 -v 2 2z(1 -v) + v 2 - 1 + v z . ( 45 
)
One has

g(z) ≡ 1 0 dv √ 1 -v 2 2z(1 -v) + v 2 = 2 z(z -2)       tan -1 1 -1 + z -z(z -2) -1 + z -z(z -2) - tan -1 1 -1 + z + z(z -2) -1 + z + z(z -2)       , 1 0 dv 1 + v √ 1 -v = 10 3 , ∞ z0 1 dz e -z/L z = Γ(0, 1/L), (46) 
therefore

δm LLL = αm 4π ∞ z0≈1 dz e -z/L g(z) - 10 3 Γ(0, 1/L) . (47) 
On Fig. 2 we compare g(z) given in (46) (blue) with the one obtained in [START_REF] Machet | The 1-loop self-energy of an electron in a strong external magnetic field revisited[END_REF] for standard QED 3+1 g(z) = ln(z -1 + Fig. 2: A comparison between the integrand g(z) in QED 3+1 (yellow) and in QED 3+1 reduced on a 2-brane (blue)

z(z -2))/ z(z -2) ln z/z + π/2z
We now proceed like M.I. Vysotsky in [START_REF] Vysotsky | Atomic levels in superstrong magnetic fields and D = 2 QED of massive electrons: screening[END_REF] and look for an interpolating function for g(z). One has

g(1) ≈ 3.468, g(z) z→∞ π 2 z - 2 z + O( 1 z 3/2 ) 4.443 √ z + . . . (48) 
and an excellent fit for z

∈ [z 0 1, ∞] is g(z) ≈ π 2 z + g(1) -π √ 2 z . (49) 
It is plotted in yellow on Fig. 3, while the exact g is in blue. Fig. 3: exact (blue) and approximated (yellow) g(z) for z ≥ 1

This approximation gives (using (40)) 10

δm LLL ≡ αm 4π Î(L) = α 4π |e|B √ 2 π 3/2 Erf c 1 √ L + Γ(0, 1 L ) √ L g(1) -π √ 2 - 10 3 . ( 50 
) When L → ∞, Erf c( 1 √ L ) 1 -2 √ π 1 √ L + . . . and Γ(0, 1 L ) ln L -γ E + . . . such that δm LLL L→∞ α 2 |e|B π 2 1 - 2 √ πL + 1 √ 2 π 3/2 ln L -γ E √ L g(1) -π √ 2 - 10 3 + . . . . (51) 
The constant term comes from the contribution to Î(L) of

∞ z0 1 dz e -z/L / √ z = √ πL Erf ( z/L) ∞ z0 1 at ∞. So,
it is not sensitive to the precise value of z 0 = 1, but it is controlled by the leading behavior of g(z)

∼ 1/ √ z at z → ∞ 11 .
It is important to check that, at the limit of large L, the first integral z0=1 0 dz(. . .) is stable and can still be neglected with respect to the second integral. This is shown on Fig. 4-left, in which we plot the 1st integral as a function of L.

As already mentioned, the numerical cancellation of infinities requires that the lower bound of integration be set not to 0 but to smaller and smaller . The curve in blue corresponds to = 10 -3 , and the 3 other curves, green, yellow and red, corresponding to = 10 -6 , 10 -9 , 10 -12 are superposed; Î(L) as given by ( 50) is plotted on Fig. 4-right. We see that, even at very large values of L, the 1st integral can always be safely neglected inside Î(L). 5 A non-vanishing 1-loop δm LLL at m → 0

From (51) one gets immediately (restoring and c)

δm LLL m→0 → α 2 π 2 |e|B c 2 , (52) 
which shows that, in an external magnetic field, this model, equivalent to reduced QED 3+1 on a 2-brane, cannot stay massless at 1-loop. Notice that (52) fulfills the renormalization conditions (34), which are expressed at B = 0.

Since the role of the counterterms is slightly more subtle than for QED 3+1 (in which they yield the large logs (see [START_REF] Machet | The 1-loop self-energy of an electron in a strong external magnetic field revisited[END_REF])), it is useful to make some comments about them.

In (38), the (infinite) counterterm only depends on m through the exponential e -isu 2 m 2 inside the integrand.

Noting respectively b.term and c.term the bare term and the counterterm inside the expression (38) of δm LLL , one can write symbolically b.term

= +∞ + f 1 (m, eB), c.term = -∞ + f 2 (m), in which f 1 , f 2 are finite.
The change of variables (101) introduces a dependence of both on L, that we write symbolically b.term

= +∞ + f1 (m, eB, L) + ζ(L) = +∞ + h 1 (m, eB, L), c.term = -∞ + f2 (m, L) -ζ(L) = -∞ + h 2 (m, L). Therefore,
via the change of variable (101), the counterterm has reacted on the bare contribution and the two become entangled (we introduced ±ζ to picture the fact that this dependence globally cancels but, in practice, one cannot "isolate" ζ ; also, strictly speaking, these terms are not defined before the infinities are regularized and canceled).

