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Chapter 1
Effective Coefficients and Local Fields of
Periodic Fibrous Piezocomposites with 622
Hexagonal Constituents

Ransés Alfonso-Rodríguez, Julián Bravo-Castillero, Renald Brenner, Raúl
Guinovart-Díaz, Leslie D. Pérez-Fernández, Reinaldo Rodríguez-Ramos, and
Federico J. Sabina

Abstract The asymptotic homogenization method is applied to a family of boundary
value problems for linear piezoelectric heterogeneous media with periodic and
rapidly oscillating coefficients. We consider a two-phase fibrous composite consisting
of identical circular cylinders perfectly bonded in a matrix. Both constituents are
piezoelectric 622 hexagonal crystal and the periodic distribution of the fibers follows a
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rectangular array. Closed-form expressions are obtained for the effective coefficients,
based on the solution of local problems using potential methods of a complex variable.
An analytical procedure to study the spatial heterogeneity of the strain and electric
fields is described. Analytical expressions for the computation of these fields are
given for specific local problems. Examples are presented for fiber-reinforced and
porous matrix including comparisons with fast Fourier transform (FFT) numerical
results.

1.1 Introduction

At the beginning of the nineteen nineties, different homogenization techniques were
applied to investigate the macroscopic or effective properties of periodic piezoelectric
composites (Galka et al, 1992; Maugin and Turbé, 1991; Telega, 1991; Turbé and
Maugin, 1991). The initial studies of the effective dynamical properties of periodic
piezoelectric composites by considering Bloch expansions were reported in Telega
(1991); Turbé and Maugin (1991). The method of G -convergence was used to study
the static effective properties without dispersive behavior. In Galka et al (1992), the
two-scale asymptotic homogenization was applied for thermo-piezoelectric heteroge-
neous media.

In this framework, the computation of the effective properties depends on the
solution of the so-called local problems. Many works have been devoted to the
application of analytical and numerical techniques for solving the local problems,
see, for instance, Berger et al (2003, 2006); Bravo-Castillero et al (1997, 1998, 2001);
Galka et al (1996); Otero et al (2003); Rodríguez-Ramos et al (1996); Sabina et al
(2001). In general, those efforts have been addressed to piezoelectric composites
whose constituents exhibit a 6mm symmetry class which are of interest in smart
materials applications.

The purpose of this work is essentially twofold. Firstly, to provide closed-form
expressions for the effective coefficients of fibrous composites with piezoelectric
components which belong to the 622 hexagonal symmetry (Nye, 1957) and with
a rectangular distribution of the fibers. These results generalize those published in
López-López et al (2005); Aguiar et al (2013) where the periodic cell is a square.
Secondly, to describe a procedure to obtain analytical expressions for the components
of both the local strain tensor and local electric field intensity vector.

These studies could be interesting for the modeling of biomaterials in bone me-
chanics applications (for instance, collagen is a natural substance which possesses
the 622 symmetry, see Fukada, 1984). In Telega (1991), for the first time, the appli-
cation of homogenization methods for finding the effective piezoelectric properties
of compact bones was sketched. However, up to now, few papers on composites
with 622 symmetry have been reported (Aguiar et al, 2013; Alfonso-Rodríguez et al,
2017; López-López et al, 2005; Sevostianov et al, 2014).

The paper is organized as follows. In Sect. 1.2, a family of boundary value prob-
lems for periodic piezoelectric media with rapidly oscillating coefficients is presented
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1 Effective Coefficients and Local Fields of Periodic Fibrous Piezocomposites 3

in matrix notation. The main steps of the asymptotic homogenization procedure to
obtain the averaged problem, the local problems, the effective coefficients and the
components of the local fields, are summarized. In Sect. 1.4, the homogenization
model is applied to the case of unidirectional fibrous composites with 622 piezoelec-
tric phases and a rectangular periodic cell. The relevant local problems are solved
based on the theory of functions of a complex variable and closed-form expressions
are derived for the corresponding effective coefficients. Analytical expressions are
also explicitly given for the components of the strain and electric local fields asso-
ciated with particular local problems. In Sect. 1.6, some numerical examples are
presented and the accuracy of the results is assessed through comparisons with results
derived from the FFT numerical scheme (Brenner, 2009, 2010).

1.2 A Boundary Value Problem of the Linear Piezoelectricity
Theory

Let W ⇢ R3 be a three-dimensional domain with infinitely smooth boundary ∂W .
The material properties of a piezoelectric body occupying W are described by elastic
(ci jkl), piezoelectric (ei jk), and dielectric (ki j) coefficients. These coefficients are
assumed to be differentiable, rapidly oscillating and eY -periodic functions in the
local variable y = x/e , where x = (x1,x2,x3) 2 W is the global variable, e > 0 is the
usual small geometric parameter, and Y is the periodic cell.

The material functions are defined by

ce
i jkl (x) = ci jkl

⇣ x
e

⌘
, ee

i jk (x) = ei jk

⇣ x
e

⌘
, ke

i j (x) = ki j

⇣ x
e

⌘
, i, j,k = 1,2,3,

which are denoted in a unified fashion by A jl ⌘
⇣

ai0k0
jl

⌘

i0,k0=1,...,4
, where

aik
jl = ci jkl, ai4

jl = eli j, a4k
jl = e jkl, a44

jl = �k jl .

The material functions satisfy the usual symmetry conditions

aik
jl = a jk

il = ail
jk = aki

l j, ai4
jl = a j4

il , a4k
jl = a4l

jk, a44
jl = a44

l j , (1.1)

and we will assume that there exist a constant { > 0 such that, for any symmetric
matrix q = (qi j) and any vector a = (ai)

aik
jl (x)qi jqkl � {qi jqi j, a44

jl (x)a jal � {a ja j. (1.2)

Note that the summation rule on the repeated indices will be used throughout the
paper.

