G Biau

Accelerated Gradient Boosting

Gradient tree boosting is a prediction algorithm that sequentially produces a model in the form of linear combinations of decision trees, by solving an infinite-dimensional optimization problem. We combine gradient boosting and Nesterov's accelerated descent to design a new algorithm, which we call AGB (for Accelerated Gradient Boosting). Substantial numerical evidence is provided on both synthetic and real-life data sets to assess the excellent performance of the method in a large variety of prediction problems. It is empirically shown that AGB is less sensitive to the shrinkage parameter and outputs predictors that are considerably more sparse in the number of trees, while retaining the exceptional performance of gradient boosting.

Introduction

Gradient boosting [START_REF] Friedman | Additive logistic regression: A statistical view of boosting (with discussion)[END_REF][START_REF] Friedman | Greedy function approximation: A gradient boosting machine[END_REF][START_REF] Friedman | Stochastic gradient boosting[END_REF] is a learning procedure that combines the outputs of many simple predictors in order to produce a powerful committee with performances improved over the single members. The approach is typically used with decision trees of a fixed size as base learners, and, in this context, is called gradient tree boosting. This machine learning method is widely recognized for providing state-of-the-art results on several challenging data sets, as pointed out by [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF]. Boosted decision trees are generally regarded as one of the best off-the-shell prediction algorithms we have today, with performance at the level of the Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] and random forests [START_REF] Breiman | Random forests[END_REF], to name only two competitors.

Gradient boosting originates in Freund and Schapire's work [START_REF] Schapire | The strength of weak learnability[END_REF][START_REF] Freund | Boosting a weak learning algorithm by majority[END_REF][START_REF] Freund | Boosting a weak learning algorithm by majority[END_REF]Schapire, 1996, 1997) on weighted iterative classification. It was complemented by several analyses by [START_REF] Breiman | Arcing the edge[END_REF][START_REF] Breiman | Arcing classifiers (with discussion)[END_REF][START_REF] Breiman | Prediction games and arcing algorithms[END_REF][START_REF] Breiman | Some infinite theory for predictor ensembles[END_REF][START_REF] Breiman | Population theory for boosting ensembles[END_REF], who made the fundamental observation that Freund and Schapire's AdaBoost is in fact a gradient-descent-type algorithm in a function space, thus identifying boosting at the frontier of numerical optimization and statistical estimation. Explicit regression and classification boosting algorithms were subsequently developed by [START_REF] Friedman | Greedy function approximation: A gradient boosting machine[END_REF][START_REF] Friedman | Stochastic gradient boosting[END_REF], who coined the name "gradient boosting" and paid a special attention to the case where the individual components are decision trees. Overall, this functional view of boosting has led to the development of boosting algorithms in many areas of machine learning and statistics beyond regression and classification (e.g., [START_REF] Blanchard | On the rate of convergence of regularized boosting classifiers[END_REF][START_REF] Bühlmann | Boosting with the L 2 loss: Regression and classification[END_REF][START_REF] Lugosi | On the Bayes-risk consistency of regularized boosting methods[END_REF][START_REF] Zhang | Boosting with early stopping: Convergence and consistency[END_REF][START_REF] Bickel | Some theory for generalized boosting algorithms[END_REF][START_REF] Bühlmann | Boosting algorithms: Regularization, prediction and model fitting (with discussion)[END_REF].

In a different direction, the pressing demand of the machine learning community to build accurate prediction mechanisms from massive amounts of high-dimensional data has greatly promoted the theory and practice of accelerated first-order schemes. In this respect, one of the most effective approaches among first-order optimization techniques is the so-called Nesterov's accelerated gradient descent [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2)[END_REF]. In a nutshell, if we are interested in minimizing some convex function g(x) over R d , then Nesterov's descent may take the following form [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Bubeck | Convex optimization: Algorithms and complexity[END_REF]: starting with x 0 = y 0 , inductively define

x t+1 = y t -w∇g(y t)

y t+1 = (1 -γ t)x t+1 + γ t x t , (1)
where w is the step size,

λ 0 = 0, λ t = 1 + 1 + 4λ 2 t-1 2
, and γ t = 1λ t λ t+1 .

In other words, Nesterov's descent performs a simple step of gradient to go from y t to x t+1 , and then it slides it a little bit further than x t+1 in the direction given by the previous point x t . As acknowledged by [START_REF] Bubeck | ORF523: Nesterov's accelerated gradient descent[END_REF], the intuition behind the algorithm is quite difficult to grasp. Nonetheless, Nesterov's accelerated gradient descent is an optimal method for smooth convex optimization: the sequence (x t) t defined in (1) recovers the minimum of g at a rate of order 1/t 2 (e.g., Bubeck, 2015, Theorem 3.19), in contrast to vanilla gradient descent methods, which have the same computational complexity but can only achieve a rate in 1/t. Throughout the document, we will use form (1) for Nesterov's descent, keeping in mind that other choices are possible but less adapted to the boosting context, as we will see later. Since the introduction of Nesterov's scheme, there has been much work on first-order accelerated methods (see, e.g., [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF][START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF][START_REF] Nesterov | Gradient methods for minimizing composite functions[END_REF]Su et al., 2016, for theoretical developments, and[START_REF] Tseng | On accelerated proximal gradient methods for convex-concave optimization[END_REF], for a unified analysis of these ideas). Notable applications can be found in sparse linear regression [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF], compressed sensing [START_REF] Becker | NESTA: A fast and accurate first-order method for sparse recovery[END_REF], distributed gradient descent (Qu and Li, 2016), and deep and recurrent neural networks [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF].