The "educated" splitting [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] of the z interval of integration [0, ∞[= [0, z 0 ] + [z 0 , ∞[ brings then Î(L) down to the approximation (45). Let us call the integrands in there h z0 1 (m, eB, L) and h z0 2 (m, L). That the limit m → 0 yields a constant δm, or, equivalently, Î(L) ∝ √ L. is due to h z0 1 (and the corresponding g(z) defined in (46) (47) (49)) which has an asymptotic expansion 1/ √ z at z → ∞. This makes the result insensitive to the precise value of z 0 . By contrast, as we have mentioned, in standard QED 3+1 , the asymptotic behavior of g(z) is ln z/z [START_REF] Machet | The 1-loop self-energy of an electron in a strong external magnetic field revisited[END_REF].

h z0 1 no longer represents the bare contribution for the reasons that we just evoked: * a change of variables introduced an extra dependence on L that mixes with the counterterm; * the splitting of the z interval of integration collects in the neglected (small) z0 0 dz(. . .), in particular, the two canceling infinite parts of the bare term and of the counterterm, establishing a second connection between the two. In this respect, both play crucial roles in the massless limit of δ LLL , that can hardly be disentangled.

Last, let us remark that it is necessary to make the z integration at m = 0 before taking the limit m → 0, otherwise, since L = |e|B/m 2 , one gets the undetermined expression 1 0 × 0. Had we started from a massless theory, we would have obtained such an undetermined result. This is why one can only state that the massless limit of the 1-loop δm LLL goes to a constant, or, equivalently, that the model under consideration cannot stay massless at 1-loop.

6 Restricting to the lowest Landau level of the virtual electron

Basics

The contribution of different Landau levels to the propagator of an electron in a constant uniform external B has been investigated in [START_REF] Kuznetsov | The exact electron propagator in a magnetic field as the sum over Landau levels on a basis of the Dirac equation exact solutions[END_REF] and [START_REF] Chodos | QED with a chemical potential: The case of a constant magnetic field[END_REF]. From eqs. [START_REF] Berestetskii | Quantum Electrodynamics[END_REF][START_REF] Vysotsky | Atomic levels in superstrong magnetic fields and D = 2 QED of massive electrons: screening[END_REF][START_REF] Kuznetsov | The exact electron propagator in a magnetic field as the sum over Landau levels on a basis of the Dirac equation exact solutions[END_REF] of [START_REF] Kuznetsov | The exact electron propagator in a magnetic field as the sum over Landau levels on a basis of the Dirac equation exact solutions[END_REF] one gets

G(x, x ) = ∞ n=0 G n (x, x ) = ∞ n=0 e iω(x,x ) Ĝn (x -x ) = e iω(x,x ) d 4 p (2π) 4 e -ip(x-x ) ∞ n=0 Ĝn (p, B), ω(x, x ) = - |e|B 2 (x 1 + x 1 )(x 2 -x 2 ), (53) 
in which x = (x 0 , x 1 , x 2 , x 3 ), x = (x 0 , x 1 , x 2 , x 3 ). The factor e iω(x,x ) is identical to Schwinger's Φ(x, x ) as written in (2) (see for example [START_REF] Kuznetsov | Electroweak Processes in External Electromagnetic Fields[END_REF], chapter 3).

Using the conventions and metric (-+ ++) of Schwinger, the contribution of the LLL is

-i Ĝn=0 (p, B) = e -p 2 ⊥ /|e|B ∞ 0 ds 1 e -is1(m 2 +p 2 ) (m -p / )(1 -iγ 1 γ 2 ), (54) 
in which we have introduced the Schwinger's parameter s 1 (see also appendix A).