A boundary value problem for the system of equations of linear piezoelectricity
can be written as
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∂
∂x j

✓
Ae

jl (x)
∂

∂xl
Ue(x)

◆
= 0 2 W , (1.3)

Ue(x) = bU(x), x 2 ∂W , (1.4)

where Ue(x) =
�
ue

1(x),u
e
2(x),u

e
3(x),ne(x)

�T and bU(x) = (û1(x), û2(x), û3(x), n̂(x))T

represent the unknown and the prescribed boundary conditions, respectively. The
superscript T stands for transposition. Equation (1.3) represent a system of partial
differential equations to find the mechanical displacement field ue =

�
ue

k
�

and the
electric potential ne . The problem (1.3)-(1.4) describes the piezoelectric state of a
composite material that occupies the domain W and is free of external forces.

1.3 Homogenization, Local Problems and Effective Coefficients

In this section, the asymptotic homogenization method (AHM) (Bakhvalov and
Panasenko, 1989) is applied to the family of problems (1.3)-(1.4). More specifically,
the methodology used in Sixto-Camacho et al (2013) is followed.

The solution of (1.3)-(1.4) is sought in the form

Ue (x) =U (0)(x,y)+ eU (1)(x,y)+ · · ·+ e iU (i) (x,y)+ . . . , (1.5)

where
U (i) =

⇣
u(i)1 ,u(i)2 ,u(i)3 ,n(i)

⌘T
, i = 0,1,2, . . . ,

being u(0)k (x,y), u(1)k (x,y),. . ., n(0)(x,y), n(1)(x,y), . . . infinitely differentiable and
Y�periodic functions with respect to y. Substituting (1.5) into (1.3)–(1.4), applying
the differentiation chain rule and equating to zero the terms corresponding to equal
powers of e (from e�2,e�1,e0, . . . ), a recurrent family of partial differential equa-
tions is obtained. From the term corresponding to e�2, it is possible to conclude
that the non-perturbed terms of the asymptotic (1.5) are independent of y, that is
U (0) = U (0)(x). From the term that corresponds to e�1 the local problems are
obtained, which have a solution U (1)(x,y) in the class of Y�periodic functions with
respect to y. Such a solution can be expressed using the method of separable variables
as follows

U (1)(x,y) = N p (y)
∂U (0)(x)

∂xp
, (1.6)

with

N p(y) =
✓

X pq
k (y) ° p

k (y)
Q pq(y) P p(y)

◆

k,q=1,2,3
,

where the matrix N p(y) is a Y�periodic solution of

∂
∂y j

✓
A jp (y)+A jl (y)

∂N p(y)
∂yl

◆
= 0. (1.7)
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Based on the periodicity and ellipticity of the material coefficients it is possible to
apply the theorem of the Appendix of Sixto-Camacho et al (2013) to prove that
equations (1.7) have a unique Y�periodic solution up to an additive constant. The
problems involving such equations are the so-called local problems. The solutions of
such problems play an important role for the calculation of the effective coefficients.
Usually, the condition of null average of the local functions (i.e., hN p (y)i = 0) on
the periodic cell is imposed for uniqueness. The angular brackets denote the average
per unit volume over the cell i.e.

hg(y)i = 1
|Y |

Z

Y

g(y)dy.

On the other hand, from the terms corresponding to e0, we obtain the homogenized
problem

Apq
∂ 2U (0) (x)

∂xp∂xq
= 0, x 2 W , (1.8)

U (0) (x) = bU(x), x 2 ∂W . (1.9)

and the effective coefficients Apq, which are defined by

Apq =

⌧
Apq(y)+Apl(y)

∂N p(y)
∂yl

�
. (1.10)

The terms U (i)(x,y) (i > 1) of (1.5) can be also expressed in separable variables by

U (i)(x,y) = N pp1...pi�1 (y)
∂ iU (0)(x)

∂xp∂xp1 . . .∂xpi�1

, (1.11)

where N pp1...pi�1 are Y�periodic solutions of certain partial differential equations
which can be found in Eq. (4.13) of Sixto-Camacho et al (2013).

1.3.1 Explicit Form of the Homogenized Problem, Effective
Coefficients and Local Problems

From (1.8)–(1.10), it is possible to obtain the explicit form of the homogenized
problem

ci jkl
∂ 2u(0)k (x)
∂x j∂xl

+ emi j
∂ 2n(0)(x)
∂x j∂xm

= 0, x 2 W , (1.12)

eikl
∂ 2u(0)k (x)

∂xi∂xl
�k im

∂ 2n(0)(x)
∂xi∂xm

= 0, x 2 W , (1.13)
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u(0)k (x) = ûk (x) , n(0) (x) = n̂(x), x 2 ∂W , (1.14)

and the effective coefficients

ci jpq =

⌧
ci jkl

⇥
dkpdlq + ✏kl,y (X pq)

⇤
+ eli j

∂Q pq

∂yl

�
, (1.15)

e jpq =

⌧
e jkl
⇥
dkpdlq + ✏kl,y (X pq)

⇤
�k jl

∂Q pq

∂yl

�
, (1.16)

epi j =

⌧
eli j


dl p +

∂P p

∂yl

�
+ ci jkl✏kl,y (° p)

�
, (1.17)

k ip =

⌧
kil


dl p +

∂P p

∂yl

�
� eikl✏kl,y (° p)

�
, (1.18)

where dkl is the Kronecker’s delta and

✏kl,x (u) =
1
2

✓
∂uk

∂xl
+

∂ul

∂xk

◆
.