In this article, we present AGB (for Accelerated Gradient Boosting), a new tree boosting algorithm that incorporates Nesterov's mechanism (1) into Friedman's original procedure [START_REF] Friedman | Greedy function approximation: A gradient boosting machine[END_REF]. Substantial numerical evidence is provided on both synthetic and real-life data sets to assess the excellent performance of our method in a large variety of prediction problems. The striking feature of AGB is that it enjoys the merits of both approaches:

(i) Its predictive performance is comparable to that of standard gradient tree boosting;

(ii) It takes advantage of the accelerated descent to output models which are remarkably much more sparse in their number of components.

Item (ii) is of course a decisive advantage for large-scale learning, when time and storage issues matter. To make the concept clear, we show in Figure 1 typical test error results by number of iterations and shrinkage (step size), both for the standard (top) and the accelerated (bottom) algorithms. As is often the case with gradient boosting, smaller values of the shrinkage parameter require a larger number of trees for the optimal model, when the test error is at its minimum. However, if both approaches yield similar results in terms of prediction, we see that the optimal number of iterations is at least one order of magnitude smaller for AGB. The paper is organized as follows. In Section 2, we briefly recall the mathematical/statistical context of gradient boosting, and present the principle of the AGB algorithm. Section 3 is devoted to analyzing the results of a battery of experiments on synthetic and real-life data sets. We offer an extensive comparison between the performance of Friedman's gradient tree boosting and AGB, with a special emphasis put on the influence of the learning rate on the size of the optimal models. Section 4 summarizes the main results and discusses research directions for future work. The code used for the simulations and the figures is available at https://github.com/lrouviere/AGB.

(Accelerated) gradient boosting

2.1 Gradient boosting at a glance

Let D n = {(X 1 ,Y 1), . . . , (X n ,Y n)} be a sample of i.i.d. observations, taking values in R d × Y .
Throughout, Y ⊂ R is either a finite set of labels (for classification) or a subset of R (for regression). The learning task is to construct a predictor F : R d → R that assigns a response to each possible value of the independent random observation X n+1 . In the context of gradient boosting, this general problem is addressed by considering a class F of elementary functions f : R d → R (called the weak or base learners), and by minimizing some empirical risk functional

C n (F) = 1 n n ∑ i=1 ψ(F(X i),Y i) (2)
over the linear combinations of functions in F . Thus, we are looking for an additive solution of the form F n = ∑ T t=0 α t f t , where (α 0 , . . . , α T) ∈ R T +1 and each component f t is picked in the base class F .

The function ψ : R×Y → R + is called the loss. It is assumed to be convex and continuously differentiable in its first argument. It measures the cost incurred by predicting F(X i) when the answer is Y i . For example, in the least squares regression problem, ψ(x, y) = (yx) 2 , and

C n (F) = 1 n n ∑ i=1 (Y i -F(X i)) 2 .
In the ±1-classification problem, the final classification rule is +1 if F(x) > 0 and -1 otherwise. In this context, two classical losses are ψ(x, y) = e -yx (Adaboost exponential loss) and ψ(x, y) = log 2 (1 + e -yx) (logit loss, where log 2 is the binary logarithm).

In the present document, we take for F the collection of all binary decision trees in R d using axis parallel cuts with k (small) terminal nodes (or leaves). Let 1 A denote the indicator function of a set A. Then each f ∈ F takes the form f = ∑ k j=1 β j 1 A j , where (β 1 , . . . , β k) ∈ R k and {A 1 , . . . , A k } is a tree-structured partition of R d (Devroye et al., 1996, Chapter 20). An example of regression tree fitted with the R package rpart.plot with k = 3 leaves in dimension d = 2 is shown in Figure 2. Let us get back to the minimization problem (2) and denote by lin(F) the set of all linear combinations of functions in F , our basic collection of trees. So, each F ∈ lin(F) is an additive association of trees, of the form F T = ∑ T t=0 α t f t . Finding the infimum of the functional C n over lin(F) is a challenging infinite-dimensional optimization problem, which requires an algorithm. This is where gradient boosting comes into play by sequentially constructing a linear combination of trees, adding one new component at each step. This algorithm rests upon a sort of functional gradient descent, which we briefly describe in the next paragraph. We do not go too much into the mathematical details, and refer to [START_REF] Mason | Boosting algorithms as gradient descent[END_REF][START_REF] Mason | Functional gradient techniques for combining hypotheses[END_REF] and [START_REF] Biau | Optimization by gradient boosting[END_REF] for a thorough analysis of the mathematical forces in action.