To determine the contribution of the LLL of the virtual electron to the self-energy, we have to calculate (see [START_REF] Gorbar | Dynamical chiral symmetry breaking on a brane in reduced QED[END_REF])

iΣ n=0 (p, B) = - e 2 2 d 3 p (2π) 3 γ µ Ĝn=0 (p -k, B) g µν k2 γ ν (55) 
One introduces as before (see ( 16)) the Schwinger parameter s 2 for the photon propagator and, instead of eq. (3.11)

of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], one gets

Σ n=0 (p, B) = -ie 2 ∞ 0 ds 1 i π ∞ 0 ds 2 √ s 2 d 3 k (2π) 3 e -(p-k) 2 ⊥ |e|B e -is2( k2 -i ) e -is1 m 2 +( p-k) 2 γ µ m-(p / -k / ) (1-iγ 1 γ 2 )γ µ . (56) 
We use again the change of variables [START_REF] Machet | The 1-loop vacuum polarization for a graphene-like medium in an external magnetic field; corrections to the Coulomb potential[END_REF] together with

z = |e|Bs 1 , y = |e|Bus. (57) 
Like before, aiming at performing the integration d 3 k, one rewrites the exponentials (watch the "i" which now occurs). Since s cannot be factorized everywhere, we have now included it into the definitions of χ 0 and ϕ 0 , unlike previously for χ and ϕ.

(p -k) 2 ⊥ i|e|B + s 2 k2 + s 1 m 2 + (p -k) 2 = usm 2 + su(1 -u)p 2 + s( k -up) 2 + s(1 -u) + 1 i|e|B k ⊥ - p ⊥ 1 + i|e|Bs(1 -u) 2 + p 2 ⊥ s(1 -u) 1 + i|e|Bs(1 -u) = χ 0 + ϕ 0 , χ 0 = s( k -up) 2 + s(1 -u) + 1 i|e|B k ⊥ - p ⊥ 1 + i|e|Bs(1 -u) 2 , ϕ 0 = usm 2 + su(1 -u)p 2 + p 2 ⊥ s(1 -u) 1 + i|e|Bs(1 -u) = usm 2 + b 0 p2 + b ⊥ p 2 ⊥ , b 0 = us(1 -u), b ⊥ = s(1 -u) 1 + i|e|Bs(1 -u) , (58) 
such that

Σ n=0 (p, B) = -i e 2 2 ∞ 0 ds √ s i π 1 0 du √ 1 -u d 3 k (2π) 3 e -i(χ0+ϕ0) γ µ m -(p / -k / ) (1 -iγ 1 γ 2 )γ µ . ( 59 
)
One then shifts the variables

k → r = k -up , k ⊥ → r ⊥ = k ⊥ - p ⊥ 1+i|e|Bs(1-u) . One has χ 0 = sr 2 + s(1 - u) + 1 i|e|B r 2 ⊥ .
Then, (m -γ 0 (k 0 -p 0 )) = m -γ 0 (r 0 + (u -1)p 0 ). χ 0 being even since it depends on r 2 0 , the odd term ∝ r 0 yields a vanishing contribution to the dk 0 . One can thus replace m -γ 0 (k 0 -p 0 ) by m -(u -1)γ 0 p 0 . One gets

Σ n=0 (p, B) = -i e 2 2 i π ∞ 0 ds √ s 1 0 du √ 1 -u d 3 r (2π) 3 e -iϕ0 e -i[sr 2 +(s(1-u)+1/i|e|B)r 2 ⊥ ] γ µ m+(u-1)p / (1-iγ 1 γ 2 )γ µ . ( 60 
)
With the help of ( 22) one gets

d 3 r e -iχ = e -iπ/4 √ π √ s ( √ πe -iπ/4 ) 2 1 s(1 -u) + 1/i|e|B , (61) 
and, since

√ i = e iπ/4 , Σ n=0 (p, B) = - e 2 16π 2 ∞ 0 ds 1 0 du √ 1 -u e -iϕ0 i|e|B 1 + i|e|B s(1 -u) γ µ m + (1 -u)γ 0 p 0 (1 -iγ 1 γ 2 )γ µ . (62)
Next, one performs the Dirac algebra

γ µ m + (1 -u)γ 0 p 0 (1 -iγ 1 γ 2 )γ µ = -4m + 2imγ 1 γ 2 + 2(1 -u)p 0 γ 0 + 2i(1 -u)p 0 γ 0 γ 1 γ 2 = -4m + 2(1 -u)p 0 γ 0 (1 + iγ 1 γ 2 ), (63) 
such that

Σ n=0 (p, B) = - α 2π ∞ 0 ds 1 0 du √ 1 -u e -isum 2 e -i(b0 p2 +b ⊥ p 2 ⊥ ) i|e|B 1 + i|e|B s(1 -u) -2m+(1-u)p 0 γ 0 (1+iγ 1 γ 2 ) +c.t., (64) 
in which b 0 and b ⊥ are given in ( 58) and where we have now mentioned the counterterms (c.t.) that need eventually to be introduced to fulfill suitable renormalization conditions.

We are interested in δm 0 LLL concerning external electrons in the LLL. To get it we sandwich Σ(π) between two LLL eigenstates. Since these are annihilated by 1 + iγ 1 γ 2 , the only term that may play a role is the one proportional to m.

