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Abstract

We describe how a simple class of out-of-equilibrium, rotating, and asymmetrical mass distributions evolve under
their self-gravity to produce a quasi-planar spiral structure surrounding a virialized core, qualitatively resembling a
spiral galaxy. The spiral structure is transient, but can survive tens of dynamical times, and further reproduces
qualitatively noted features of spiral galaxies such as the predominance of trailing two-armed spirals and large
pitch angles. As our models are highly idealized, a detailed comparison with observations is not appropriate, but
generic features of the velocity distributions can be identified to be the potential observational signatures of such a
mechanism. Indeed, the mechanism leads generically to a characteristic transition from predominantly rotational
motion, in a region outside the core, to radial ballistic motion in the outermost parts. Such radial motions are
excluded in our Galaxy up to 15 kpc, but could be detected at larger scales in the future by GAIA. We explore the
apparent motions seen by external observers of the velocity distributions of our toy galaxies, and find that it is
difficult to distinguish them from those of a rotating disk with sub-dominant radial motions at levels typically
inferred from observations. These simple models illustrate the possibility that the observed apparent motions of
spiral galaxies might be explained by non-trivial non-stationary mass and velocity distributions without invoking a
dark matter halo or modification of Newtonian gravity. In this scenario the observed phenomenological relation
between the centripetal and gravitational acceleration of the visible baryonic mass could have a simple explanation.

Key words: galaxies: formation – galaxies: spiral – Galaxy: formation – Galaxy: kinematics and dynamics –
methods: numerical

1. Introduction

The arms of spiral galaxies are one of the most striking and
remarkable features of the visible universe revealed by
astronomy. They have been the subject of much study, both
observational and theoretical, over many decades. Several
competing theories have been advanced to explain their
physical origin, but no single one has emerged definitively as
the correct framework (see, e.g., Dobbs & Baba 2014).
Understanding their motions is of particular importance
because it is the observed apparent (i.e., on the line of sight
—LOS) motions in the outer parts of spiral galaxies that have
led to the supposition that much of the gravitating matter in
them is not visible (Rubin 1983). These same motions have
also led to alternative scenarios involving strong modifications
of Newtonian gravity (Milgrom 1983). In this paper we show
how mass distributions qualitatively resembling those of the
visible components of spiral galaxies can result from the far
out-of-equilibrium dynamics of purely self-gravitating systems,
starting from a class of very simple idealized initial conditions.
We study in particular the generic features of the velocity
distributions of the structures produced by this mechanism, and
consider their qualitative compatibility with observations of
motions in spiral galaxies.

Our approach is different from standard theoretical ones, in
which spiral structure arises by perturbation (internal or
external) of an equilibrium system, and the large-scale motions

are modeled assuming a stationary mass distribution. Indeed,
our study illustrates how, for intrinsically non-stationary
models, the relation between apparent motions and the
associated mass distribution can be completely different from
that in stationary models. In particular, we show that the
observation of a non-Keplerian rotation curve in the outer part
of such a structure does not necessarily require the existence of
an extended dark matter halo or modification of Newtonian
gravity, and could instead be consistent with non-axisymmetric
radial motion of weakly bound and unbound mass.
We note that, because our models involve only Newtonian

gravity, the physics we describe could potentially be applicable
to astrophysical systems of very different natures and sizes—to
dwarf galaxies that are inferred from their motions to be even
more dark-matter-dominated than spirals (see, e.g., Combes
2002); to protoplanetary disks, which have been revealed in
observations in the last couple of years to have spiral-like
structure (see, e.g., Christiaens et al. 2014); or even possibly to
circumplanetary disks, whose existence is still inconclusive
(see, e.g., Ward & Canup 2010). In a forthcoming work
(D. Benhaiem et al. 2017, in preparation) that is complemen-
tary to this paper, we will describe the physical mechanism in
much greater detail, using both for a broad range of initial
conditions and numerical simulations with larger particle
numbers.
The class of models we consider as initial conditions consists

of asymmetrical and isolated self-gravitating clouds with some
angular momentum. The dynamics of isolated self-gravitating
systems from out-of-equilibrium initial conditions has been
extensively studied for several decades (Hénon 1973; van
Albada 1982; Aarseth et al. 1988; David & Theuns 1989;
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Aguilar & Merritt 1990; Theuns & David 1990; Boily et al.
2002; Barnes et al. 2009). Broadly speaking, such systems
relax quite efficiently to virial equilibrium, i.e., on timescales of
the order of a few times the characteristic dynamical time.
Early studies showed that spherical configurations with little
isotropic velocity dispersion (i.e., sub-virial, with an initial
virial ratio > -b 1) could produce equilibrated structures
resembling elliptical galaxies,with a surface brightness notably
close to the observed de Vaucouleurs law (van Albada 1982).
One generic feature of such sub-virial collapses (for  -b 0.5)
is that they lead to the ejection of some of the initial mass (see,
e.g., Joyce et al. 2009; Sylos Labini 2012, 2013): the strong
contraction of the initial configuration leads to a rapidly
varying mean-field, which causes particle energies to also
rapidly vary, leaving some of them weakly bound and others
with positive energy. Two of us have recently studied
(Benhaiem & Sylos Labini 2015, 2017) the evolution from
configurations that are initially ellipsoidal or of an irregular
shape and found them to give rise to a virialized central core
surrounded by very flattened configurations made by both
weakly bound and ejected particles.