The local functions X pq
k , Q pq, ° p

k and P p are Y -periodic solutions of the following
problems on the cell Y :

• Problem Lpq: Find the Y -periodic functions X pq
k , Q pq such that:

8
>><

>>:

∂
∂y j

⇢
ci jkl

⇥
dkpdlq + ✏kl,y (X pq)

⇤
+ eli j

∂Q pq

∂yl

�
= 0, in Y,

∂
∂y j

⇢
e jkl
⇥
dkpdlq + ✏kl,y (X pq)

⇤
�k jl

∂Q pq

∂yl

�
= 0, in Y.

(1.19)

• Problem Lp: Find the Y -periodic functions ° p
k , P p such that:

8
>><

>>:

∂
∂y j

⇢
eli j


dl p +

∂P p

∂yl

�
+ ci jkl✏kl,y (° p)

�
= 0, in Y,

∂
∂y j

⇢
k jl


dl p +

∂P p

∂yl

�
� e jkl✏kl,y (° p)

�
= 0, in Y.

(1.20)

1.3.2 Local Fields

Now boundary conditions (1.14) are given by linear functions of the type

ûk (x) = êklxl , n̂ (x) = �Êlxl , (1.21)

where êkl and Êl are the components of a constant strain tensor and a constant electric
field intensity vector, respectively on the boundary of the composite. Under these
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conditions, the functions u(0)k (x) = êklxl and n(0) (x) = �Êlxl represent the solution
of the homogenized problem (1.12)-(1.14). So the linearity of U (0)(x) implies that
U (i)(x,y) = 0 for i > 1. Consequently, the components of the asymptotic expansion
(1.5) take the form

u✏k (x) = êklxl + e
⇥
êpqX pq

k (y)� Êp° p
k
⇤
, (1.22)

n✏ (x) = �Êlxl + e
⇥
êpqQ pq (y)� ÊpP p⇤ . (1.23)

Therefore, it is possible to obtain the components of the local strain field

ekl,x (u✏ ) = êpq
⇥
dkpdlq + ekl,y (X pq)

⇤
� Êpekl,y (° p) , (1.24)

and the components of the local electric field intensity

El (n✏ ) = Êp


dpl +

∂P p

∂yl

�
� êpq

∂Q pq

∂yl
, (1.25)

where
El (n✏ ) = �∂n✏

∂xl
.

Note that the fields defined by (1.24) and (1.25) only depend on the local variable y.

1.4 Application to a Binary Fibrous Piezocomposite with Perfect
Contact Conditions at the Interfaces

In this section, we apply the previously described method to a particular composite.
We consider a two-phase fibrous composite consisting of identical circular cylinders
embedded in a matrix. Both components are homogeneous piezoelectric materials.
The axis of the fibers is parallel to the x3-axis. The periodic distribution of the fibers
follows a rectangular array as shown in Fig. 1.1. Perfect contact conditions on the
interface S e between the fibers and the matrix are assumed. The application of the
above described homogenization process leads to (1.12)–(1.20), with the addition of
contact conditions on the interfaces.

The local problems (1.19)–(1.20) on the periodic cell Y can be written as (Bravo-
Castillero et al, 2001; Sabina et al, 2001):

• Problem Lpq: To find the Y -periodic functions X pq
k and Q pq such that:

s pq(g)
id ,d = 0, in Yg , (1.26a)

Dpq(g)
d ,d = 0, in Yg , (1.26b)

q
X pq

k
y
= 0, on S , (1.26c)

JQ pqK = 0, on S , (1.26d)
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εΣ

2
εΩ

Yε

2x

ε

1
εΩ

1x
aε

1y

2y

R

θ

1Y

2Y

Σ

/2a−

1/21/2−

/2a

Fig. 1.1: Description of the cross-section of a two-phase fibrous periodic medium
and the rectangular periodic cell

q
s pq

id nd
y
= �

q
cid pq

y
nd , on S , (1.26e)

q
Dpq

d nd
y
= �

q
ed pq

y
nd , on S , (1.26f)

⌦
X pq

k
↵
= 0, (1.26g)

hQ pqi = 0, (1.26h)

with

s pq(g)
id ,d = c(g)idkl ✏kl ,y

⇣
X pq(g)

⌘
+ e(g)l idQ pq(g)

,l , (1.27a)

Dpq(g)
d = e(g)dkl ✏kl ,y

⇣
X pq(g)

⌘
�k(g)

dl Q pq(g)
,l . (1.27b)

• Problem Lp: Find the Y -periodic functions ° p
k and P p such that:

s p(g)
id ,d = 0, in Yg , (1.28a)

Dp(g)
d ,d = 0, in Yg , (1.28b)

q
° p

k
y
= 0, on S , (1.28c)

JP pK = 0, on S , (1.28d)
r

s p
id ,d nd

z
= �

q
epid

y
nd , on S , (1.28e)

q
Dp

d nd
y
= �

q
kd p

y
nd , on S , (1.28f)

⌦
° p

k
↵
= 0, (1.28g)

hP pi = 0, (1.28h)
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with

s p(g)
id ,d = c(g)idkl ✏kl ,y

⇣
° p(g)

⌘
+ e(g)l id P p(g)

,l , (1.29a)

Dp(g)
d = e(g)dkl ✏kl ,y

⇣
° p(g)

⌘
�k(g)

dl P p(g)
,l , (1.29b)

where nd are the components of the outer unit normal vector to the interface S , and
J·K = (·)(1) � (·)(2) denotes the contrast across S taken from the matrix to the fiber.
sid and Dd are the components of local stress tensor and electric displacement vector,
respectively. The Eqs. (1.26a) and (1.28a) are the corresponding equilibrium relations
of solids bodies; (1.26b) and (1.28b) are the quasi-static approximation of Maxwell’s
equations in the absence of free charges. Perfect contact conditions on the interface
are represented by (1.26c)–(1.26f) and (1.28c)–(1.28f). Conditions for uniqueness
are given by (1.26g)–(1.26h) and (1.28g)–(1.28h). Formulae (1.27a)–(1.27b) and
(1.29a)–(1.29b) are the local constitutive relations. The Latin indices run from 1 to
3, and the Greek ones from 1 to 2. The comma denotes partial differentiation with
respect to the local variable y.