Accordingly, the quantity of interest to us is

Σ n=0 LLL (p, B) = α m π ∞ 0 ds 1 0 du √ 1 -u e -isum 2 e -is(1 -u) up 2 + p 2 ⊥ 1 + i|e|Bs(1 -u) i|e|B 1 + i|e|B s(1 -u) +c.t.
(65)

Transforming the space representation

One needs to determine Σ(π) satisfying [START_REF] Chodos | QED with a chemical potential: The case of a constant magnetic field[END_REF]. To that purpose, one must find the suitable change of variables to adapt (2.45) (2.46) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF] to the present situation, that is to determine a 0 and a ⊥ in (27 (which is the same as (2.46) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF]).

One must have

exp[-isa ⊥ p 2 ⊥ tan |e|Bsa ⊥ |e|Bsa ⊥ ] = exp[-is(1 -u) p 2 ⊥ 1 + i|e|Bs(1 -u) ] ⇔ tan |e|Bsa ⊥ = |e|Bs(1 -u) 1 + i|e|Bs(1 -u) ⇔ a ⊥ = 1 |e|Bs tan -1 |e|Bs(1 -u) 1 + i|e|Bs(1 -u) . (66) 
Then

cos |e|Bsa ⊥ = cos tan -1 |e|Bs(1 -u) 1 + i|e|Bs(1 -u) . ( 67 
)
One also has trivially

-isa 0 (-p 2 0 ) = -isu(1 -u)(-p 2 0 ) ⇔ a 0 = u(1 -u). ( 68 
)
This gives

Σ n=0 (π 0 , π ⊥ ) = αm π ∞ 0 ds 1 0 du √ 1 -u cos tan -1 |e|Bs(1 -u) 1 + i|e|Bs(1 -u) i|e|B 1 + i|e|Bs(1 -u) e -isum 2 e -isu(1 -u)(-π 2 0 ) e -isπ 2 ⊥ 1 |e|Bs tan -1 |e|Bs(1 -u) 1 + i|e|Bs(1 -u) + c.t.
(69)

Renormalization conditions and counterterms

Let us consider general on mass-shell external electrons. Since renormalization conditions have to be expressed at B = 0, let us also consider the limit B → 0 of Σ n=0 (π).

Σ n=0 (π 0 , π ⊥ ) B→0 ∼ αm π ∞ 0 ds 1 0 du √ 1 -u cos 0 i|e|B 1 + 0 e -isum 2 e -isu(1 -u)(-π 2 0 ) e -isπ 2 ⊥ 1 |e|Bs arctan |e|Bs(1 -u) 1 + 0 + terms ∝ (1 + iγ 1 γ 2 ) + c.t ∼ αm π ∞ 0 ds 1 0 du √ 1 -u i|e|B e -isum 2 e isu(1 -u)π 2 0 e -iπ 2 ⊥ 1 |e|B |e|Bs(1 -u) + terms ∝ (1 + iγ 1 γ 2 ) + c.t (70) 
We then go through the successive changes of variables (u, s) → (u, y = |e|Bsu), t = iy, last z = ut, plus a Wick rotation (see subsection 6.4 below), to get

Σ n=0 (π 0 , π ⊥ ) B→0 ∼ αm π ∞ 0 dz 1 0 du u 2 √ 1 -u e - zm 2 u|e|B e z 1 -u u π 2 0 |e|B π 2 0 e -z 1 -u u 2 π 2 ⊥ |e|B + terms ∝ (1+iγ 1 γ 2 )+c.t (71) 
If we now go on mass-shell,

π / + m = 0, π / 2 = m 2 = -π 2 -|e| 2 2σ 3 B ⇒ m 2 = π 2 0 -π 2 ⊥ -|e|σ 3 B, we get Σ n=0 mass-shell (π 0 , π ⊥ ) B→0 ∼ αm π ∞ 0 dz 1 0 du u 2 √ 1 -u e -z m 2 |e|B e z 1 -u u σ 3 e -z (1 -u) 2 u 2 π 2 ⊥ |e|B + terms ∝ (1+iγ 1 γ 2 )+c.t (72) 
The 1st renormalization condition in (34) concerns the vanishing, on mass-shell, of Σ at the limit B → 0. We have therefore to introduce a 1st counterterm c.t.

1 c.t. 1 = -lim B→0 αm π ∞ 0 dz 1 0 du u 2 √ 1 -u e -z m 2 |e|B e z 1 -u u σ 3 e -z (1 -u) 2 u 2 π 2 ⊥ |e|B + terms ∝ (1+iγ 1 γ 2 ) (73)
(the terms ∝ (1 + iγ 1 γ 2 ) give vanishing contribution only to external LLL).