These results, combined, have led us to the idea that, with
some initial rotational motion, it might be possible to generate a
spiral structure from these kinds of initial conditions. Indeed,
the large radial velocities are generated in a small region (of the
order of the minimal size reached) in a very short time (much
less than one dynamical time), thus the radial distance these
particles subsequently travel once they are outside the core can
be expected, given approximate conservation of angular
momentum, to be correlated with the integrated angle they
move through.

The paper is organized as follows. In Section 2 we present
the details of our numerical simulations. Section 3 is devoted to
a discussion of the three-dimensional and two-dimensional
results of our simulations and their relations with some key
observational results on spiral galaxies. Finally, in Section 4 we
draw our main conclusions. In the Appendix we detail how we
constructed the projected velocity maps from our simulated
mass distributions.

2. Simulations

We have considered a very simple set of initial conditions
that combines the characteristics described above: breaking of
the spherical symmetry of the initial mass distribution, a
velocity distribution that is sub-virial (or, more generally, out
of equilibrium), and some coherent rotation. More precisely,
we consider the following: N particles distributed randomly,
with uniform mean density, inside an ellipsoidal region, and
velocities that correspond to a coherent rigid body-like
rotational motion about the shortest semi-principal axis.
Although these are ad hoc and clearly too idealized to describe
a physically realistic situation, in the context of the theory of
galaxy formation these kinds of initial conditions kind have
often been argued to be reasonable (see, e.g., Eggen et al.
1962). Nevertheless, they are very different from those
described in current scenarios for galaxy formation in the
context of cold dark-matter-dominated cosmological models,
which are characterized by hierarchical collapse. We note,
however, that in cosmological scenarios with very suppressed
initial fluctuations at very small scales (e.g., in models with
warm dark matter), a monolithic collapse from a quasi-uniform
initial state may be a more reasonable approximation. In any

case, our goal here is to identify and study a physical
mechanism and its possible observational signatures, and not
to provide a realistic modeling of great complexity.
The parameters we choose to characterize our initial

configurations are then (i) the ratios of the semi-axes of
lengths  a a a1 2 3: the ellipsoids can be prolate, oblate, or
triaxial and they are specified by the flatness parameter
i = -( )a a 1;1 3 (ii) the initial virial ratio =b K W2rot rot 0,
where Krot is the kinetic energy of the rotational component of
the motion, which has an angular velocity independent of
radius (i.e., solid body rotation) and parallel to the shortest
semi-principal axis, and W0 is the initial gravitational
potential energy.5 We have explored a large parameter range
in this family of initial conditions, extending down to

= -b 1rot , which, although strictly “virial,” is well out of
equilibrium for the chosen velocity distribution. We follow
the evolution under self-gravity until a time t» ¸( )t 50 100 d
where td is the characteristic timescale for their mean-field
evolution defined as

t
p

= ( )a

GM8
, 1d

2
3
3

where M is the initial mass and G is Newton’s constant. All
simulations6 are performed for =N 105 particles, using the
gadget-2 code (Springel et al. 2001), adopting a force-
smoothing that is approximately one-tenth of the initial mean
interparticle separation. In this paper we report in detail results
for just one chosen simulation, whose features are representa-
tive of this class of models. Greater details on numerical issues
and analyses of the results for a broad representative range of
these initial conditions, and also for a range of particle numbers
extending up to an order of magnitude larger, will be provided
in a separate paper (D. Benhaiem et al. 2017, in preparation).

3. Results

3.1. Three-dimensional Properties

We observe, as expected given the chosen initial velocity
distribution and normalization, a significant contraction and a
subsequent re-expansion of the system on a timescale t~t d .
Associated with this behavior is, as anticipated, also a strong
injection of energy into a significant fraction of the particles,
which are those initially located furthest from the center (i.e.,
close to the longest semi-principal axis) and which pass
through the center of the structure latest during the collapse.
Correspondingly, we observe an amplification of the spatial
asymmetry during this phase (with, in particular, a more rapid
contraction along the shortest semi-principal axis). In addition
to these features, which have been studied extensively in
previous works (Benhaiem & Sylos Labini 2015, 2017), we
find that these systems are qualitatively characterized in their
outer parts by spiral-like structure, with a rich variety of forms
—see Figure 1—ranging from some qualitatively resembling
more grand design spirals, and others resembling barred spirals,

5 Because the force-smoothing at small scales is a factor of 10 smaller than
the initial interparticle distance, the difference between W0 (computed using the
Newtonian potential) and the Clausius virial term (computed using the exact
forces acting on particles) is negligible.
6 See Joyce et al. (2009), Sylos Labini (2012), and Benhaiem & Sylos Labini
(2015, 2017) for details.
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and even flocculent spirals in some cases.7 Detailed analysis of
the evolving configurations confirms that the emergence of this
spatial organization—associated with a velocity distribution
with very specific characteristic properties that we will describe
below—is indeed the result of the injection of energy into some
of the mass around the time of maximal contraction, which
gives it large radial velocities in addition to the initial rotational
motion.