1.5 Local Problems for Fibrous Composites with Constituents of
622 Hexagonal Class

In this work, we solve the local problems for the case corresponding to matrix and
fibres made of piezoelectric materials with 622 hexagonal symmetry (Nye, 1957).
These materials are characterized by eight independent constants (k, m, l, n, p, s0, t
and u), which are given by five elastic constants

2k = c1111 + c1122, 2m = c1111 � c1122 = c1212,
l = c1133 = c2233, n = c3333, p = c1313 = c2323;

one piezoelectric constant

s0 = �e123 = e213 = e231 = �e132

and two dielectric permittivity constants

t = k11 = k22, u = k33.

Consequently, the local problems L11, L22, L33 and L12 are exactly the same purely
elastic problems which were solved in Nava-Gómez et al (2012) to obtain the effective
coefficients c1111, c2211, c3311, c2222, c3322, c3333 and c1212. On the other hand, from
L3 one obtains that k33 = hui. Therefore, only four local problems (L13, L23, L1 and
L2) are relevant to obtain the remaining nonzero effective coefficients, which are
c1313, c2323, e213, e123, k11 and k22.
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In the local problems L13, L23, L1 and L2, the relevant constitutive relations (1.27)
and (1.29) can be summarized as

s31 = pe13,y � s0E2, (1.30)
s32 = �s0e23,y + tE1, (1.31)
D1 = pe23,y + s0E1, (1.32)
D2 = s0e13,y + tE2. (1.33)

Thus, only three material properties are here involved: the longitudinal shear modulus
p, the shear stress piezoelectric coefficient s0 and the transverse permittivity constant
t. The next subsections will be dedicated to the solution of these local problems and
the further computation of the related effective coefficients.

1.5.1 Local Problems L23 and L1

These two problems can be stated in a unified form as follows

DX (g) = 0 in Yg , (1.34a)

DQ (g) = 0 in Yg , (1.34b)
JXK = 0 on S , (1.34c)
JQK = 0 on S , (1.34d)

q�
pX,1 � s0Q,2

�
n1 +

�
pX,2 + s0Q,1

�
n2

y
= An2 on S , (1.34e)

q�
s0X,2 � tQ,1

�
n1 �

�
s0X,1 + tQ,2

�
n2

y
= Bn1 on S , (1.34f)

hXi = 0, (1.34g)
hQi = 0, (1.34h)

where D is the two-dimensional Laplacian. Therefore, the solutions X (g)(⌘ X 23(g)
3 )

and Q (g)(⌘ Q 23(g)) are doubly periodic harmonic functions of the complex variable
z = y1 + iy2 defined in the rectangular cell Y with periods w1 = 1 and w2 = ai. The
values of A and B in the right hand side of equations (1.34e) and (1.34f) for L23 are
�JpK and �Js0K respectively. However, for the local problem L1, these values are
A = �Js0K and B = JtK, whereas X (g)(⌘ ° 1(g)

3 ) and Q (g)(⌘ P 1(g)).
The solution of (1.34) is sought as follows

X (1)(z) = ¡

(
� d2

w2
a1z+

•

Âo

k=1
ak

z (k�1)(z)
(k �1)!

)
, (1.35a)

Q (1)(z) = ¬

(
� d1

w1
b1z+

•

Âo

k=1
bk

z (k�1)(z)
(k �1)!

)
, (1.35b)
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1 Effective Coefficients and Local Fields of Periodic Fibrous Piezocomposites 11

X (2)(z) = ¡

(
•

Âo

k=1
ckzk

)
, (1.35c)

Q (2)(z) = ¬

(
•

Âo

k=1
dkzk

)
, (1.35d)

where ak, bk, ck and dk are real and undetermined coefficients, ¬{z} and ¡{z} are,
respectively, the real and imaginary part of the complex number z, and z (z) is the
quasi-periodic Weierstrass Zeta function; whereas z (k)(z) denotes the k-th derivative
of periods w1 and w2. The superscript “o” indicates that the summation is carried out
only over the odd indices. X (g) is an even function of q , with z = Reiq , and Q (g) is
an odd function of q .

The expressions for the undetermined constants da can be obtained from the
quasi-periodicity of z (z)

z (z+wa)�z (z) = da , (1.36)

where
da = 2z

⇣wa
2

⌘

and Legendre’s relation is fulfilled (see, for instance Lang, 1993).
The Laurent expansion about the origin for X (1) and Q (1) can be written as

X (1)(z) = ¡

(
•

Âo

l=1
alz�l �

•

Âo

k=1
ak

•

Âo

l=1
khklzl

)
, (1.37a)

Q (1)(z) = ¬

(
•

Âo

l=1
blz�l �

•

Âo

k=1
bk

•

Âo

l=1
kh 0

klz
l

)
, (1.37b)

with

h11 =
d2

w2
, h 0

11 =
d1

w1
, hkl = h 0

kl =
(k+ l �1)!

k!l!
Sk+l for k, l 6= 1,

(1.38)
and the lattices sum Sk+l is defined by

Sk+l = Â0

m,n
(mw1 +nw2)

�k�l , k+ l � 3, (1.39)

where the prime on the summation means that it excludes the term m = n = 0. Now
we use contact conditions (1.34c)–(1.34f) to derive the following relations between
the undetermined coefficients

Rlcl = �
 

R�lal +
•

Âo

k=1
khklRlak

!
, (1.40a)
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12 Ransés Alfonso-Rodríguez et al.