The second renormalization condition (see (34)) concerns the derivative of Σ. This leads to introducing a second set of counterterms. However, they have to vanish on mass-shell since they must satisfy the 1st renormalization condition.

Since, in order to calculate δm, we precisely work on mass-shell, we can forget about the second set of counterterms and proceed now with the calculation of δm 0 LLL .

6.4 Calculation of the 1-loop self-mass δm 0 LLL when both external and internal electrons are in the lowest Landau level When acting on external LLL electrons, and on mass-shell, one has π 2 0 = m 2 , π 2 ⊥ = σ 3 eB = -eB = +|e|B. From (69) and (73) one then obtains

δm 0 LLL = αm π ∞ 0 ds 1 0 du √ 1 -u cos tan -1 |e|Bs(1 -u) 1 + i|e|Bs(1 -u) i|e|B 1 + i|e|Bs(1 -u) e -isu 2 m 2 e -i tan -1 |e|Bs(1 -u) 1 + i|e|Bs(1 -u) +c.t. 1 (74) 
After some calculations which are detailed in appendix C, one gets

δm 0 LLL = αm 4π 4 ∞ 0 dz 1 0 du √ 1 -u cosh tanh -1 z(1 -u) u 2 + z(1 -u) 1 u 2 + z(1 -u) e -zm 2 /|e|B e -tanh -1 z(1 -u) u 2 + z(1 -u) Î0 (L),L=|e|B/m 2 +c.t. 1 (75) When m = 0, δm 0 LLL = αm π ∞ 0 dz 1 0 du √ 1-u 1 u 2 +z(1-u) 1 2 1+e -2 tanh -1 z(1-u) u 2 +z(1-u) ∼ αm 2π ∞ 0 dz 1 0 du √ 1-u 1 u 2 +z(1-u)
which diverges at z → ∞. Like before, one must eventually take the limit m → 0 after the integration has been performed.

The exponential e -2 tanh -1 z(1-u) u 2 +z(1-u) being bounded by 1 and going to 0 when z → ∞, we have to evaluate

δm 0 LLL ∼ αm 4π 2 ∞ 0 dz 1 0 du √ 1 -u e -zm 2 /|e|B u 2 + z(1 -u) (1 + ) Î0 (L),L=|e|B/m 2 +c.t. 1 , 0 ≤ ≤ 1, (76) 
in which we have, like previously, factorized αm 4π , at the price of introducing an extra factor 2 in front of the integral. One accordingly defines now (compare with (42) (45))

Î0 (L) = 4 ∞ 0 dz 1 0 du √ 1 -u cosh tanh -1 z(1 -u) u 2 + z(1 -u) 1 u 2 + z(1 -u) e -zm 2 /|e|B e -tanh -1 z(1 -u) u 2 + z(1 -u) 2 ∞ 0 dz 1 0 du √ 1 -u e -zm 2 /|e|B u 2 + z(1 -u) (1 + ), 0 ≤ ≤ 1. (77) 
Note that, unlike when taking all Landau levels of the internal electrons into account, the integral Î0 (L) is convergent at z = 0 without introducing any counterterm.

One has

g 0 (z) ≡ 1 0 du √ 1 -u 2 u 2 + z(1 -u) = - 4 √ 2          tan -1   √ 2 z + (z -4)z -2   z + (z -4)z -2 - tan -1   √ 2 z -(z -4)z -2   z -(z -4)z -2          (z -4)z , (78) 
(to be compared with (46)) such that

δm 0 LLL ∼ αm 4π ∞ 0 dz e -zm 2 /|e|B g 0 (z) + c.t. 1 . (79) 

Contribution of the counterterm to δm

0 LLL For external LLL, π 2 ⊥ → |e|B, σ 3 → -1, this counterterm contributes to δm 0 LLL by c.t. 1 = -lim B→0 αm π ∞ 0 dz 1 0 du u 2 √ 1 -u e -z m 2 |e|B e -z 1 -u u 2 , (80) 
which is convergent. It yields

c.t. 1 = -lim B→0 αm π 1 0 du u 2 √ 1 -u 1 m 2 |e|B + 1-u u 2 = -lim B→0 α 2π |e|B m g 0 |e|B m 2 , (81) 
in which g 0 is the same as that defined in (78). At the limit z → 0

g 0 (z) z→0 ∼ π √ z + 2 ln 2 - ln z 2 + z 16 (-ln z -1 + 4 ln 2) + O(z 3/2 ), (82) 
such that

c.t. 1 = -lim B→0 α 2 |e|B + α π |e|B m ln 2 + . . . (83) 
which we shall truncate at the first term since the limit m → 0 should be taken afterwards. Accordingly, one finds a vanishing counterterm (which is in particular independent of the external B)

c.t. 1 = 0. (84) 
Collecting ( 79) and (84) yields

δm 0 LLL ∼ αm 4π ∞ 0 dz e -zm 2 /|e|B g 0 (z). (85) 
Notice that the bare δm 0 LLL (and, of course, the (vanishing) counterterm) are both finite, unlike when all Landau levels of the internal electron are accounted for.

