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Abstract 

Intravenous immunoglobulin (IVIG) is a pooled preparation of normal immunoglobulin IgG 

obtained from several thousand healthy donors. It is widely used in the immunotherapy of a 

large number of autoimmune and inflammatory diseases. The mechanisms of action of IVIG 

are complex and, as discussed in this review, experimental and clinical data provide an 

indicator that the therapeutic benefit of IVIG therapy is due to several mutually nonexclusive 

mechanisms affecting soluble mediators as well as cellular components of the immune 

system. These mechanisms depend on Fc and/or F(ab′)2 fragments. A better understanding of 

the effector functions of IVIG should help in identification of biomarkers of IVIG response in 

autoimmune patients. 

 

1. Introduction 

The human body contains five classes of immunoglobulins and one class, IgG, represents 

nearly 80% of the total amount of immunoglobulin. IgG consists of a F(ab′)2 fragment that 

recognizes specific antigens and an Fc fragment that exerts effector functions upon binding to 

Fcγ receptors (FcγRs). Human immune cells express various receptors for the Fc fragment of 

IgG that include several activating receptors (e.g. FcγRI, FcγRIIA, FcγRIIC and FcγRIIIA) 

and an inhibitory receptor (FcγRIIB). The FcγRs in the mouse include FcγRI, FcγRIII and 

FcγRIV (activating receptors) and FcγRIIB (inhibitory receptor) (1, 2). The activating 

receptors with the exception of FcγRIIA and FcγRIIC, contain single α-chain that binds to 

ligands, and dimeric γ-chain that transduces signals and has immunoreceptor tyrosine based 

activating motifs (ITAMs) in the cytoplasmic domains. FcγRIIA and FcγRIIC have only 

single α-chain that itself carries ITAM motif in the cytoplasmic domain. In contrast, 
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inhibitory FcγRIIB possesses immunoreceptor tyrosine based inhibitory motifs (ITIM) in the 

cytoplasmic domain of a single α-chain (1, 2). 

Intravenous immunoglobulin (IVIG) is a pooled preparation of normal human 

immunoglobulins obtained from the several thousand healthy donors. Besides IgG monomers 

(>96%), a small percentage of IgG dimers, IgM and IgA can be found in IVIG preparations. 	
  

IVIG is used as a substitution therapy in primary and secondary immunodeficiencies at low 

doses (400 mg/kg) and in the immunotherapy of a large number of autoimmune and 

inflammatory diseases at high doses (1–2 g/kg). 

The US Food and Drug Administration (FDA)-approved and the European Medicines Agency 

(EMA)-approved autoimmune indications for IVIG therapy include immune 

thrombocytopenic purpura (ITP), Kawasaki disease (KD), chronic inflammatory 

demyelinating polyneuropathy (CIDP) and multifocal motor neuropathy. Guillain–Barré 

syndrome (GBS) is approved only by the EMA. However, randomized clinical trials have 

shown the efficacy of IVIG in other autoimmune and inflammatory diseases such as 

dermatomyositis, anti-neutrophil cytoplasm antibody-associated systemic vasculitis, 

autoimmune hemolytic anemia, myasthenia gravis and graft-versus-host disease (3-7).	
   IVIG 

therapy is generally considered safe although mild adverse reactions might be observed in 

approximately one in four of the treated patients, mostly due to high levels of IgG reached 

following therapy (4, 7). 

The mechanisms of action of IVIG are complex and a single mechanism might not account 

for its therapeutic benefit in autoimmune diseases. As discussed in this review, experimental 

and clinical data provide an indicator that the therapeutic benefit of IVIG therapy is due to 

several mutually nonexclusive mechanisms affecting soluble mediators as well as cellular 
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components of the immune system. These mechanisms depend the on Fc and/or the F(ab′)2 

fragments.   