Rldl = R�lbl �
•

Âo

k=1
kh 0

klR
lbk, (1.40b)

ARd1l =
⇣

p(1) + p(2)
⌘

R�lal � JpK
 

•

Âo

k=1
khklRlak

!
+

q
s0y
 

R�lbl �
•

Âo

k=1
kh 0

klR
lbk

!
,

(1.40c)

BRd1l =
q

s0y
 

R�lal +
•

Âo

k=1
khklRlak

!
�
⇣

t(1) + t(2)
⌘

R�lbl � JtK
 

•

Âo

k=1
kh 0

klR
lbk

!
,

(1.40d)

for l = 1,3,5, . . . Note that the coefficients ak and bk from (1.40c) and (1.40d) are
solutions of an infinite system of linear algebraic equations.

In order to solve the system (1.40), it is convenient to introduce the following
change of variables

ãl =
p

lR�lal , b̃l =
p

lR�lbl , c̃l =
p

lRlcl , d̃l =
p

lRldl . (1.41)

Thus, now we can write (1.40) as

(I +W )V1 =V3, (1.42a)
(I �W 0)V2 =V4, (1.42b)

j(1)
11 V1 +j(1)

12 V2 +j(2)
11 WV1 +j(2)

12 W 0V2 = bV1, (1.42c)

j(1)
21 V1 +j(1)

22 V2 +j(2)
21 WV1 +j(2)

22 W 0V2 = bV2, (1.42d)

where I is the identity matrix, and the components W and W 0 for k = l = 1 are

w11 =
d2

w2
R2, w0

11 =
d1

w1
R2, (1.43)

and, otherwise,

wkl = w0
kl =

(k+ l �1)!
(k �1)!(l �1)!

Rk+l
p

k
p

l
Sk+l . (1.44)

So, both W and W 0 are real, symmetric and bounded; then we can use classical results
from the theory of infinite systems (Kantorovich and Krylov, 1964). Furthermore,

V1 = (ã1, ã3, ã5, . . .)
T , V2 =

�
b̃1, b̃3, b̃5, . . .

�T
, (1.45)

V3 = (c̃1, c̃3, c̃5, . . .)
T , V4 =

�
d̃1, d̃3, d̃5, . . .

�T
. (1.46)

and all components of bV1 and bV2 are zero except the first ones, which are equal to
Rcp and Rc 0

t , respectively, in L23, and to �Rcp and �Rc 0
t in L1

cp =
JpK

p(1) + p(2)
, c 0

t =
Js0K

t(1) + t(2)
, (1.47)
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1 Effective Coefficients and Local Fields of Periodic Fibrous Piezocomposites 13

c 0
p =

Js0K
p(1) + p(2)

, ct =
JtK

t(1) + t(2)
. (1.48)

Moreover, matrices F (d ), of components j(d )
ab , are non-symmetric matrices and can

be defined as

F (1) =


�1 �c 0

p
�c 0

t 1

�
, F (2) =


cp c 0

p
�c 0

t ct

�
. (1.49)

Note that the knowledge of V1 and V2 is enough to solve the system (1.42). Equations
(1.42c) and (1.42d) can be transformed into

j11V1 +j12V2 +WV1 =V1, (1.50a)
j21V1 +j22V2 +W 0V2 =V2, (1.50b)

or, in matrix form

F

V1
V2

�
+


W O
O W 0

�
V1
V2

�
=


V1
V2

�
, (1.51)

where the O denotes the null matrix and, in L23, only the first component of V1 is
nonzero, and equal to R; and in L1, only the first component of V2 is nonzero, and
equal to �R. Besides, we have

F =
h
F (2)

i�1
F (1) =

1
L

"
�ct +c 0

pc 0
t �c 0

p (1+ct)

�c 0
t (1+cp) cp � c 0

pc 0
t

#
,

L = cpct +c 0
pc 0

t ,

(1.52)

In order to solve the infinite system (1.50) it must be truncated as follows

HV=V, (1.53)

where V = (V1i,V2i)T and V = (V1i,V2i)T , for i = 1,3, . . . ,2n0 � 1. The natural
number n0 denotes the truncation order.

The general form of the components of the principal matrix H = (hi j) of (1.53)
can be defined as follows:

hi j =

8
>>>>>>><

>>>>>>>:

for i odd

8
<

:

hii = j11 +wii,
hi j = wi j, if j odd,
hii+1 = j12,

for i even

8
<

:

hii = j22 +w0
i�1i�1,

hi j = w0
i�1 j�1, if j even,

hii�1 = j21,

. (1.54)
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14 Ransés Alfonso-Rodríguez et al.

From system (1.53) the values of ãi and b̃i can be obtained using the inverse matrix
method to solve systems; and then the values of ai and bi by reversing the change of
variables described in (1.41), resulting in the following formulae

ai = RHiU, bi = RHi+1U, (1.55)

where Hi is the i-th row of H�1, which is the inverse matrix of H.