The limit of δm 0

LLL when m → 0

In addition to the limit z → 0 given in (82) one has

g 0 (z) z→∞ ∼ 2π √ z - 4 z + 2π z 3/2 - 32 3z 3 + . . . . (86) 
So, splitting the z interval of integration of (85) into 3 sub-intervals gives

δm 0 LLL ∼ αm 4π a 0 dz e -zm 2 /|e|B π √ z + b a dz e -zm 2 /|e|B g 0 (z) constant + ∞ b dz e -zm 2 /|e|B 2π √ z . (87) 
The bounds a and b are chosen such that, for z ∈ [0, a] the expansion (82) is valid, and for z ∈ [b, ∞] the expansion (86) is valid. Since

dz e -zm 2 /|e|B √ z = √ π Erf m 2 /|e|B √ z m 2 /|e|B , (88) 
one has

δm 0 LLL ∼ αm 4π π √ π m 2 /|e|B Erf ( m 2 /|e|B √ a) - 4 √ π × 0 + cst + 2π √ π m 2 /|e|B Erf ( m 2 /|e|B √ z = ∞) 1 -Erf ( m 2 /|e|B √ b) . (89) 
To study the limit m → 0 we use

Erf (x) x→0 ∼ 2x √ π , Erf (x) x→∞ ∼ 1, (90) 
which shows that it is the value at z = ∞ that controls δm 0 LLL . Finally

δm 0 LLL m→0 → α 2 π |e|B = √ 2 δm LLL . (91) 
6.6 An approximate analytical expression for δm 0 LLL . Comparison with δm LLL It is easy to get a fair approximate analytical expression for δm 0 LLL given in (85) by using the following simple fit to g 0 (z)

g app 0 (z) e -z/30 π √ z + 2 ln 2 + e -30/z 2π √ z - 4 z , (92) 
which has, in particular, the appropriate limits at z → 0 and z → ∞. On fig. 5 the exact g 0 is plotted in blue and the approximate one in yellow. Fig. 5: the exact g 0 given in (78 (blue) and its approximate expression (92) (yellow)

This yields

δm 0 LLL ≈ αm 4π       2π 3/2 exp -2 √ 30 m 2 |e|B m 2 |e|B + π 3/2 m 2 |e|B + 1 30 + 60 ln(2) 30 m 2 |e|B + 1 -8 BesselK 0, 2 √ 30 m 2 |e|B       , (93) 
which has the limit (91) when m → 0. Notice also that the second contribution yields a finite δm 0 LLL → α 4π π 3/2 |e|B when m → ∞.

On Fig. 6, we plot While it is true that G n=0 (p, B) can indeed be obtained by formally taking the limit B → ∞ of G 0 (p, B) (see Appendix A), one should notice that: * this limit cannot be applied to the phase Φ; * the factor e -k 2 ⊥ /|e|B is not replaced by 1 inside G n=0 despite B → ∞; this is because, as the Larmor radius shrinks to 0 at this limit, k ⊥ can extend to ∞; * the (vanishing) counterterm is determined by taking first the limit B → 0, so as to fulfill renormalization conditions; then, eventually, the non-vanishing limit m → 0 is taken; therefore, naively taking the limit B → ∞ to "select" the LLL cannot be applied either to the counterterm.

Arguing that the limit m → 0 is equivalent to B → ∞ can accordingly only be wrong 13 .

The limits at m → ∞ (which should not be confused with those at B → 0) are also very different since δm LLL ∼ |e|B m e -m 2 /|e|B → 0 while δm 0 LLL ∼ cst × |e|B (see Fig. 7). Large cancellations therefore occur among multiple Landau levels of the virtual electron. However, they can only be estimated after going through the filter of renormalization, and infinities that need being tamed only arise when one accounts for all levels.

Conclusion and prospects

Unlike what happens for QED 3+1 , the massless limit of the 1-loop δm LLL in external B for QED 3+1 reduced on a 2-brane does not vanish. We have shown furthermore that it corresponds to an electron propagating inside a graphenelike medium. The latter cannot therefore stay "gapless" at 1-loop in the presence of a magnetic field. This result has been obtained with special attention paid to the renormalization conditions.