 

2. The effects of IVIG on soluble mediators 

Inhibition of autoantibodies by idiotype networks 

One of the earliest identified mechanisms of IVIG was its interaction with idiotypic 

determinants on pathogenic autoantibodies (and autoantibody-producing B cells).  During the 

early 1980 and 1990s, several reports demonstrated the presence in IVIG [Au: OK? OK] of 

anti-idiotypes against a large number of disease-associated autoantibodies including 

antibodies to factor VIII, acetylcholine receptor, thyroglobulin, DNA and others (3, 8, 9). In 

addition, the therapeutic utility of these anti-idiotype antibodies from IVIG was demonstrated 

in animal models of autoimmune diseases (10). 

Modulation of components of the complement  

IVIG interacts with complement fragments C3b and C4b that are effectors of the complement 

cascade; it prevents the formation of C5b–C9 membrane-attack complex and, as a 

consequence, prevents complement-mediated cell death and tissue damage (11-13) (Fig. 1). 

Additionally, IVIG neutralizes C3a and C5a anaphylatoxins via a F(ab′)2-mediated 

mechanism (14). 

 

3. The effects of IVIG-Fc fragment at the cell surface 

Blockade of activating FcγRs 

Initially it was proposed that IVIG blocks activating FcγRs on innate immune cells such as 

monocytes and macrophages, and reduces the immune complex-mediated activation of these 
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innate cells. A series of studies demonstrated conclusively that FcγR blockade was integral to 

the acute increase in platelet numbers seen following IVIG therapy in ITP patients. One of 

these initial studies employed monoclonal anti-human FcγRIIIA antibody that transiently 

increased the platelet count in an refractory ITP patient (15). Further, Debré et al. 

demonstrated that infusion of Fcγ fragments in ITP patients increases the platelet count. This 

study provided additional support for the concept that FcγR blockade is the most important 

mechanism responsible for the acute increase in platelets in ITP patients following IVIG 

therapy (16). 

Saturation of FcRn 

IgG can also bind to an additional receptor FcRn (neonatal Fc receptor). However, unlike 

other FcγRs, FcRn is not directly implicated in the regulation of activation of immune cells; 

rather, it acts as a protective receptor by preventing the catabolism of IgG (17). It was shown 

that saturation of FcRn by IVIG induces accelerated clearance of pathogenic antibodies in 

murine models of arthritis and autoimmune skin-blistering diseases, and ameliorates arthritis 

and blistering in these models (18, 19). 

These observations were subsequently confirmed in fetal and neonatal ITP models as well 

(20). However, subsequent studies suggested that FcRn is dispensable for IVIG-mediated 

improvement of ITP both in wild-type mice (21) and in humanized mice (22), suggesting that 

FcRn might only have a role in the initial phase of anti-inflammatory mechanisms of IVIG. 

However, as discussed later, IVIG actively modulates various arms of the immune system to 

exert beneficial effects. Hence IVIG mechanisms go beyond simple blockade of activating 

FcγRs and saturation of FcRn.   
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Upregulating inhibitory FcγRIIB and increasing the threshold of immune-complex-mediated 

activation of innate cells 

Results from Ravetch and colleagues have demonstrated that, in a murine model of ITP, 

infusion of IVIG or monomeric Fc fragments to wild-type mice or mice with humanized 

FcγRs inhibit pathogenic autoantibody-triggered consumption of platelets (23). They found 

that inhibitory FcγRIIB that contains an ITIM motif, was obligatory for this protection. The 

therapeutic effect of IVIG was abolished in FcγRIIB-deleted mice or if its function was 

blocked by a monoclonal antibody. Importantly, IVIG-mediated protection was associated 

with an enhanced expression of FcγRIIB on the surface of splenic macrophages. Subsequent 

exploration identified colony-stimulating factor-1 (CSF-1)-dependent macrophages as 

‘sensors’ of Fcγ fragments of IVIG that in turn enhance FcγRIIB on CSF-1-independent 

‘effector’ macrophages (24). 