1.5.2 Effective Coefficients Related with the Local Problems L23

and L1

The nonzero effective coefficients which can be computed from the local problems
L23 and L1 are

c2323 = pv +
⌦

pX 23
3,2 � s0Q 23

,1
↵
, (1.56)

�e123 = s0
v +
⌦
s0X 23

3,2 + tQ 23
,1
↵
= s0

v +
⌦

p° 1
3,2 + s0P 1

,1
↵
, (1.57)

k11 = tv +
⌦
tP 1

,1 � s0° 1
3,2
↵
, (1.58)

where pv = c1 p(1) + c2 p(2), with c1 + c2 = 1 and c2 = pR2/a.
After that, the application of Green’s theorem, the doubly periodicity of the local

functions and the conditions on S leads to the following expressions (see, for instance,
Sabina et al, 2001; Aguiar et al, 2013)

c2323 = p(1)
✓

1+
2p
a

a23
1

◆
, (1.59)

�e123 = s0(1)

 
1+

2pt(1)

as0(1) b23
1

!
= s0(1)

 
1+

2p p(1)

as0(1) a1
1

!
, (1.60)

k11 = t(1)
✓

1� 2p
a

b1
1

◆
, (1.61)

where only the residues a1 and b1, of X (1) and Q (1), are relevant for computing such
effective coefficients. The superindices on a1 and b1 indicate the local problem which
is solved in order to use the formulas (1.55) for i = 1.

1.5.3 Local Problems L13 and L2 and Related Effective Coefficients

The study of the local problems L13 and L2 and the related effective coefficients
is very similar as above. Then only the main results will be summarized in this
subsection.
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1 Effective Coefficients and Local Fields of Periodic Fibrous Piezocomposites 15

The simultaneous formulation of these problems consists in to find the doubly
periodic functions X (g) and Q (g) such that:

DX (g) = 0 in Yg , (1.62a)

DQ (g) = 0 in Yg , (1.62b)
JXK = 0 on S , (1.62c)
JQK = 0 on S , (1.62d)

q�
pX,1 � s0Q,2

�
n1 +

�
pX,2 + s0Q,1

�
n2

y
=Cn1 on S , (1.62e)

q�
s0X,2 � tQ,1

�
n1 �

�
s0X,1 + tQ,2

�
n2

y
= Dn2 on S , (1.62f)

hXi = 0, (1.62g)
hQi = 0. (1.62h)

The solutions X (g)(⌘ X 13(g)
3 ) and Q (g)(⌘ Q 13(g)) are Y -periodic harmonic func-

tions depending on z = y1 + iy2 with periods w1 = 1 and w2 = ai. The values of C
and D in the right hand side of equations (1.62e) and (1.62f) for L13 are �JpK and
Js0K, respectively. For the local problem L1, these values are C = Js0K and D = JtK,
whereas X (g)(⌘ ° 2(g)

3 ) and Q (g)(⌘ P 2(g)).
According to the interface conditions (1.62e) and (1.62f), the solution of (1.62) is

sought as

X (1)(z) = ¬

(
� d2

w2
a1z+

•

Âo

k=1
ak

z (k�1)(z)
(k �1)!

)
, (1.63a)

Q (1)(z) = ¡

(
� d1

w1
b1z+

•

Âo

k=1
bk

z (k�1)(z)
(k �1)!

)
, (1.63b)

X (2)(z) = ¬

(
•

Âo

k=1
ckzk

)
, (1.63c)

Q (2)(z) = ¡

(
•

Âo

k=1
dkzk

)
. (1.63d)

Furthermore, using similar ideas to those discussed previously, the following
formulae for the related effective coefficients can be obtained

c1313 = p(1)
✓

1� 2p
a

a13
1

◆
, (1.64)

e213 = �s0(1)

 
1+

2pt(1)

as0(1) b13
1

!
= s0(1)

 
1+

2p p(1)

as0(1) a2
1

!
, (1.65)

k22 = t(1)
✓

1+
2p
a

b2
1

◆
, (1.66)
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16 Ransés Alfonso-Rodríguez et al.

where a1 and b1 are also the residues of X (1) and Q (1).
Now, by using the change of variable (1.41) it is possible to arrive to the infinite

system to compute ã1 and b̃1:

(I �M)V1 =V3, (1.67a)
(I +M0)V2 = �V4, (1.67b)

y(1)
11 V1 +y(1)

12 V2 +y(2)
11 MV1 +y(2)

12 M0V2 = bV1, (1.67c)

y(1)
21 V1 +y(1)

22 V2 +y(2)
21 MV1 +y(2)

22 M0V2 = bV2, (1.67d)

where the only difference to system (1.42) is that

m11 =
d1

w1
R2, m0

11 =
d2

w2
R2, (1.68)

and, otherwise,

mkl = m0
kl =

(k+ l �1)!
(k �1)!(l �1)!

Rk+l
p

k
p

l
Sk+l . (1.69)

Besides,

Y (1) =


1 �c 0

p
�c 0

t �1

�
, Y (2) =


cp �c 0

p
c 0

t ct

�
, (1.70)

and, as above, we find the matrix Y , which is given by

Y =
h
Y (2)

i�1
Y (1) =

1
L

"
ct � c 0

pc 0
t �c 0

p (1+ct)

�c 0
t (1+cp) �cp +c 0

pc 0
t

#
. (1.71)

Therefore, we can write the system in the following way

Y

V1
V2

�
+


M O
O M0

�
V1
V2

�
=


V1
V2

�
, (1.72)

where only the first components of V1 and V2 can be different from zero, and equal to
R. In the case of problem L13, the first component of V1 is the one that is nonzero; in
the case of problem L2, only the first component of V2 is equal to R.