As anticipated above, we focus here, for simplicity, on the
detailed analysis of just one specific initial condition, with i = 1
and =a a2 3 (i.e., a prolate initial ellipsoid), and = -b 1.0rot . We
choose this case because, even if it corresponds to a case that is
not so far out of equilibrium and characterized by a less violent
contraction and expansion, it produces structure that is fairly
typical of all cases. Shown in Figure 2 are configurations of the
evolved configuration at different times8 projected on the plane
orthogonal to the initial shortest semi-principal axis, along which
the structure is (as expected) very flattened in extent compared to
the observed projection: diagonalizing the inertia tensor to
determine the principal axes and eigenvalues, we find a typical
offset of a couple of degrees from the initial axes, but a much
larger ratio for the eigenvalues, corresponding to a flatness
parameter i » 3, while the core is triaxial with a flatness
parameter i » 1 and corresponds to a triaxial ellipsoid. We note
that, once formed, the spiral-like arms expand radially, slowly
changing shape. Indeed, the velocity field of the particles in the
outer part of the object is almost radial and directed outward (see
Figure 3).

Figure 4 shows the density profile n(r), the velocity profile v
(r), and the energy profile  ( )r computed as averages in radial
bins of constant logarithmic width. During the time evolution, the
outer tail of n(r) is stretched to larger and larger distances. In
general, when the system contraction during the collapse is strong
enough to produce a large change of the particle energy

distribution, the tail of the density profile is well fit by a
power-law behavior with ~ -( )n r r 4 (Sylos Labini 2013).
Correspondingly the velocity and the energy profiles also extend
to larger and larger scales. At the largest radii, as indicated by the
average value  ( )r , particles are unbound (with  > 0), while in
the core region particles are strongly bound (i.e., ò below −1.5);
there is then an extended intermediate region in which many
particles are marginally bound (i.e., > > -0 0.5).
The energy distribution ( )P at two different times (t=25,

50), together with that of the initial conditions, is shown in
Figure 5: we note that a large change of ( )P has occurred during
the gravitational collapse of the cloud at t» d while at later times
the shape of the distribution remains approximately the same.

Figure 1. Configurations resulting from four different initial conditions.

Figure 2. Configurations resulting from four different times (see the labels).
The solid line in the upper left panel corresponds to the initial ellipsoid.

Figure 3. Configuration at t=25: arrows are proportional to velocities.

7 Here, and in the following figures, we use units of length in which =a 13 ,
and units of time in which t = 1;d energies are given in units in which

=GNm a 12
3 .

8 Seegoo.gl/L1fRzZ for the full movie of the time evolution.
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The upper panel of Figure 6 shows the average, in spherical
shells of radius r, denoted á ñ , of the radial component

=
·r v

v
r

r

of the velocity, and of the “transverse” velocity

=
´

v
r v

r
,t

defined parallel to the angular momentum relative to the origin
(at the center of the structure). Thus, in particular, a coherent
rotation of the shell in a plane corresponds to á ñ∣ ∣vt = á ñ∣ ∣vt .

The middle panel of Figure 6 shows the velocity anisotropy

b = -
á ñ
á ñ

( )r
v

v
1

2
.t

r

2

2

Finally, the lower panel of Figure 6 shows v r G2 , the mass that
would be enclosed inside this radius if the motions were purely
circular and the mass distribution spherically symmetric, and
the mass <( )M r actually enclosed inside the radius r.
According to the behaviors observed, we can divide the

structure into three regions: (i) an inner part (R1) in which, as

á ñ á ñ∣ ∣ ∣ ∣v v ,t t

there is no significant net rotation, and given that b » 0, the
velocity distribution is close to isotropic; (ii) an intermediate
range of radii (R2), extending over about a decade, in which β

deviates strongly from zero as a net coherent rotational motion
develops and dominates at larger radii, i.e.,

á ñ » á ñ á ñ∣ ∣ ∣ ∣ ∣ ∣v v v ;t t r

correspondingly (lower panel of Figure 6), there is a good
agreement between the estimated and actual enclosed mass in
this region; and (iii) an outer region (R3) in which the rotational
motion of the particles is still coherent, but radial motions, with
almost negligible dispersion, are now predominant, i.e.,

á ñ » á ñ » á ñ∣ ∣ ∣ ∣ ∣ ∣v v v .r r

Region R3 is also characterized clearly by the behavior of the
estimated enclosed mass, which greatly overestimates the
actual enclosed mass. This reflects the fact that the mass is
weakly bound or even unbound rather than bound on circular
orbits.
Measurement of the particle energies (see Figure 4) shows

that the transition from R2 to R3 is indeed approximately that
from unbound to bound particles, and that in the outer part of
R3 all particles are unbound. Indeed, asymptotically the knee
between the two regions is precisely the transition from bound

Figure 4. From top to bottom: (i) density profile, (ii) velocity profile, and (iii)
energy profile, at two different times: t=25 (black dots) and at t=45
(red dots).