The result is very simple because we have restricted the external electron to lie in the lowest Landau level. For higher levels, the situation is much more intricate and analytical formulae certainly cannot be obtained.

We have also shown that restricting to the LLL of the internal electron largely overestimates the self-mass; in particular, its value when m → 0 triggers a multiplicative factor √ 2. Despite the case under concern has the peculiarity that taming infinities and renormalizing is only needed when accounting for all Landau levels, studies based on such an approximation appear rather suspicious. Note that, in the case of standard QED 3+1 , it was shown in [START_REF] Machet | The 1-loop vacuum polarization for a graphene-like medium in an external magnetic field; corrections to the Coulomb potential[END_REF] that accounting for the sole leading (ln) 2 terms largely increases the result, too.

I cannot pretend to have dealt with real graphene, in which, in particular, the smallness of the Fermi velocity with respect to the speed of light makes the theory strongly coupled. There, techniques have to be mastered which go beyond perturbative expansions, while respecting appropriate renormalization conditions.

It is also well known that the photon propagator gets modified in the presence of an external B (see for example [START_REF] Machet | Modification of Coulomb law and energy levels of the hydrogen atom in a superstrong magnetic field[END_REF]).

This modification has been included in calculations of the electron self-energy [26] [7] with the result that double logs are turned into single logs. However, the large single logs closely associated with counterterms (see [START_REF] Machet | The 1-loop self-energy of an electron in a strong external magnetic field revisited[END_REF]) were not taken into account. Furthermore, this modification of the photon propagator and the eventual screening of the Coulomb potential is obtained by resumming the infinite geometric series of 1-loop vacuum polarizations (see for example [START_REF] Machet | Modification of Coulomb law and energy levels of the hydrogen atom in a superstrong magnetic field[END_REF]); in contrast, Quantum Field Theory stipulates that renormalization conditions and the addition of the corresponding counterterms should be achieved consistently order by order in powers of the coupling constant or in the number of loops. In this framework, screening the Coulomb potential inside the electron self-energy at finite order raises many issues, both technical and conceptual.

Acknowledgments: It is a great pleasure to thank M.I. Vysotsky for his invaluable assistance and advice. 13 Eventually forcing the identity between the two limits at m = 0 of δm LLL and δm 0 LLL as a kind of renormalization condition must be rejected.

ds 1 e -is 1 [m 2 -i + p 2 + tan z z p 2 ⊥ ] e iqσ 3 z cos z m -(γp) - e -iqσ 3 z cos z (γp) ⊥ . (94) 
Since (qσ 3 ) 2 = 1, cos qσ 3 z = cos z and sin qσ 3 z = qσ 3 sin z. As σ 3 = iγ 1 γ 2 , if one cancels at the beginning the 2 inverse exponentials one gets

-iG 0 (p, B) = ∞ 0 ds 1 e -is 1 m 2 -i + p 2 + tan z z p 2 ⊥ 1 -qγ 1 γ 2 sin z cos z m -(γp) - (γp) ⊥ cos 2 z . ( 95 
)
To take the limit B → ∞ one must first make a Wick rotation s 1 = -iy 1 . Then, sin z -i sinh |e|By 1 , cos z = cosh |e|By 1 and

-iG 0 (p, B) = -i i∞ 0 dy 1 e -y 1 m 2 -i + p 2 + -i tanh |e|By 1 -i|e|By 1 p 2 ⊥ 1 -qγ 1 γ 2 -i sinh |e|By 1 cosh |e|By 1 m -(γp) - (γp) ⊥ cosh 2 eBy 1 = -i i∞ 0 dy 1 e -y 1 m 2 -i + p 2 + tanh |e|By 1 |e|By 1 p 2 ⊥ 1 + iqγ 1 γ 2 sinh eBy 1 cosh eBy 1 m -(γp) - (γp) ⊥ cosh 2 eBy 1 . (96) 
Then, i∞ 0

+ 1/4 circle + 0 ∞ dy 1 =
residues. If we suppose that 1/4 circle = 0 and that residues = 0, i∞ 0

dy 1 = ∞ 0 dy 1 and -iG 0 (p, B) = -i ∞ 0 dy 1 e -y 1 m 2 -i + p 2 + tanh |e|By 1 |e|By 1 p 2 ⊥ 1+iqγ 1 γ 2 sinh eBy 1 cosh eBy 1 m-(γp) - (γp) ⊥ cosh 2 eBy 1 , (97) 
on which we can now take the limit B → ∞.