System (1.72) can be written in the form (1.53) with the particularity that the
components of the principal matrix H = (hi j) are defined by

hi j =

8
>>>>>>><

>>>>>>>:

for i odd

8
<

:

hii = y11 +mii,
hi j = mi j, if j odd,
hii+1 = y12,

for i even

8
<

:

hii = y22 +m0
i�1i�1,

hi j = m0
i�1 j�1, if j even,

hii�1 = y21,

(1.73)
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Finally, the corresponding values of a1 and b1 can be computed by using Eqs.
(1.55), respectively.

1.5.4 On the Computation of the Local Fields from the Solutions of
the Local Problem L13

As we can note, the analytical solutions of the local problems are expressed in terms
of the local coordinates r and q . However, to study the behavior of the local fields
(1.24) and (1.25) it is necessary to compute their derivatives with respect to the
Cartesian coordinates yd , and then the chain’s rule must be used

∂
∂y1

= cosq ∂
∂r

� sinq
r

∂
∂q

,
∂

∂y2
= sinq ∂

∂r
+

cosq
r

∂
∂q

. (1.74)

For instance, the solutions X (g)(⌘ X 13(g)
3 ) and Q (g)(⌘ Q 13(g)), of the local problem

L13, can be written as

X (1)(r,q) =
2n0�1

Âo

l=1
alr�l cos(lq)�

2n0�1

Âo

k=1
ak

2n0�1

Âo

l=1
khklr l cos(lq), (1.75a)

Q (1)(r,q) = �
2n0�1

Âo

l=1
blr�l sin(lq)�

2n0�1

Âo

k=1
bk

2n0�1

Âo

l=1
kh 0

klr l sin(lq), (1.75b)

X (2)(r,q) =
2n0�1

Âo

k=1
ckrk cos(kq), (1.75c)

Q (2)(r,q) =
2n0�1

Âo

k=1
dkrk sin(kq), (1.75d)

where the constants al , bl ,cl and dl (l = 1,3, . . . ,2n0 �1) can be obtained from the
solution of (1.67a)–(1.67d) for a truncation order n0.

As an example, we consider the following homogeneous boundary conditions:
ê13 = 1 and êpq = 0, for the strain tensor components, and Êp = 0 for the components
of electric field intensity vector. Then, Eqs. (1.24) and (1.25) take the form

ekl (y) = dk1dl3 +dk3dl1 +2ekl,y
�
X 13� , El (y) = �2

∂Q 13

∂yl
. (1.76)

Finally, it is possible to compute the components of the local fields from the
solutions of the local problem L13 as follows
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e13 (y) = 1+
∂X 13

3
∂y1

, e23 (y) =
∂X 13

3
∂y2

, (1.77)

E1 (y) = �2
∂Q 13

∂y1
, E2 (y) = �2

∂Q 13

∂y2
. (1.78)

which can be computed by using the expressions (1.75) and the chain rule. A similar
procedure allows to obtain analytical expressions for the local fields related with the
solutions of the local problems L23, L1 and L2.

1.6 Numerical Examples

Some examples are presented, which include comparisons between the analytical
results derived from the present model (PM) and those obtained with the fast Fourier
transform (FFT) numerical method (Moulinec and Suquet, 1998; Michel et al, 2001;
Brenner, 2009, 2010). For the case of a fiber-reinforced matrix, we have considered
the data previously used in López-López et al (2005). They correspond to a collagen
matrix with collagen-hydroxyapatite (HA) fibers. For the case of a porous piezoelec-
tric matrix, we have considered the data used in Aguiar et al (2013) corresponding to
bone material (Table 1.1).

In Figs. 1.2–1.5, the evolution of the effective coefficients with the fiber volume
fraction c2 is shown. The range of variation of c2 goes from zero up to the percolation
limit when two neighboring fibers or holes get in contact. The results are normalized
by the properties of the matrix. In Fig. 1.2, a square periodic cell (a = 1) is considered
and the results from López-López et al (2005) are reproduced. In Figs. 1.4 and 1.5, a
rectangular periodic cell (for a = 2) is discussed. Finally, in Figs. 1.6 and 1.7, the
spatial distribution of the local fields is illustrated.

Table 1.1: Piezoelectric properties used for the computations (López-López et al,
2005; Aguiar et al, 2013). ✏0 denotes the permittivity of free-space.

Collagen HA
Longitudinal shear modulus p (GPa) 1.400 2.697
Shear strain piezoelectric coefficient d = s0/p (pC/N) 0.062 0.041
Transverse permittivity constant t/✏0 (no units) 2.825 2.509

Bone
Longitudinal shear modulus p (GPa) 8.2
Shear stress piezoelectric coefficient s0 (N/Vm) 2.214⇥10�3

Transverse permittivity constant t/✏0 (no units) 6.85
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Fig. 1.2: The elastic, piezoelectric and dielectric effective coefficients for a two-
phase fibrous piezocomposite with a square (a = 1) periodic distribution of fibres.
Comparisons of the results obtained with the present model (PM) with those de-
rived by the FFT

1.6.1 Square Array Distribution

In Fig. 1.2, numerical results are shown for a fiber reinforced material with square
periodic cell (a = 1). In this case the following equalities were numerically verified:
c1313 = c2323, k11 = k22 and e213 = �e123. Then, for simplicity, p, t and s0 are used
to denote the effective elastic, dielectric permittivity and piezoelectric coefficients,
respectively. Also, d = s0/p denotes the effective shear strain piezoelectric coefficient.
A truncation order n0 = 2 is used for the computations with the present model.

A good agreement can be observed between the semi-analytical (PM) and the
numerical results (FFT). The curves corresponding to the present model reproduce
those published in López-López et al (2005).