Figure 5. Energy distribution at t=0 (green), at t=25 (black) and at t=50 (red).

Figure 6. Configuration at t=45. Upper panel: components of particle
velocities averaged in spherical shells as a function of radius. Middle panel:
anisotropy parameter b ( )r . Lower panel: mass estimated from the velocity
assuming stationary circular orbits, and the actual enclosed mass.
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to unbound orbits, with the shell with á ñ »∣ ∣v 0r corresponding
to particles with zero energy. At large distance in R3 we have,
correspondingly, a linear growth with distance of the radial
velocity that is simply a reflection of the ballistic radial motion.
Thus, when we study these curves as a function of time, region
R1 and the inner part of R2 are stationary to a very good
approximation, while the boundary with R3 propagates out
progressively and the size of R3 itself grows linearly in time,
with the maximal velocity remaining fixed.

These angle-averaged data do not give information about the
angular dependence of the radial velocities in particular, which
are very non-trivial: the presence of the spiral-like structure
visible in Figure 2 is a reflection of the fact that the particles’
transverse motions become correlated with their radial
velocities because of the approximate conservation of angular
momentum (and energy) of the ejected particles, which, once
outside the core, move in an approximately stationary central
potential. The particles forming the spiral structure preferen-
tially have a radial velocity oriented along directions close to
the initial longest semi-principal axis, and the structure is
elongated the most along the directions in which the radial
velocities are maximal. Clearly, the precise form of the spiral
structure depends directly on the dispersion of the energies of
the high-energy particles at the time of collapse compared to
their transverse velocity at this time (and thus, in particular, on
the parameter brot). The non-stationary nature of the structure
also manifests itself in the evolution of the form of the spiral
structure. In particular, it becomes more elongated (and less
axisymmetric) in time.

3.2. Estimation of Typical Length/Time Scales

Even if our models are too simple and idealized to be
meaningfully confronted with observations in any great detail,
we can consider the qualitative compatibility of the features of
the mass distributions generated with the observed properties of
real astrophysical systems. In particular, we focus here on the
primary astrophysical motivation for our study—spiral galaxies
—although, as noted, several other applications could also be
explored. For any such comparison we evidently need to
approximately relate the scales of our toy model to physical
scales. Bearing in mind that the typical scale of observed
rotation velocities in disk galaxies is 200 km s−1, we define the
dimensionless parameters as follows:

t
= -v

a

200
km s .d

200
3 1

We can then write

» ´⎜ ⎟⎛
⎝

⎞
⎠a

v

n
t

200
kpc,3

200
Gyr

where n is the number of dynamical times in our simulation and
tGyr is its duration given in billion of years. Thus, for »n 50,
as in Figure 2, and taking ~t 1Gyr , which corresponds to a
mass (by using Equation (1))

p
t

= » M
a

G
M

8
10 ,

d

2
3
3

11

we have that region R1 extends to ~2 kpc, and region R2

extends to ~50 kpc. Thus, in order to have a structure that
would possibly be compatible with the typical size of spiral
galaxies, we need to assume that the collapse process that

generated the disk and arms occurred much more recently than
the formation of the oldest stars in these galaxies (with an age
∼10 Gyr). This is very different from the usual hypothesis that
the disk, and its spiral structure, are at least as old as the oldest
stars. From the observational point of view, however, there is
no definitive evidence establishing the age of spiral arms;
several observational studies have suggested that spiral arms
are not long-lived (Elmegreen et al. 1989; Vogel et al. 1993;
Tully & Verheijen 1997; Henry et al. 2003).

3.3. Characteristic of Spiral Arms

We note that the arms formed in our models are always
trailing. This is a simple consequence of the approximate
conservation of angular momentum for the outgoing particles,
which means that the transverse components of their velocities
decrease with their radial distance. Although, as mentioned, a
rich variety of forms of the arms can be obtained with different
initial conditions, two dominant arms as in our chosen
simulation are very easily produced, with pitch angles of the
order of tens of degrees. Thus, our model naturally reproduces
very common features of spiral galaxies, which are very
difficult to explain within the much explored framework of
density wave theory (Dobbs & Baba 2014), although density
variations associated with spiral arms in our models are larger
than they are in reality.

3.4. Apparent Velocity Maps

Let us now consider the compatibility of the large-scale
motions of our generated mass distributions with the observed
apparent motions in disk galaxies. Depending on the initial
conditions we choose, the details of the kinematic properties
will change (e.g., the exact radial dependence of the velocities),
but it is a generic property of this mechanism of generation of
the spiral structure that there is a clear transition from
predominantly rotational motion to predominantly radial
motion, the latter being in the outermost parts the ballistic
motion of freed particles. This is the case simply because the
particles that are furthest from the center at long times are
unbound or very loosely bound outgoing particles that have
lost almost all their transverse velocity because of angular
momentum conservation. Let us focus on this characteristic
feature.
Decades of study of various different observational tracers of