Let δ z denote the Dirac measure at z, and let µ n = (1/n) ∑ n i=1 δ (X i ,Y i) be the empirical measure associated with the sample D n . Clearly,

C n (F) = Eψ(F(X),Y),
where (X,Y) denotes a random pair with distribution µ n and the symbol E denotes the expectation with respect to µ n . The theoretical version of C n is

C(F) = Eψ(F(X 1),Y 1),
where now the expectation is taken with respect to the distribution of (X 1 ,Y 1). To unify the notation, we let for now (X,Y) be a generic pair of random variables with distribution µ X,Y , keeping in mind that µ X,Y may be the distribution of (X 1 ,Y 1) (theoretical risk) or the empirical measure µ n (empirical risk). We let µ X be the distribution of X, L 2 (µ X) the vector space of all measurable functions f : R d → R such that | f | 2 dµ X < ∞, and denote by •, • µ X and • µ X the corresponding norm and scalar product. Thus, with this notation, our problem is to minimize the quantity

C(F) = Eψ(F(X),Y)
over the linear combinations of functions in the given subset F of L 2 (µ X).

As we have seen earlier, it is assumed that, for each y ∈ Y , the function ψ(•, y) is convex and continuously differentiable. In this setting, the functional C is differentiable at any

F ∈ L 2 (µ X) in the direction G ∈ L 2 (µ X), with differential dC(F; G) = ∇C(F), G µ X ,
where ∇C(F)(x) := ∂ x ψ(F(x), y)µ Y |X=x (dy) is called the gradient of C at F (the symbol ∂ x means partial derivative with respect to the first component and µ Y |X is the conditional distribution of Y given X).

Suppose now that we have at step t a function F t ∈ lin(F) and wish to find a new f t+1 ∈ F to add to F t so that the risk C(F t + w f t+1) decreases at most, for some small value of w. Viewed in function space terms, we are looking for the direction f t+1 ∈ F such that C(F t + w f t+1) most rapidly decreases. One approach might be to take f t+1 (•) = -∇C(F t)(•), the opposite of the gradient of C at F t (this is a function over R d), and update according to

F t+1 = F t -w∇C(F t). (3)
However, since we are restricted to pick our new function in F , this will in general not be a possible choice. The strategy is to choose the new f t+1 by a least squares approximation of the function -∇C(F t)(•), i.e., to take

f t+1 ∈ arg min f ∈F -∇C(F t) -f 2 µ X . (4)
In the empirical setting, where C ≡ C n and µ X is the empirical measure with respect to X 1 , . . . , X n , it is easy to see that the approximation (4) takes the form

f t+1 ∈ arg min f ∈F 1 n n ∑ i=1 -∇C n (F t)(X i) -f (X i) 2 , (5)
where

∇C n (F t)(X i) = ∂ x ψ(F t (X i),Y i). For example, when ψ(x, y) = (y -x) 2 /2, then -∇C n (F t)(X i) = Y i -F t (X i)
, and the algorithm simply fits f t+1 to the residuals Y i -F t (X i) at step t.

Iteration (3) together with approximation (5) form the core of the gradient boosting principle. After T iterations, the method outputs an additive expansion of the form F T = ∑ T t=0 α t f t , where (α 0 , . . . , α T) is a sequence of weights and (f 0 , . . . , f T) is a sequence of trees in F . The parameter w in (3) is the step size of the gradient descent. It is eventually allowed to change at every iteration and should be carefully chosen for convergence guarantees, as shown for example in [START_REF] Biau | Optimization by gradient boosting[END_REF]. Importantly, from a practical point of view, finding the optimum in (5) is a non-trivial computational problem, which necessitates a strategy. In Friedman's gradient tree boosting algorithm [START_REF] Friedman | Greedy function approximation: A gradient boosting machine[END_REF], one uses a CART-style top-down recursive partitioning to compute the minimum at each iteration, together with several regularization techniques to reduce the eventual overfitting. Some of these features are incorporated in our accelerated version, which is presented in the next section.

The AGB algorithm

The pseudo-code of AGB is summarized in the table below.

AGB algorithm

1: Require The data set D n , T ≥ 1 (number of iterations), k ≥ 1 (number of terminal nodes in the trees), 0 < ν < 1 (shrinkage parameter).

2:

Initialize F 0 = G 0 ∈ arg min z ∑ n i=1 ψ(z,Y i), λ 0 = 0, γ 0 = 1. 3: for t = 0 to (T -1) do 4: For i = 1, . . . , n, compute the negative gradient instances Z i,t+1 = -∇C n (G t)(X i).

5:

Fit a regression tree to the pairs (X i , Z i,t+1), giving terminal nodes R j,t+1 , 1 ≤ j ≤ k.

6:

For j = 1, . . . , k, compute

w j,t+1 ∈ arg min w>0 ∑ X i ∈R j,t+1 ψ(G t (X i) + w,Y i). 7: Update (a) F t+1 = G t + ν ∑ k j=1 w j,t+1 1 R j,t+1 . (b) G t+1 = (1 -γ t)F t+1 + γ t F t . (c) λ t = 1+ 1+4λ 2 t-1 2 , λ t+1 = 1+ √ 1+4λ 2 t 2 . (d) γ t = 1-λ t λ t+1
.