-iG 0 (p, B)

B→∞ → -ie -p 2 ⊥ /|e|B ∞ 0 dy 1 e -y 1 (m 2 + p 2 ) (1 + iqγ 1 γ 2 ) m -(γp) . (98) 
This is the usual result (54) for G n=0 (p, B) since q = -1.

If we had used instead eq. (2.47b) of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], in which e < 0, we would have got the wrong projector 1 + iγ 1 γ 2 , while, with their conventions, the wave function of the LLL is the same. The exponentials e ±izσ 3 of [START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF], which should in reality be e ±iqzσ 3 with q = -1. This is one of the rare examples in QED where the sign of the electric charge matters.

B Demonstration of (42)

In (105)

The last operation to perform is a Wick rotation. |e|B the contribution on the infinite 1/4 circle is vanishing. That the residue at z = 0 vanishes is trivial as long as u is not strictly vanishing. The expansion of the terms between square brackets in (105) at z → 0 writes indeed u -1 + (-5 3 + 4 3u + u)z + -7 3 -1 u 2 + 7 3u + u z 2 + O(z 3 ), which seemingly displays poles at u = 0. However, without expanding, it also writes, then, 2 2z -1 z = 0, which shows that the poles at u = 0 in the expansion at z → 0 are fake and that the residue at z = 0 always vanishes. Other poles (we now consider eq. ( 104)) can only occur when the denominator of the first term inside brackets vanishes. That the corresponding u pole = 2t 2t+e -2t -1 should be real constrains them to occur at t → inπ, n ∈ N > 0 and u → 1. In general, they satisfy 2t(1 -u) + u(1 -e -2t ) = 0 which, setting t = t 1 + it 2 , t 1 , t 2 ∈ R, yields the 2 equations e -2t1 cos 2t 2 = 1 + 2ηt 1 , e -2t1 sin 2t 2 = -2ηt 2 , η = 1-u u ≥ 0. Since t 1 → 0, one may expand the first relation at this limit, which yields cos 2t 2 -1 = 2t 1 (η + cos 2t 2 ). As t 2 → nπ, cos 2t 2 > 0 and cos 2t 2 -1 < 0, which, since η > 0, constrains t 1 to stay negative 14 . Therefore, the potentially troublesome poles lie in reality on the left of the imaginary t axis along which the integration is done and should not be accounted for when doing a Wick rotation. After changing u into v to work from now onwards with the same notation as in [START_REF] Jancovici | Radiative Correction to the Ground-State Energy of an Electron in an Intense Magnetic Field[END_REF] and ease the comparison, one gets (42).

C Demonstration of (75)

In (74), we go, like before (see ( 101 

As long as m = 0, the e -zm 2 /|e|B and the e -tanh -1 z(1-u) u 2 +z(1-u) ensure the convergence on the infinite 1/4 circle such that, supposing that no pole in the 1/4 quadrant causes problems, one may do a Wick rotation, which yields (75).

Fig. 1 :

 1 Fig. 1: the 1-loop electron propagator in external B
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  the only non-vanishing component of the classical external F µν . Then, the wave function of the LLL writes[START_REF] Luttinger | A Note on the Magnetic Moment of the Electron[END_REF] [START_REF] Kuznetsov | Electroweak Processes in External Electromagnetic Fields[END_REF] 
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In the work[START_REF] Machet | The 1-loop vacuum polarization for a graphene-like medium in an external magnetic field; corrections to the Coulomb potential[END_REF] I emphasize their role in the calculation of the photon vacuum polarization for the same graphene-like medium as the one considered here.

The results of this paragraph do not depend whether the external B is present or not.

This q should not be confused with the 4-momentum that appears in Fig.1. The reader will easily make the difference.

The choice of a special gauge is of course not optimal but is justified by the property that the formalism of Schwinger is gauge invariant[START_REF] Schwinger | Quantum Electrodynamics. II. Vacuum Polarization and Self-Energy[END_REF].

They are carefully explained p.38-41 of[START_REF] Dittrich | Effective Lagrangians in Quantum Electrodynamics[END_REF].

Figs.7 and 8are not plotted with the approximate analytical expressions that we have deduced for the δm's, but by numerical integration of their exact expressions.

The 2nd relation then tells us that sin 2t 2 < 0, which means that the poles correspond to t 2 = nπ -, > 0.

Appendix

A The propagator G n=0 (p, B) of an electron in the lowest Landau level as the limit at B → ∞ of G 0 (p, B) (without the phase (2))

After putting aside the phase Φ given in (2), we can get it by taking the limit B → ∞ in G(p, B)

Let us consider the general expression (6) of [START_REF] Wu-Yang | Modified electron propagation function in strong magnetic fields[END_REF] (z = |e|Bs 1 ), which does not include the phase -iG 0 (p, B) = ∞