the velocity fields provide strong evidence for predominantly
rotational motions in disk galaxies (Sofue & Rubin 2001). For
what concerns our Galaxy, in which apparent motions have
been measured over four decades in scale (Sofue 2017), the
angular dependence of the projected velocities, inferred from
HI emission in particular, shows convincingly that the motion
of the disk is very predominantly rotational up to a scale of
order 15 kpc (Kalberla & Dedes 2008; Sofue 2017): as
mentioned above, such a coherent rotation is also characteristic
of the region R2 in our models. For this reason, the key
observation thus concerns the nature of the motion at large
distance, i.e., >15 kpc, in our Galaxy. In this respect it
is interesting to note that there is nevertheless also evidence
for significant coherent radial motions beyond a few kpc
and increasing with radius (López-Corredoira & González-
Fernández 2016). Beyond this scale the constraints are much
weaker, but in the near future measurements from the GAIA
satellite (Gaia Collaboration et al. 2016) will make it possible

5

The Astrophysical Journal, 851:19 (10pp), 2017 December 10 Benhaiem, Joyce, & Sylos Labini



to distinguish the nature of the motions at much larger scales.
In addition the GAIA satellite will be able to shed light on the
nature of hyper-velocity stars that are unbound from the Milky
Way and shows a surprising anisotropic distribution (Brown
2015). A population of such stars might possibly correspond to
ejected particles in our models.

Let us now consider constraints on velocity fields from
external disk galaxies. In this case apparent (LOS) velocities
are probed robustly out to scales of several tens of kiloparsecs,
and in some cases even larger (Sofue 2017), but the strength of
evidence for rotation depends on the scale and weakens at
larger scales. These measurements are both one-dimensional
(i.e., along the major axis of the observed galaxy) and two-
dimensional (mapping out the full projected velocity field). The
former measurements provide a direct measure of rotational
velocities, but only on the assumption that the galaxy is in fact
a rotating disk: in this case the major axis of the projection
(which is an ellipse) is orthogonal to the LOS, and thus motions
parallel to the LOS must be rotational. In our models, the mass
distribution is not a disk—indeed it is clearly non-axisymmetric
at larger radii—and, furthermore, as we have noted, there is
intrinsically a strong correlation of the direction of the outer
radial velocities with the intrinsic longest semi-principal axis.

As a result, we show below that there is generically a
contribution, which may be very large, along the projected
major axis. In our models, as a result, even at length scales
where the motion is purely radial, we will infer a non-trivial
rotation curve from a one-dimensional measurement.

For two-dimensional data the evidence for predominant
rotation (and the inferred rotation curves) is based on the
quality of best fits to rotating axisymmetric disk models
provided by two-dimensional data. In particular, two-dimen-
sional velocity maps of numerous galaxies show the pattern
distinctive of a rotating disk: the alignment of the kinematic
axis—along which there is maximal variation of the projected
velocities—with the projected major axis. Such alignment is,
however, far from perfect and very significant angular offsets
are frequently observed (and attributed to the breaking of
axisymmetry by bars). Furthermore, very significant residuals
are typically measured in such fitting procedures—typically of
the order of 30% or even larger—and these are attributed to
radial motions (see, e.g., Erroz-Ferrer et al. 2015).

To qualitatively evaluate whether the radial motions that are
dominant in the outer parts of the spiral structure in our models
can be strongly excluded by observations, as one might naively
expect, we have thus examined whether the projected motions
of our toy galaxies can provide fits to rotating disk models of
comparable quality to those provided by the observed galaxies.
To do so, as detailed in the Appendix, using our distributions,
we have generated the projected LOS velocity maps vlos of
random observers, characterized by two angles: the inclination
angle i, defined as the angle between the vector uo giving the
orientation of the observer’s LOS and the vector ug in the
direction of the shortest semi-principal axis of the model
galaxy, and an angle j defined as the angle between the
projection of the LOS in the plane of the galaxy and its longest
semi-principal axis. To fit the resulting two-dimensional map
with a rotating disk model, we determine the velocity as a
function of distance along the axis of maximal variation, and
use it as the input rotational velocity for a rotating disk, for
which we analytically determine the projection. Shown in
Figure 7 are the projected velocity maps for the same

simulation analyzed above, for an observer with = i 30 and
= j 30 . The maps have been averaged on a grid of size 642

(mimicking the finite resolution of measured maps); the
different panels show the following:

(i) the two-dimensional projection of the mass distribution,
with the kinematic axis and the major axis of the
projection indicated; in this case the angle between the
two axes is about 40°;

(ii) the two-dimensional LOS velocity dispersion map; the
largest dispersion is in the core where the velocities are
isotropic;

(iii) the two-dimensional LOS velocity map;
(iv) the two-dimensional LOS velocity map in which the

radial velocities have been removed, illustrating that the
motions are indeed very predominantly radial;

(v) the two-dimensional LOS velocity map of the best-fit
rotating disk model (this is obtained using the one-
dimensional LOS velocity profile along the estimated
kinematic axis);

(vi) the two-dimensional LOS velocity residual map.