8: end for

9: Output F T .
We see that the algorithm has two inner functional components, (F t) t and (G t) t , which correspond respectively to the vectorial sequences (x t) t and (y t) t of Nesterov's acceleration scheme (1). Observe that the sequence (G t) t is internal to the procedure while the linear combination output by the algorithm after T iterations is F T . Line 2 initializes to the optimal constant model. As in Friedman's original approach, the algorithm selects at each iteration, by least-squares fitting, a particular tree that is in most agreement with the descent direction (the "gradient"), and then performs an update of G t . The essential difference is the presence of the companion function sequence (G t) t , which slides the iterates (F t) t according to the recursive parameters λ t and γ t (lines 7 (b)-(d)).

Let f t+1 = ∑ k j=1 β j,t+1 1 R j,t+1 be the approximate-gradient tree output in line 6 of the algorithm. The next logical step is to perform a line search to find the step size and update the model accordingly, as follows:

w t+1 ∈ arg min w>0 n ∑ i=1 ψ(G t (X i) + w f t+1 (X i),Y i), F t+1 = G t + w t+1 f t+1 .
However, following Friedman's gradient tree boosting [START_REF] Friedman | Greedy function approximation: A gradient boosting machine[END_REF], a separate optimal value w j,t+1 is chosen for each of the tree's regions, instead of a single w t+1 for the whole tree. This operation gives more latitude to the additive model and is known to usually improve the quality of the fit. Thus, the coefficients β j,t+1 from the tree-fitting procedure can be then simply discarded, and the model update rule at epoch t becomes, for each j = 1, . . . , k, w j,t+1 ∈ arg min w>0 ∑

X i ∈R j,t+1 ψ(G t (X i) + w,Y i), F t+1 = G t + ν k ∑ j=1 w j,t+1 1 R j,t+1
(lines 6 and 7 (a)). We also note that the contribution of the approximate gradient is scaled by a factor 0 < ν < 1 when it is added to the current approximation. The parameter ν can be regarded as controlling the learning rate of the boosting procedure. Smaller values of ν (more shrinkage) usually lead to larger values of T for the same training risk. Therefore, in order to reduce the number of trees composing the boosting estimate, large values for ν are required. However, too large values of ν may break the gradient descent dynamic, as shown for example in Biau and Cadre (2017, Lemma 3.2). Indeed, this lemma indicates that for a sufficiently smooth loss function ψ(x, y) the difference C(F t) -C(F t+1) decreases as soon as ν is small enough. All in all, both ν and T control prediction risk on the training data and these parameters do not operate independently. This tradeoff issue is thoroughly explored in the next section.

Numerical studies

This section is devoted to illustrating the potential of our AGB algorithm and to highlighting the benefits of Nesterov's acceleration scheme in the boosting process. Synthetic models and real-life data are considered, and an exhaustive comparison with standard gradient tree boosting is performed. For the implementation of Friedman's boosting, we used the R package gbm, a description of which can be found in [START_REF] Ridgeway | Generalized boosted models: A guide to the gbm package[END_REF]. These two boosting algorithms are compared in the last subsection with the Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] and random forests [START_REF] Breiman | Random forests[END_REF] methods, respectively implemented with the packages glmnet and randomForest.

Description of the data sets

The algorithms were benchmarked on both simulated and real-life data sets. For each of the simulated models, we consider two designs for X = (X 1 , . . . , X d): Uniform over (-1, 1) d ("Uncorrelated design") and Gaussian with mean 0 and d × d covariance matrix Σ such that Σ i j = 2 -|i-j| ("Correlated design"). The following five models cover a wide spectrum of regression and classification problems. Models 1-3 and 5 come from [START_REF] Biau | COBRA: A combined regression strategy[END_REF]. Model 4 is a slight variation of a benchmark model in [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF]. Models 1-3 are regression problems, while Model 4 and 5 are ±1-classification tasks. Models 2-4 are additive, while Model 1 and 5 include some interactions. Model 3 can be seen as a sparse high-dimensional problem. We denote by Z µ,σ 2 a Gaussian random variable with mean µ and variance σ 2 . For each data set, simulated or real, the sample is divided into a training set (50%) D train to fit the method; a validation set (25%) D val to select the hyperparameters of the algorithms; and a test set (25%) D test on which the predictive performance is evaluated. We considered two loss functions for both standard boosting and AGB: the least squares loss ψ(x, y) = (yx) 2 for regression and the Adaboost loss ψ(x, y) = e -yx for ±1-classification. We also tested the logit loss function ψ(x, y) = log 2 (1 + e -yx). Since the results are similar to the Adaboost loss they are not reported.