The results shown in Fig. 1.3 correspond to a porous material and, as in Fig.
1.2, the periodic cell is square. Here, the equalities c1313 = c2323 = k11 = k22 and
e213 = �e123 stand and were numerically verified. A good agreement between the
PM results and those from the numerical FFT method can be observed whatever the
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Fig. 1.3: The normalized elastic, piezoelectric and dielectric effective coefficients
for a piezocomposite with a square (a = 1) periodic distribution of cylindrical holes.
Comparisons between the results derived from the present model (PM) with those
derived from the Fast Fourier Transform numerical method (FFT)

fiber volume fraction. The results shown for the present model were obtained using a
truncation order n0 = 5.

1.6.2 Rectangular Array Distribution

In Figs. 1.4 and 1.5, piezoelectric composites with a rectangular periodic distribution
of the fibers are examined for a = 2. In Fig. 1.4, a two-phase composite with an
orthotropic effective behavior is studied. In Fig. 1.5, a porous piezocomposite which
preserves the symmetry properties of the matrix is considered. In both figures, an
excellent agreement can be observed, for all the range of fiber area fractions, among
the analytical (PM) and numerical (FFT) results and for all the normalized effective
coefficients. Note that both models capture the expected global behavior for each
type of composite. The truncation order used for the computations with the present
model was n0 = 4.
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Fig. 1.4: The normalized elastic, piezoelectric and dielectric effective coefficients
for a two-phase fibrous piezocomposite with a rectangular (a = 2) periodic distri-
bution of fibres. Comparisons of the results derived from the present model (PM)
with those derived by the Fast Fourier Transform numerical method (FFT)

1.6.3 Spatial Distribution of Local Fields

The local fields defined by (1.24) and (1.25) depend on the solution of all local
problems. However, for specific homogeneous boundary conditions only one local
problem needs to be solved in order to compute the local fields. For instance, as
was shown above, the solutions of the local problem L13 are enough to compute
the local fields given by (1.77)–(1.78). In Figs. 1.6 and 1.7, the distribution of the
components ✏13 and E1, for a truncation order n0 = 7 is plotted. In both cases the
radius of the fiber is R = 0.35. A significant variation is predicted in the matrix at the
fiber-matrix interface normal to the x1 and x2 axis respectively, and almost uniform
fields are predicted within the fibers. The latter is an expected result. Let us consider,
for example, the Eq. (1.77): using Eqs. (1.75c) and (1.74) it yields

e13 (y) = 1+
∂X 13

3
∂y1

, e13 (y) = 1+
2n0�1

Âo

k=1
kckrk�1 cos(k �1)q . (1.79)
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Fig. 1.5: The normalized elastic, piezoelectric and dielectric effective coefficients
for a piezocomposite with a rectangular (a = 2) periodic distribution of cylindrical
holes. The results derived from the present model (PM) and those derived from the
Fast Fourier Transform numerical method (FFT) are compared

The sum in the right hand side of Eq. (1.79)2 can be easily majored by the sum

|c1|
2n0�1

Âo

k=1
k
✓

1
2

◆k�1
. (1.80)

Hence, the aforementioned sum should have little to nil influence in the final value
of the field inside the fiber, since the value of c1 for the given data set is very small.

The results shown in Fig. 1.6 were obtained using the formula (1.77) correspond-
ing to the solutions of the local problem L13, for homogeneous boundary conditions
of the type ✏̂ pq = d1pd3q and Êp = 0. This field is similar to that predicted via FFT,
as can be seen in Fig. 1.6, where the relative error between the computation using
Eq. (1.77) and the one using FFT is plotted, i.e. |PM�FFT|/PM. It can be seen that
in the matrix both methods coincide, while in the fiber they predict behaviors with
about a 20% difference. This difference can be explained by the little influence of the
sum in the right hand side of Eq. (1.79) in the actual value of the field inside the fiber.
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(a)

(b)

Fig. 1.6: (a) Component ✏13 of the local strain field within the fiber composite
with square arrangement for an axial shear strain load ✏̂13 = ✏̂31 = 1; (b) Absolute
error between the computation in (a) using the present model (1.77) and the FFT
numerical scheme
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The variation shown in Fig. 1.7 was computed for homogeneous boundary conditions
of the type ✏̂ pq = 0 and Êp = d1p. Such conditions transform (1.24) and (1.25) into

e13 (y) = �
∂g1

3
∂y1

, e23 (y) = �
∂g1

3
∂y2

, (1.81)

E1 (y) = 1+
∂P 1

∂y1
, E2 (y) =

∂P 1

∂y2
. (1.82)

Consequently, only the solutions of the problem L1 are involved in (1.81). Notice that
again in Fig. 1.7 the relative error of the computations through the present method
and FFT was plotted and they show coincidence in the matrix, while the differences
inside the fiber are not greater than a 6%.

1.7 Concluding Remarks

Analytical formulae for the effective coefficients were obtained for binary fibrous
composites with 622 hexagonal piezoelectric components and a rectangular distri-
bution of the unidirectional circular fibers. These results contain as particular cases
those reported in López-López et al (2005) and Aguiar et al (2013) where only the
square periodic cell was considered. Analytical expressions to study the fluctua-
tions of the components of the local strain and the local electric field intensity are
explicitly given. For the binary and the porous piezoelectric materials, the present
model has been successfully compared to the results obtained with the FFT numerical
homogenization method (Brenner, 2009, 2010).
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(a)

(b)

Fig. 1.7: (a) Component E1 of the local electric field intensity within the fiber
composite with square arrangement for an unitary uniaxial applied electric field
Ê1 = 1; (b) Absolute error between the computation in (a) using the present model
(1.82) and FFT
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