Figure 8 shows, respectively, the one-dimensional LOS
velocity profile along the kinematic axis and along the axis
orthogonal to it (upper panel) and (lower panel) the mass
estimated by assuming that the velocities are circular, and the
actual mass (i.e., using Equation (7)).
We then explored (see Figure 9) the full range of i and j. Only

for j very close to p 2 (i.e., an observer with an LOS almost
exactly orthogonal to the axis along which radial velocities are
maximal) do we fail to obtain a fit to a rotating disk model with
residuals compatible with the level reported in the literature for
such fits applied to observational data. These residuals are small in
all cases, i.e., of the order of 10%–30%, except for j 90, in
which they can be as high as ≈50%–70%. In these images one
can discern clearly that our model galaxies are non-axisymmetric
at larger radii, and as we have noted, there is a strong correlation
between the direction of the outer radial velocities with the
intrinsic longest semi-principal axis: the velocities in the outer
parts of the structure are radial and very preferentially oriented
along the axis, which is significantly elongated in the structure. As
a result there is generically a contribution from these radial
velocities along the projected major axis. In addition, except
for very small inclination angles, the projection of the three-
dimensional longest semi-principal axis is typically very close to
the major axis of the projected image, and the large radial
velocities project out their components along this latter axis. There
is thus in practice a rough degeneracy between rotating disk
models with significant but sub-dominant radial motions and non-
axisymmetric models with a specific pattern of radial velocities
like the one in our models. This is very clearly illustrated by
comparing in each case the map in which the three-dimensional
radial velocity is set to zero and the map of the best-fit rotational
model: despite the fact that most of the signal at large scales comes
from the radial velocities, they can be fit quite well by the
rotational model.
The reason for this surprising result is the strong correlation

in the alignment of the kinematic axis and the longest semi-
principal axis of the projected distribution, which is a
characteristic of our out-of-equilibrium structures: as we have
seen, the velocities in the outer parts of the structure, which we
are resolving in these mock measurements, are radial and very
preferentially oriented along the axis, which is significantly
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elongated in the structure. In projection the major axis typically
remains very close to this axis—other than for very specific
observers, looking along the axis with very small inclination
angles—and the large radial velocities project out their
components along this axis.

A much more detailed and sophisticated analysis of observed
projected velocity maps of spiral galaxies would evidently be
required to establish or exclude their possible compatibility
with velocity distributions qualitatively similar to those in our
models, i.e., non-axisymmetric distributions with predomi-
nantly radial velocities very non-trivially correlated with the
spatial distribution. As we have illustrated with our models, the
motions in the outer parts of galaxies are in fact predominantly
radial; there is no need to invoke a dark matter halo to explain
them. Indeed, as illustrated in the lower panels of Figure 6 and
of Figure 8, the mass estimate using the hypothesis of rotational
motions leads to an inferred mass that grows strongly with
radii, while the actual enclosed mass does not grow at all.

3.5. Flat Rotation Curves and Correlation between the
Centripetal and Gravitational Acceleration

We conclude by speculating on two further important
observational results about velocity fields, and their possible
explanation within the framework suggested by our models.

One of the noted properties of rotation curves of spiral
galaxies is that they are typically flat as a function of scale at
the largest scales probed by observation, although a great
variety of behaviors are in fact observed in individual galaxies
(see, e.g., Sofue 2017). Our models are not predictive in this
respect: we can obtain very different behaviors depending on
the range of scale considered, and notably whether we assume
the region observed corresponds to R2 or R3. Furthermore, the

precise functional dependence on scale may be very different if
we modify, for example, the radial dependence of the initial
angular velocity. We note, however, that, if we consider the
region R3, in which radial motions dominate, the rotation curve
(inferred by supposing the projected motions to arise from a
rotating disk) will progressively flatten in time: as the velocities
are essentially ballistic the same velocity range extends over a
range of scale, which grows monotonically with time.
In this hypothesis of purely radial velocities with an

approximately constant (i.e., very slowly increasing) amplitude,
we note finally that one may also obtain, very trivially in models
like ours, the observed phenomenological relation, µ ( )a g rc ,
where ac is the centripetal acceleration inferred from the
apparent motions, and g(r) is the gravitational acceleration of
the visible baryonic mass (see e.g., McGaugh et al. 2016), which
also underlies the so-called Modified Newtonian Dynamics
(Milgrom 1983, 2016). Indeed, scale-independent radial motions
would give an inferred scale-independent rotation curve, and

thus »ac
v

r
max
2

where vmax is the inferred constant velocity of

rotation, while »( )g r GM rc
2, where Mc is the mass in the

virialized core. Thus,

» » ( )a
v

r
a g rc

max
2

0

where

=a
v

GM
.

c
0

max
4

The observed approximate constancy of a0 for different
systems then corresponds to µv Mcmax

4 , i.e., the Tully–Fisher
relation.