Model 1. n = 1 000, d = 100, Y = X 1 X 2 + X 2 3 -X 4 X 7 + X 8 X 10 -X 2 6 + Z 0,0.5 . Model 2. n = 800, d = 100, Y = -sin(2X 1) + X 2 2 + X 3 -exp(-X 4) + Z 0,0.5 . Model 3. n = 1 000, d = 500, Y = X 1 + 3X 2 3 -2 exp(-X 5) + X 6 . Model 4. n = 2 000, d = 30, Y = 2 1 ∑ 10 j=1 X 2 j >3.5 -1 for uncorrelated design 2 1 ∑ 10 j=1 X 2 j >9.34 -1 for correlated design. Model 5. n = 1 500, d = 50, Y = 2 1 X 1 +X 3 4 +X 9 +sin(X 12 X 18)+Z 0,0.1 >0.
In the boosting algorithms, the validation set is used to select the number of components of the model, i.e., the number of iterations performed by the algorithm. Thus, denoting by F T the boosting predictor after T iterations fitted on D train , we select the T that minimizes 1

D val ∑ i∈D val ψ(F T (X i),Y i). (6)
For both standard gradient tree boosting and AGB, we fit regression trees with two terminal nodes. We considered five fixed values for the shrinkage parameter ν (1e -05, 0.001, 0.01, 0.1, and 0.5), and fixed an arbitrary (large) limit of T = 10 000 iterations for the standard boosting and T = 2 500 for AGB. All results are averaged over 100 replications for simulated examples, and over 20 independent permutations of the sample for the real-life data.

Gradient boosting vs. accelerated gradient boosting

In this subsection, we compare the standard gradient tree boosting and AGB algorithms in terms of minimization of the empirical risk (2) and selected number of components T .

Figure 3 shows the training and validation errors for Friedman's boosting and AGB, as a function of the number of iterations. As it is generally the case for gradient boosting (e.g., [START_REF] Ridgeway | Generalized boosted models: A guide to the gbm package[END_REF], the validation error decreases until predictive performance is at its best and then starts increasing again. The vertical magenta line shows the optimal number of iterations T , selected by minimizing (6). We see that the validation rates at the optimal T are comparable for AGB and the original algorithm. However, AGB outperforms gradient boosting in terms of number of components of the output model, which is much smaller for AGB. This is a direct consequence of Nesterov's acceleration scheme. This remarkable behavior is confirmed by Figures 456,

where we plotted the relationship between predictive performance, the number of iterations, and the shrinkage parameter. On the left side of each figure, we show the boxplots of the test errors of the selected predictors F T , i.e., 1

D test ∑ i∈D test ψ(F T (X i),Y i), (7)
as a function of the shrinkage parameter ν. The right sides depict the boxplots of the optimal number of components T .

These three figures convey several messages. First of all, we notice that the predictive performances of the two methods are close to each other, independently of the data sets (simulated or real). Moreover, in line with the comments of Hastie et al. (2009, Chapter 10), smaller values of the shrinkage parameter ν favor better test error. Indeed, for all examples we observe that the best test errors are achieved for ν smaller than 0.1. However, for such values of ν, it seems difficult for standard boosting to reach the optimal T in a reasonable number of iterations, and 10 000 iterations are generally not sufficient as soon as ν is less than 0.01. The accelerated algorithm allows to circumvent this problem since, for each value of ν, the optimal model is achieved after a number of iterations considerably smaller than with standard boosting. Besides, AGB is less sensitive to the choice of ν. These two features are clear advantages since, in practice, one has no or few a priori information on the reasonable value of ν, and the usual strategy is to try several (often, small) values of the shrinkage parameter until the validation error is the lowest. Let us finally note that it may be surprising, at first sight, to see the validation error rise so quickly once the optimum T is reached (Figure 3). However, this rapid increase must be appreciated in view of the equally rapid decrease of the training error. In fact, AGB overfits extremely fast and the validation error, for fixed ν, increases just as quickly.

Of course, the benefit of having sparser models is striking when we are faced with largescale data, i.e., when iterations have a computational price. To illustrate this point, Table 2 provides the computation times to fit a tree with the default parameters of the rpart package. The computations have been performed on a laptop with 2.8 GHz processor and 16Gb of RAM memory. We clearly see that it is more and more expensive to fit a tree as the sample size and/or the dimension of the ambient space increase. (dimension). Results are averaged over 100 repetitions. q Model 5, error Model 5, iterations (blue, right). Results are presented for simulated models with uncorrelated design.

q Model 5, error (blue, right). Results are presented for simulated models with correlated design. q Wine, error (blue, right). Results are presented for real-life data sets.

Time-varying vs. fixed weights

We briefly discuss in this subsection the influence of the weights (γ t) t (line (7)-(d) of the algorithm). As we have seen in the introduction, the current choice guarantees a fast convergence rate in 1/t 2 when the function g to be minimized is convex and sufficiently smooth (Bubeck, 2015, Theorem 3.19). Remarkably, if g is assumed to be strongly convex, then Nesterov's method can achieve a much faster (exponential and optimal) rate of convergence, using however a different set of weights independent of the iteration t (Bubeck, 2015, Theorem 3.18). It turns out however that most of the losses ψ(x, y) used in gradient boosting are convex but not strongly convex in x (e.g., the Adaboost exponential and the logit losses), and it is therefore a safe choice to use the "generic" weights (γ t) t defined in (7)-(d). This option is all the more recommended as the AGB algorithm is not underpinned by any mathematical theory to date (see the discussion in Section 4). However, for regression problems, the least squares loss ψ(x, y) = (yx) 2 is strongly convex, and it is thus tempting to operate with the fixed weights of Bubeck (2015, Theorem 3.18). This simply changes step (7)-(b) of the AGB algorithm into

G t+1 = 1 + √ κ -1 √ κ + 1 F t+1 - √ κ -1 √ κ + 1 F t ,
where κ = 1/(2ν). We call this new algorithm AGB2. Figure 7 presents results for the simulated regression Models 1-3. We see that the estimated errors are of the same order for AGB and AGB2. However, AGB requires considerably less iterations to minimize the validation error (6), thus drastically reducing the model complexity.