 

IgG molecules are glycosylated at Asn297 in the Fc domain and Ravetch’s team reported that 

the anti-inflammatory action of IVIG is mediated mainly via Fcγ fragments that have terminal 

α2,6-sialic acid linkages at Asn297 (25). The sialylated fraction accounted for nearly 10% of 

IgG; recombinant Fc fragments containing terminal α2,6-sialic acid linkages and IVIG with 

controlled tetra-Fc sialylation could also recapitulate IVIG actions (26, 27). 

 

Mechanistically, sialylated Fc fragments are recognized by SIGN-R1 (specific ICAM-3 

grabbing non-integrin-related 1) on marginal-zone macrophages and induce IL-33 in them. 

This IL-33 acts on basophils to produce IL-4 that enhances FcγRIIB on effector macrophages 

(28, 29). Accordingly, the anti-inflammatory effects of IVIG were compromised in mice with 

splenectomy, deficiency of SIGN-R1+ cells in the splenic marginal zone, genetic deletion of 

SIGN-R1, blockade of the domain on SIGN-R1 that recognizes ligands or depletion of 
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basophils (28, 29). The requirement for terminal sialic acid residues in IVIG-mediated 

protection was also confirmed by other mouse models of autoimmune diseases (30). Fc 

variants that mimic structures imparted by sialylation could also mimic the therapeutic effects 

of Fc-sialylated functions in the K/BxN-induced arthritis model and in experimental 

autoimmune encephalomyelitis (EAE) (31). Sialylated IVIG was more effective in inhibiting 

anti-ganglioside antibody-mediated complement deposition in vitro (32). 

 

Controversies about the requirement of Fc-sialylation for IVIG-mediated anti-inflammatory 

effects  

It is important to note that aforementioned mechanisms were reported only in murine models 

and translation of IVIG-sialylation data to humans did not recapitulate those observations. 

Also, additional reports in animal models questioned the link between Fc-sialylation and anti-

inflammatory effects of IVIG (33). 

 

In autoimmune patients, although IL-33 was increased in the blood following IVIG therapy 

(34, 35), it was not associated with basophil expansion. DC-SIGN [dendritic cell (DC)-

specific ICAM-3 grabbing non-integrin] is the human orthologue of SIGN-R1 but IVIG did 

not induce IL-33 production by DC-SIGN+ innate cells, indicating that non-immune cells such 

as endothelial cells or epithelial cells contribute to IVIG-induced IL-33 (34). The sialylation 

levels of therapeutic IVIG did not determine the response to therapy in KD (36) and, in ITP 

patients, IVIG treatment led to modification in the ratio of activating/inhibitory FcγRs 

primarily via reducing FcγRIIIA (37). In addition, IVIG could inhibit the activation of DC-

SIGN+ human cells, expression of adhesion molecules and chemokine secretion in monocytes, 

and FcγR-mediated phagocytosis by macrophages independently of IgG-Fc sialylation (38-

40). Analysis of splenic macrophages from adult ITP patients did not reveal modulation of 
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FcγR expression following IVIG therapy	
   (41). Structural and immunological analyses 

indicated that DC-SIGN-independent cell surface lectin receptors mediate binding of the Fc 

regions of IVIG (42). 

 

The collagen antibody-induced arthritis, K/BxN serum transfer arthritis, EAE and ITP models 

in mice in other laboratories failed to prove a role for Fc-sialylation and basophils in the 

therapeutic effects of IVIG (43-46). It was suggested that the genetic background of mice and 

dose of IVIG are the important factors that determine the role of FcγRIIB in IVIG-mediated 

protection (47). Also, anti-inflammatory effects of IVIG via induction of Src homology 2 

(SH2)-containing tyrosine phosphatase-1 (SHP-1)-dependent inhibitory ITAM (ITAMi) 

signaling but independent of ITIM-bearing FcγRIIB have been reported. Binding of IVIG to 

FcγRIII (either via Fc or natural antibodies that recognize FcγRIII) results in sub-optimal 

phosphorylation of ITAM in FcγRIII-associated FcRγ chain leading to ITAMi inhibitory 

signal (48, 49).  

In conclusion, all these data indicate that although sialylated Fc has a role in IVIG-mediated 

anti-inflammatory actions, it does not represent the sole mechanism but rather is one of the 

several mechanisms of IVIG that act mutually. 