Figure 7. Projection for =  = i j30 , 30 (from top to bottom). Left panel: projection of the object on the observer’s sky; the kinematic axis (red) and the major axis
(black) are shown. Middle panel: two-dimensional LOS velocity dispersion map. Right panel: two-dimensional LOS velocity map. Left panel: two-dimensional LOS
velocity for the case in which the three-dimensional radial velocity has been set to zero. Middle panel: two-dimensional rotational map derived from the LOS velocity
profile. Right panel: two-dimensional residual map.
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4. Discussion

In summary, we have shown, using simulations of evolution
from very simple toy initial conditions, that transient spiral-like
structure may be generated in the far out-of-equilibrium
evolution of a relaxing self-gravitating system. As will be
detailed further in a forthcoming work (D. Benhaiem et al.
2017, in preparation), the spatial organization in a spiral-like
structure arises dynamically as particles that gain significant
energy during an initial collective contraction and expansion of
the system move outward, with the more energetic particles
losing their transverse motion faster. The mechanism is
completely different in nature from the usual perturbative
mechanisms widely studied to explain such structure. Despite
the unrealistically simplified nature of the models, we have
argued that a qualitative comparison with observational data is
possible: our models show that the mechanism will generate
structures velocity fields that have a very characteristic
behavior. This is a transition to predominantly radial motion
with very small dispersion in the outermost parts. Surprisingly,
we have found that the projected motions of these regions can
typically be quite compatible with a rotating disk model, up to

residuals attributed to radial motion that are very significant but
of the order typically found in fitting rotating disk models to
observations. This suggests the possibility that these motions
could be explained without invoking either dark matter or a
modification of Newtonian gravity, which are unavoidable if
these galaxies are modeled as stationary and rotating. Rather,
these motions might be consistent with the purely Newtonian
gravitational dynamics of the visible mass if the outer parts of
the galaxy are far from stationary and the motions are
predominantly radial and spatially correlated in a non-
axisymmetric distribution, rather than rotational. Instead of
providing a single predictive model, we have opened a
Pandora’s box of models, a different framework—of comple-
tely non-stationary mass distributions—that must be compared
in much greater detail with observations. Any such model is
obviously also very simplistic, not just because of the
idealization of the initial conditions but also in that it neglects
everything but gravitational dynamics. Any detailed quantita-
tive model will of course necessarily need to consider more
complex initial conditions and also incorporate non-gravita-
tional physics. There are other obvious apparent shortcomings
of the toy model. For example, (i) spiral arms correspond to
modest variations in mass density, and (ii) the timescale for
collapse, as we have discussed, must be assumed to be short
compared to the ages of old stars. The former may plausibly be
related to the low mass resolution we have used, while the latter
constraint may change in more complex initial conditions.
Nevertheless we believe it is remarkable and tantalizing that the
simple framework we have discussed produces structures
bearing so much qualitative resemblance to astrophysical
objects, and suggesting the possibility of a different and simple
explanation for their observed projected motions.

The author of this work were granted access to the HPC
resources of The Institute for Scientific Computing and
Simulation financed by Region Ile de France and the project
Equip@Meso (reference ANR-10-EQPX- 29-01) overseen by
the French National Research Agency (ANR) as part of the
Investissements d’Avenir program.

Appendix

We detail here how we construct the projected velocity maps
reported in Section 3 from our simulated mass distributions.
This projection is defined for a random observer at infinity. It is
convenient, in order to understand the dependence on the
orientation of the observer’s LOS, to define this orientation
with respect to the principal axes of the mass distribution.
Having done so, it then straightforward to determine the
projected velocities as a function of this orientation and the
components of the position and velocity in the principal axes.

A.1. Principal Axes

We compute the inertia matrix of the mass distribution
relative to an origin taken at the minimum of the gravitational
potential. We then determine its eigenvalues li, where
 l l l1 2 3, and corresponding eigenvectors li. The longest

semi-principal axis is then designated by a unit vector u1
parallel to l1, the intermediate semi-principal axis by a unit
vector u2 parallel tol2, and the shortest semi-principal axis by
l3. The plane of the galaxy is then orthogonal to l3. We then

Figure 8. Projection for =  = i j30 , 30 . Upper panel: LOS velocity profile
along the kinematic axis and along the axis perpendicular to it. Bottom panel:
ratio between the mass estimated from the LOS velocity (assuming it to be
circular and stationary) and the actual mass.
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rotate from our original Cartesian axes (of the simulation) to
determine the components of the particle positions, xi, and their
velocities, vi, in the new basis { }ui .

A.2. Orientation of the Observer

Following standard conventions (see, e.g., Beckman
et al. 2004) we define the inclination angle i of the observer
as the angle between his LOS and a vector orthogonal to the
plane of the galaxy, which we take to be u3. Furthermore, as the
galaxy is non-axisymmetric about this axis, we define an
azimuthal angle j as the angle between the projection into the
galaxy plane of the LOS and the major axis. Thus, we write the
unit vector parallel to the LOS as

= + +( ) ( ) ( ) ( ) ( ) ( )u u u ui j i j isin cos sin sin cos , 2o 1 2 3

A.3. Determination of Projected Velocities

To define the axes giving the observer’s plane of projection
it is convenient first to define the set of axes