Comparison with the Lasso and random forests

We compare in this last subsection the performance of the standard and accelerated boosting algorithms with that of the Lasso and random forests, respectively implemented with the R packages glmnet and randomForest. As above, the number of components T of the boosting predictors is selected by minimizing (6). The shrinkage parameter of the Lasso (parameter lambda in glmnet) and the number of variables randomly sampled as candidates at each split for the trees of the random forests (parameter mtry in randomForest) are selected by minimizing the mean squared error (regression) and the misclassification error (classification) computed on the validation set. The R-package caret was used to conduct these minimization problems. The prediction performance of each predictor F was assessed on the test set by the mean squared error 1

D test ∑ i∈D test (Y i -F(X i))
2 for regression problems, and (i) the misclassification error 1 D test ∑ i∈D test 1 F(X i) =Y i and (ii) the area under ROC curve (AUC) for classification problems (computed on the test set).

Table 3 shows the test errors for the regression problems, while Tables 4 and5 display misclassification errors and AUC for classification tasks. All results are averaged over 100 replications for simulated examples and over 20 permutations of the sample for real-life data sets.

As might be expected, the results depend on the data sets, with an advantage to boosting algorithms, which are often the first and perform uniformly well. Besides, even if there is no clear winner between traditional boosting and AGB, we still find that AGB is weakly q Model 3, error Model 3, iterations sensitive to the choice of ν and leads to more parsimonious models (T in the tables) for both regression and classification problems, and independently of the data set.

Conclusion and discussion

In this paper, we have proposed an algorithm named Accelerated Gradient Boosting (AGB). It is based on Friedman's gradient tree boosting algorithm [START_REF] Friedman | Greedy function approximation: A gradient boosting machine[END_REF], and incorporates the Nesterov's accelerated gradient descent technique [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2)[END_REF] to the gradient step.

Extensive numerical experiments were conducted that reach the following conclusion: AGB achieves a similar level of predictive error as gradient boosting, but uses far less components Table 5: Mean (m.) and standard deviation (sd.) of AUC for the classification problems. Also shown for the boosting algorithms is the mean over all replications of the optimal number of components (T). Results are averaged over 100 independent replications for simulated examples and over 20 independent permutations of the sample for real-life data sets. For each data set, the two best performances are in bold.

summarized by Figure 6, which offers the most compelling evidence about the benefits of AGB: the plots on the left show statistically significant performance similarities between AGB and regular gradient tree boosting, while the right clearly show a substantive drop in the number of iterations required (resulting in sparser models). The code base is made freely available at https://github.com/lrouviere/AGB.

The present article is based on empirical considerations and cannot, on its own, explain the reasons for the good performance of the AGB algorithm. This would require a thorough analysis of the theoretical properties of the combination gradient boosting + Nesterov's acceleration, taking the point of view of functional optimization. Such an analysis is difficult and goes far beyond the scope of our work. In fact, even for regular gradient boosting, few theoretical results are known and much work remains to be done to clarify the mathematical forces driving the algorithm. Many articles regard boosting with a statistical eye and study the somewhat idealized problem of empirical risk minimization with a convex loss (e.g., [START_REF] Blanchard | On the rate of convergence of regularized boosting classifiers[END_REF][START_REF] Lugosi | On the Bayes-risk consistency of regularized boosting methods[END_REF]. These papers essentially concentrate on the statistical properties of the approach (that is, consistency and rates of convergence as the sample size grows) and often ignore the underlying optimization aspects. Other articles, such as [START_REF] Bühlmann | Boosting with the L 2 loss: Regression and classification[END_REF]; [START_REF] Zhang | Boosting with early stopping: Convergence and consistency[END_REF]; [START_REF] Bartlett | AdaBoost is consistent[END_REF] take advantage of the iterative principle of boosting, but mainly focus on regularization via early stopping (that is, stopping the boosting iterations at some point), without paying too much attention to the optimization side. Notable exceptions are the pioneering notes of [START_REF] Breiman | Arcing the edge[END_REF][START_REF] Breiman | Arcing classifiers (with discussion)[END_REF][START_REF] Breiman | Prediction games and arcing algorithms[END_REF][START_REF] Breiman | Some infinite theory for predictor ensembles[END_REF][START_REF] Breiman | Population theory for boosting ensembles[END_REF], together with the paper by [START_REF] Mason | Functional gradient techniques for combining hypotheses[END_REF], who envision gradient boosting as an infinite-dimensional numerical optimization problem and pave the way for more abstract investigations. More recently, [START_REF] Biau | Optimization by gradient boosting[END_REF] analyze two versions of gradient boosting and prove their convergence as the number of iterations tends to infinity. Nevertheless, despite all these research efforts, there is to date no sound theory of gradient boosting.