 

4. The effects of IVIG on specific cell types 

Effector functions of IVIG on monocytes and macrophages 

IVIG inhibits activation of monocytes and macrophages in both mice and humans, and 

induces anti-inflammatory cytokines like IL-1 receptor antagonist (IL-1RA),	
  TGF-β and IL-

10 (50-53) (Fig. 1). These effects are associated with inhibition of NF-κB, ERK1/ERK2 and 

P38 MAPK pathways (52, 54). However, one of the anti-inflammatory pathways HO-1 (heme 
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oxygenase 1) is not implicated (53). Gene expression profiles in the monocytes of KD 

patients, mononuclear cells of patients with chronic heart failure, muscle biopsies of patients 

with inflammatory myopathies and whole blood of healthy donors indicated suppression by 

IVIG of a diverse array of activating genes associated with inflammation including 

chemokines (55-58). Similarly in ITP patients, IVIG abrogated type I IFN response signatures 

in monocytes (37). Additionally, IVIG contains high affinity natural IgG to various cytokines 

and these antibodies can exert direct neutralization effect on innate inflammatory cytokines 

(59). 

Regulation of DC functions by IVIG 

DCs are professional antigen-presenting cells and key players of autoimmune responses. 

Exploration of the action of IVIG on DCs revealed that it inhibits differentiation of DCs from 

human monocytes as well as suppressing DC activation (38, 60) (Fig. 1). IVIG suppressed the 

expression of maturation markers and the secretion of pro-inflammatory cytokines like IL-12, 

and inhibited DC-mediated CD4+ T cell proliferation (60-63), CD1-restricted NKT responses 

and T cell responses (64). The immunosuppressive effects of IVIG on DCs were associated 

with accumulation of lipid that is known to suppress antigen presentation (65). Although both 

Fc and F(ab')2 fragments of IVIG are equally effective in inhibiting DC activation,  the F(ab')2 

fragment-mediated effects on DCs also indicate an Fc-sialylation-independent action of IVIG 

(38, 60). 

 

The effects of IVIG were not restricted to monocyte-derived DCs. IVIG also diminished the 

expression of FcγRIIA on circulating myeloid DCs (66) and lessened the production of IFNα 

by plasmacytoid DCs via two distinct mechanisms: inhibition of immune-complex-mediated 

IFNα production by blocking FcγRIIA in a sialic acid-independent mechanism; and 

suppression of TLR-7 or TLR-9-mediated IFNα production via the F(ab')2 fragment (67). 
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In line with the induction of tolerogenic properties to DCs, upon adoptive transfer, IVIG-

treated DCs ameliorated disease in a murine model of ITP (68).  

 

The effect of IVIG on granulocytes  

IVIG contains natural anti-Siglec-9 autoantibodies and these antibodies regulate human 

neutrophil cell death in vitro by caspase-dependent and caspase-independent mechanisms 

(69). We confirmed these studies and also found that IVIG exerts dose-dependent effects on 

neutrophils (70). In patients with KD, IVIG treatment reduced NO production by neutrophils 

(71) (Fig. 1). 

In vivo results in experimental models shed light on additional roles of IVIG in regulating 

neutrophil functions. In a sickle-cell disease model, IVIG interfered with the recruitment of 

neutrophils and their activation by inhibiting adhesion (72). Subsequent study in neutrophil-

mediated acute vascular injury model identifies the mechanism by which IVIG inhibits 

neutrophil recruitment and activation (73). Analogous to FcγRIII-associated ITAMi model 

detailed earlier (48), this study reports that IVIG interacts and signals through FcγRIII on 

neutrophils and mediates anti-inflammatory activity by recruiting SHP-1. 

The cytotoxic effects of IVIG are not restricted to neutrophils. Eosinophils are also 

susceptible to IVIG-mediated cytotoxic effects and these effects were mediated via anti-

Siglec-8 antibodies present in IVIG (74). The cytotoxic effects of IVIG on granulocytes are 

greatly enhanced if the cells are primed by cytokines (like IL-5, GM-CSF, IFN-γ or TNF-α) 

or leptin. 