= -
= +

( ) ( )
( ) ( ) ( )

u u u
u u u

j j
j j

sin cos ,
cos sin 3

x

y

1 2

1 2

in the plane of the galaxy. The vector uy is thus parallel to the
axis of the projection in the plane of the galaxy of the observer
LOS, while ux is the axis in the plane of the galaxy orthogonal
to the observer LOS.
The projected plane, orthogonal to the LOS, is then spanned

by the unit vectors

= = ´ ¢ ( )u u u u u, . 4x x y o x

Using the expressions above, a little algebra gives

= + +
=- + +
=- +

¢ ¢

¢ ¢

¢

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

u u u u

u u u u

u u u

j j i j i

j j i j i

i i

sin cos cos cos sin

cos sin cos sin sin

sin cos . 5

x y o

x y o

y

1

2

3 0

The position coordinates ¢ ¢( )x y, of the particles in the plane of
projection, and projected velocity = ·v uvlos 0, can then be
calculated, for any given observer (i, j), as

¢ = -
¢ = + -
= + +

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

x x j x j

y x i j x i j x i
v v i j v i j v i

sin cos
cos cos cos sin sin
sin cos sin sin cos . 6

1 2

1 2 3

los 1 2 3

Figure 9. Residuals for = i 60 and different values of j from 0° to 80° in steps of 10°.
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A.4. One-dimensional Apparent Velocity Profiles

Most observations of apparent velocities are not fully two-
dimensional, but given along a specific axis (corresponding to the
orientation of the slit used for the spectographic measurements).
In order to obtain such one-dimensional velocity profiles we
define two such slits: one aligned parallel to the kinematic axis,
i.e., the axis along which there is the maximum gradient of
the LOS velocity (details below), and one orthogonal to this
direction. We have also considered projections along the major
axis and minor axis of the projected distribution (defined
following a procedure analogous to that described above for
the three-dimensional case). The slit is assumed to be rectangular,
of a width Δ which is a small fraction of the minor axis. From
these LOS velocity profiles along the kinematic axis vlos(R), we
estimate the mass Mc(R) enclosed in the radius R assuming that
particles are in stationary circular orbits as

=( ) ( )
( )

( )M R
v R R

i Gsin
, 7c

los
2

where the inclination angle is estimated from the projection as
described below.

A.5. Velocities for Rotating Disk Model

If one models a galaxy as a disk, the projected LOS
velocities can be written (see, e.g., Beckman et al. 2004) as

f q q= +q( ) ( ) ( ) ( ) ( ) ( )v r v i v i, sin cos sin sin , 8Rlos

where f( )r, are polar coordinates in the plane of the projection,
with f defined relative to the axis orthogonal to the observer
LOS (i.e., parallel to the axis ux defined above), and vθ and
vR are the components of the velocity field given in polar
coordinates q( )R, in the plane of the galaxy (with θ defined
relative to the same axis ux, which is also in the plane of the
galaxy). The polar coordinates are related by the transformation

q f
f q

=
=

( ) ( ) ( )
( ) ( ) ( )

i

R r

tan tan cos
cos cos . 9

For a purely rotating axisymmetric model, vR=0 and
=q q ( )v v R . The kinematic axis is that along which there is

maximal variation of the projected velocity, i.e., q f= = 0.

A.6. Fitting to a Rotating Disk Model

To fit our projected velocity data to a rotating axisymmetric
disk we first estimate from our data the orientation of the axis,
assumed to correspond to the kinematic axis. We determine the
kinematic axis as the axis passing through the center of mass of
the distribution and along which the difference of the velocities
at the two extreme points is maximal.

While this axis must strictly be the major axis of the projection
if the underlying distribution is really a disk, this is generally not
the case for our distributions that are not axisymmetric. However,
because in our models the directions of the radial velocities
are strongly correlated with the real three-dimensional major
axis of the non-axisymmetric distribution (see below), the offset
between the kinematic axis and the projected major axis is, in
fact, typically (i.e., for a large fraction of random observers) quite
small. Such offsets are, indeed, typically seen in observations
(see, e.g., Erroz-Ferrer et al. 2015).

To find the best-fitting rotating disk model, we need to
determine the inclination angle i: we do this by minimizing the

residuals between the rotational model, computed for a generic
i, and the actual data on each grid cell. To do so we compute
first, for each grid cell, labeled by α and centered on projected
coordinates ¢ ¢a ax y, , the polar coordinates as defined above:

f

f f
q f

= ¢ + ¢

= ¢

= +

=

a a a

a a a

a a a a

a a

( ) ( )

( )

( ) ( ) ( )
( ( ) ( )) ( )

r x y

x r

R r i

i

arccos

cos sin cos

arc tan tan cos . 10

2 2

2 2 2

Then, for the given value of the inclination angle i, we use
Equation (8) (with vR=0) to compute the LOS velocity of the
rotational model, denoted avlos,model. Note that in the case where
the unprojected size of the galaxy is larger than the maximum
distance at which the LOS velocity profile extends, we perform
a linear fit over the last five points of vlos(R) and then
extrapolate using this fit to a higher radius. Finally, in order to
get the best-fitting inclination angle, we minimize the sum of
the residuals in all the cells with respect to i, i.e.,

å= -
a

a a∣ ∣ ( )v vResiduals . 11los los,model
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