On the other hand, Nesterov's accelerated descent is provably faster than gradient descent when the gradient used is accurate (see Bubeck, 2015, Chapter 3). However, when the gradient is not accurate (e.g., in a stochastic setting), then Nesterov's descent is prone to accumulating error and diverging. This type of situation is analyzed in [START_REF] Devolder | First-order methods of smooth convex optimization with inexact oracle[END_REF], who prove that the superiority of fast gradient methods over the classical ones is no longer absolute when an inexact oracle is used. Therefore, the benefits of Nesterov's technique may be lost, or reduced, in some inexact gradient settings. This is of course the case in our boosting problem, since the gradient direction is highly inexact due to the least squares approximation (5). It is thus theoretically not immediately clear when and how Nesterov's descent can really help gradient boosting. Therefore, beyond our empirical findings, it is essential to tackle the problem from a mathematical point of view. With this respect, we note that [START_REF] Jain | Accelerating stochastic gradient descent for least squares regression[END_REF] address the issues of instability and error accumulation of fast gradient methods for the special case of stochastic approximation for the least squares regression problem. They show in particular that acceleration can be made robust to statistical errors by introducing an accelerated stochastic gradient method that provably achieves the minimax optimal statistical risk faster than stochastic gradient descent.

Figure 1 :

 1 Figure 1: Adaboost exponential loss (estimated on a test data set) by number of iterations for standard gradient boosting (top) and AGB (bottom). The data are generated according to Model 5 with n = 5 000 observations (see page 9).

Figure 2 :

 2 Figure 2: A regression tree in dimension d = 2 with k = 3 leaves.

Figure 3 :

 3 Figure 3: Training (solid lines) and validation (dashed lines) errors for standard gradient boosting (red) and AGB (blue) for Model 1 (left) and Model 5 (right). Shrinkage parameter ν is fixed to 0.01.

Figure 4 :

 4 Figure 4: Boxplots of the test error (7) (left) and selected numbers of iterations (right), as a function of the shrinkage parameter ν for standard gradient boosting (red, left) and AGB (blue, right). Results are presented for simulated models with uncorrelated design.

Figure 5 :

 5 Figure 5: Boxplots of the test error (7) (left) and number of selected iterations (right) as a function of the shrinkage parameter ν, for standard gradient boosting (red, left) and AGB (blue, right). Results are presented for simulated models with correlated design.

Figure 6 :

 6 Figure 6: Boxplots of the test error (7) (left) and number of selected iterations (right) as a function of the shrinkage parameter ν, for standard gradient boosting (red, left) and AGB (blue, right). Results are presented for real-life data sets.

Figure 7 :

 7 Figure7: Boxplots of the test error (7) (left) and number of selected iterations (right) as a function of the shrinkage parameter ν, for AGB (blue, left) and AGB2 (green, right). Results are presented for simulated Models 1-3, with uncorrelated design.

X2 >= 0.76 X1 < 0.24

	1.2		
	100%	
	yes	no	
		1.5	
		73%	
	0.1	0.21	1.9
	27%	17%	56%

Table 1 :

 1 38 -1. We also considered the following real-life data sets from the UCI Machine Learning repository: Adult, Internet Advertisements, Communities and Crime, Spam, and Wine. Their main characteristics are summarized in Table1(a more complete description is available at the address https://archive.ics.uci.edu/ml/datasets.html). Main characteristics of the five real-life data sets used in the experiments.

	Data set	n	d	Output Y
	Adult	30 162	14	binary
	Advert.	2 359 1 431	binary
	Crime	1 993	102 continuous
	Spam	4 601	57	binary
	Wine	1 559	11	continuous

Table 2 :

 2 It is in this large-scale context that AGB can have a decisive advantage over regular gradient boosting. Duration in seconds to fit a tree with rpart as a function of n (sample size) and d

	n	d	10	100	1 000
	1 000	0.02 0.18	1.98
	10 000 0.20 2.35	26.73
	100 000 3.81 39.23 412.34

Table 3 :

 3 Mean (m.) and standard deviation (sd.) of the mean squared test error for the regression problems. Also shown for the boosting algorithms is the mean over all replications of the optimal number of components (T). Results are averaged over 100 independent replications for simulated examples and over 20 independent permutations of the sample for real-life data sets. For each data set, the two best performances are in bold.