Modulation of NK cells 

Women with recurrent spontaneous abortion display a rise in natural killer (NK) cell numbers. 

The success of IVIG treatment in women with recurrent spontaneous abortion is linked to 
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significant inhibition of NK cytotoxicity (75) and was confirmed by other groups as well (76) 

(Fig. 1). In contrast, a significant increase in the activity of NK cells has been observed 

following IVIG treatment in KD patients (77). Thus, the reported effects of IVIG on NK cells 

appear to vary, depending on the pathology. Alternatively, these discrepancies might be also 

attributed to heterogeneity in NK cell subsets. Another report also shows that IVIG promotes 

apoptosis of DCs via NK cell-mediated antibody-dependent cellular cytotoxicity (78). 

 

Reciprocal regulation of pathogenic and regulatory CD4+ T cells by IVIG 

CD4+ T lymphocytes are key effectors of autoimmune responses. CD4+ T lymphocytes are 

heterogeneous and are divided into various subsets. Th1 and Th17 are the major CD4+ T cell 

subsets involved in the pathogenesis of autoimmune diseases whereas regulatory CD4+ T cells 

(Treg cells) are immunosuppressor cells and are key for maintaining immune tolerance. IVIG 

induces apoptosis of activated effector T lymphocytes via Fas-mediated activation of caspases 

(79).  

Various lines of evidence show that IVIG enhances and restores the functions of Treg cells 

both in experimental models and in IVIG-treated patients (Fig. 1). IVIG enhances suppressive 

effects of human Treg cells in vitro (80). In EAE and allergic airways disease models, IVIG-

mediated protection from the disease was associated with an expansion of Treg cells (81, 82). 

In an ITP model, IVIG restored splenic Treg populations (83). These results were further 

consolidated in patients wherein IVIG therapy led to an increase in Treg cells in the peripheral 

blood (84).   

Mechanistically, IVIG-mediated expansion of Treg cells implicates several mechanisms that 

may work in a mutual manner to exert immune tolerance. These mechanisms include 

induction of cyclo-oxygenase 2 (COX-2)-dependent production of prostaglandin E2 (PGE2) in 
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human DCs, a mechanisms reliant on DC-SIGN and F(ab′)2 fragments of IVIG (35, 85, 86); 

DC immunoreceptor (DCIR)-dependent induction of murine Treg cells by lung DCs (87); and 

processing and presentation of Treg epitopes (Tregitopes) in IgG by DCs  (88). 

In addition to its inhibitory effects on Th1 cytokines, recent reports demonstrate profound 

inhibitory effects of IVIG on human Th17 cell differentiation and amplification both under 

experimental conditions and in treated autoimmune patients (89-94) (Fig. 1). These effects of 

IVIG on Th17 cells are not due to passive neutralization of Th17 cytokines by IVIG and are 

mediated by interference with the activation of signal transducer and activator of transcription 

3 (STAT3). F(ab′)2 fragments of IVIG retain the capacity to regulate T cell subsets (89).  

Data from in vivo experiments in EAE and experimental autoimmune arthritis demonstrate 

that IVIG reciprocally regulates encephalopathogenic Th1 cells, Th17 cells and Treg cells (45, 

95, 96). Either sialylation or FcγRIIB are dispensable for these effects and F(ab′)2 fragments 

of IVIG also preserve the capacity to regulate CD4+ T cell subsets (45, 95). IVIG sequesters T 

cells in the secondary lymphoid tissues and reduces infiltration of CD4+ T cells into the 

central nervous system by diminishing the expression of sphingosine-1 phosphate receptor on 

them (95).  

 

Control of B cell activation and functions 

IVIG inhibits the proliferation and antigen-presenting functions of B cells. It also inhibits IL-4 

plus CD40-, TLR- and BCR-mediated activation of B cells (97-103) (Fig. 1). IVIG suppresses 

BCR-mediated B cell activation via down-regulation of tyrosine phosphorylation of Lyn and 

sustained activation of ERK1/ERK2 (98). These effects of IVIG were dependent on 

sialylation and its interaction with CD22 (98). B cells are resistant to immunomodulation by 

‘IVIG-educated’ human DCs and this suggests direct modulation of B cells by IVIG (104).  
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Clinical studies have demonstrated that IVIG therapy in allergic pediatric patients results in 

reduced IgE levels (105); this was confirmed in in vitro studies as well (106). These effects of 

IVIG were F(ab′)2-dependent (106). Another report indicates that although IVIG inhibits B 

cell proliferation in vitro, this was associated with enhancement of the differentiation of 

plasma cells that may compete with autoantibody-producing plasma cells (107).  

IVIG contains neutralizing anti-BAFF (B-cell activating factor) and anti-APRIL (a 

proliferation-inducing ligand) IgG and hence might affect B cell survival via neutralization of 

these cytokines (108). In fact, IVIG treatment significantly reduces serum levels of BAFF in 

CIDP patients (109). 

 

Inhibition of activation of endothelial cells 

Endothelial cells contribute to inflammatory responses as in the case of KD by secretion of 

cytokines and chemokines, and by regulating the rolling and passage of immune cells (110). 

IVIG inhibits activation of endothelial cells, expression of adhesion molecules and secretion 

of soluble mediators (111).  

 

5. Conclusions 

Although IVIG has been widely used as an immune-modulating agent for more than 30 years, 

little is known about the factors that predict the success of this therapy. Therefore, exploration 

of biomarkers that predict responders and non-responders to IVIG therapy remains a major 

area of research.	
  This highlights the inevitability of exploring the mechanisms of action of 

IVIG and its translational application in the clinic as a potential biomarker of response to 

therapy. A number of inflammatory mediators, downstream signaling molecules of 
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inflammatory cascades and dynamic changes in the frequency and/or activation status of 

immune cells have shown potential for predicting the response to IVIG therapy (112). A 

better understanding of the mechanisms of action of IVIG should also reduce empirical use of 

IVIG and help to determine the appropriate dose, window and duration of IVIG treatment for 

various autoimmune and inflammatory diseases where this immunotherapy has shown 

promise (113).  
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CIDP=Chronic inflammatory demyelinating polyneuropathy  

COX-2=Cyclo-oxygenase-2 

DC=Dendritic cell 

DCIR=Dendritic cell immunoreceptor 

EAE=Experimental autoimmune encephalomyelitis 

FcγR=Fcγ receptor 

FcRn=Neonatal Fc receptor 

GBS =Guillain–Barré syndrome  

HO-1=Heme oxygenase-1  

IL=Interleukin 

IFN=Interferon  

ITAM=	
  Immunoreceptor tyrosine based activating motifs 

ITIM=	
  Immunoreceptor tyrosine based inhibitory motifs 

ITP=Immune thrombocytopenic purpura 

IVIG=Intravenous immunoglobulin 

KD=Kawasaki disease 

NK cell=Natural killer cell 

PGE2=Prostaglandin E2 

SHP-1=Src homology 2 (SH2)-containing tyrosine phosphatase-1  

STAT=Signal transducer and activator of transcription 
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Th cell=T helper cell 

Treg cell=Regulatory T cell 
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Figure Legend 

Fig. 1. The impact of intravenous immunoglobulin (IVIG) on the innate and the adaptive 

immune compartments in the context of autoimmune and inflammatory diseases. IVIG 

inhibits activation and functions of various innate immune cells such as DCs, monocytes, 

macrophages (MФ), neutrophils (polymorphonuclear cells; PMN) and NK cells.	
  It neutralizes 

activated complement components.	
  In addition, IVIG modulates B cell functions and plasma 

cells (Pl), reciprocally regulates regulatory Treg cells and effector T cells such as Th1 and Th17 

subsets, and downregulates the production of inflammatory cytokines.	
  

 

 