					GB					AGB			Lasso	RF
		ν	1e-05	0.001	0.01	0.1	0.5	1e-05	0.001	0.01	0.1	0.5		
	Model 4 (u)	m.	0.416	0.229	0.098	0.086	0.085	0.248	0.085	0.088	0.108	0.217	0.419	0.206
		sd.	0.020	0.023	0.018	0.015	0.016	0.023	0.016	0.016	0.017	0.036	0.021	0.025
		T	9 900	10 000	9 998	2 619	452	2 500	1 404	421	97	22		
	Model 5 (u)	m.	0.353	0.144	0.141	0.141	0.142	0.145	0.142	0.141	0.144	0.155	0.138	0.151
		sd.	0.024	0.016	0.017	0.016	0.018	0.017	0.018	0.017	0.016	0.021	0.018	0.019
		T	10 000	10 000	2 465	240	41	2 500	387	121	34	12		
	Model 4 (c)	m.	0.451	0.171	0.086	0.081	0.079	0.185	0.080	0.081	0.095	0.183	0.453	0.134
		sd.	0.027	0.020	0.015	0.014	0.014	0.022	0.014	0.015	0.015	0.03	0.025	0.018
		T	10 000	10 000	9 996	1 781	319	2 500	1 156	358	88	23		
	Model 5 (c)	m.	0.423	0.119	0.114	0.114	0.115	0.123	0.114	0.116	0.118	0.132	0.118	0.116
		sd.	0.037	0.016	0.015	0.016	0.016	0.018	0.016	0.016	0.016	0.020	0.016	0.018
		T	10 000	10 000	3 694	354	65	2 500	493	151	40	14		
	Adult	m.	0.249	0.150	0.141	0.138	0.138	0.151	0.140	0.140	0.143	0.152	0.155	0.186
		sd.	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.004	0.004	0.004	0.005
		T	10 000	10 000	9 966	6 714	1 635	2 500	1 853	610	143	24		
	Advert	m.	0.165	0.062	0.043	0.043	0.043	0.063	0.043	0.043	0.044	0.054	0.032	0.031
		sd.	0.014	0.009	0.012	0.013	0.012	0.008	0.013	0.013	0.011	0.011	0.007	0.009
		T	10 000	9 999	4 716	471	87	2 500	568	181	50	18		
	Spam	m.	0.396	0.071	0.061	0.061	0.065	0.077	0.064	0.065	0.068	0.086	0.095	0.057
		sd.	0.013	0.009	0.008	0.007	0.007	0.009	0.009	0.007	0.007	0.011	0.072	0.007
		T	10 000	10 000	3 880	426	84	2 500	479	150	40	16		

Table 4 :

 4 Mean (m.) and standard deviation (sd.) of the misclassification test errors for the classification problems. Also shown for the boosting algorithms is the mean over all replications of the optimal number of components (T). Results are averaged over 100 independent replications for simulated examples and over 20 independent permutations of the sample for real-life data sets. For each data set, the two best performances are in bold. in the output model and is less sensitive to the shrinkage parameter. Our results are best

					GB					AGB			Lasso	RF
		ν	1e-05	0.001	0.01	0.1	0.5	1e-05	0.001	0.01	0.1	0.5		
	Model 4 (u)	m.	0.590	0.885	0.971	0.976	0.977	0.869	0.977	0.975	0.964	0.862	0.515	0.891
		sd.	0.037	0.021	0.008	0.007	0.007	0.023	0.007	0.007	0.010	0.040	0.018	0.021
		T	9 900	10 000	9 998	2 619	452	2 500	1404	421	97	22		
	Model 5 (u)	m.	0.772	0.935	0.936	0.936	0.934	0.933	0.937	0.936	0.935	0.922	0.940	0.922
		sd.	0.059	0.013	0.012	0.012	0.013	0.013	0.013	0.012	0.012	0.015	0.011	0.016
		T	10 000	10 000	2 465	240	41	2 500	387	121	34	12		
	Model 4 (c)	m.	0.621	0.927	0.978	0.981	0.981	0.916	0.981	0.981	0.972	0.898	0.516	0.945
		sd.	0.043	0.014	0.006	0.005	0.005	0.016	0.005	0.005	0.008	0.030	0.019	0.012
		T	10 000	10 000	9 996	1 781	319	2 500	1 156	358	88	23		
	Model 5 (c)	m.	0.753	0.960	0.962	0.963	0.961	0.957	0.962	0.962	0.960	0.947	0.960	0.955
		sd.	0.059	0.009	0.008	0.008	0.008	0.009	0.008	0.008	0.008	0.011	0.007	0.011
		T	10 000	10 000	3 694	354	65	2 500	493	151	40	14		
	Adult	m.	0.758	0.905	0.915	0.920	0.920	0.902	0.918	0.917	0.913	0.901	0.902	0.858
		sd.	0.005	0.004	0.004	0.004	0.003	0.004	0.004	0.004	0.003	0.004	0.004	0.008
		T	10 000	10 000	9 966	6 714	1 635	2 500	1 853	610	143	24		
	Advert	m.	0.815	0.962	0.974	0.973	0.973	0.956	0.973	0.975	0.971	0.950	0.973	0.983
		sd.	0.059	0.014	0.011	0.012	0.013	0.015	0.014	0.011	0.015	0.022	0.008	0.008
		T	10 000	9999	4716	471	87	2500	568	181	50	18		
	Spam	m.	0.854	0.975	0.980	0.980	0.979	0.973	0.978	0.978	0.977	0.966	0.970	0.979
		sd.	0.028	0.003	0.003	0.003	0.003	0.004	0.003	0.003	0.003	0.005	0.004	0.003
		T	10 000	10 000	3 880	426	84	2 500	479	150	40	16		

Acknowledgments

We greatly thank two referees for valuable comments and insightful suggestions, which led to a substantial improvement of the paper.