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We define a new two-dimensional nonlinear shell model “of Koiter’s type” that can be used 
for the modeling of any type of shell and boundary conditions and for which we establish 
an existence theorem. The model uses a specific three-dimensional stored energy function 
of Ogden’s type that satisfies all the assumptions of John Ball’s fundamental existence the-
orem in three-dimensional nonlinear elasticity and that is adapted here to the modeling 
of thin nonlinearly elastic shells by means of specific deformations that are quadratic with 
respect to the transverse variable.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous définissons un nouveau modèle bidimensionnel non linéaire de coques « de type 
Koiter » qui peut être utilisé pour la modélisation de tout type de coque et de conditions 
aux limites et pour lequel nous établissons un théorème d’existence. Ce modèle utilise une 
densité d’énergie de type Ogden satisfaisant toutes les hypothèses du théorème d’existence 
fondamental de John Ball en élasticité tridimensionnelle non linéaire et qui est adaptée ici à 
la modélisation des coques non linéairement élastiques minces au moyen de déformations 
particulières, qui sont quadratiques en la variable transverse.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Preliminaries

Greek indices and exponents vary in the set {1, 2}, Latin indices and exponents vary in the set {1, 2, 3}, and the sum-
mation convention for repeated indices and exponents is used in conjunction with these rules. Boldface letters are used to 
designate vector and matrix fields.

The three-dimensional Euclidean space is denoted E3. The inner product, the exterior product, and the norm, in E3 are 
respectively denoted ·, ∧, and | · |. The space of real n ×n matrices is denoted Mn and the Frobenius norm in Mn is denoted 
‖ · ‖. A matrix in Mn with components gij is denoted (gij), the first index (here i) indicating the row in the matrix.
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A domain in R2 is a bounded and connected open subset of R2 whose boundary is Lipschitz-continuous in the sense of 
Nečas [15].

Given an open subset ω of R2, a finite dimensional real space Y, any p ≥ 1 and any integer m ≥ 0, the notation Cm(ω; Y), 
resp. W m,p(ω; Y), denotes the space of Y-valued fields with components in Cm(ω), resp. in the Sobolev space W m,p(ω).

Given an open subset ω of R2, we let y = (yα) denote a generic point in ω and we let ∂α := ∂/∂ yα and ∂αβ :=
∂2/∂ yα∂ yβ . An immersion from ω into E3 is a mapping ψ ∈ C1(ω; E3) such that the two vector fields ∂αψ : ω → E

3 are 
linearly independent at each point of ω. The image ψ(ω) of ω by ψ is a surface (with boundary) in E3.

Given an immersion ψ ∈ C2(ω; E3), we let

a3(ψ) := ∂1ψ ∧ ∂2ψ

|∂1ψ ∧ ∂2ψ | , aαβ(ψ) := ∂αψ · ∂βψ, bαβ(ψ) := ∂αβψ · a3(ψ), and a(ψ) := det(aαβ(ψ));

the functions aαβ(ψ) and bαβ(ψ) respectively denote the covariant components of the first fundamental form and those of 
the second fundamental form along the surface ψ(ω).

Given an immersion θ ∈ C2(ω; E3) considered as fixed, we let (for brevity)

a3 := a3(θ), aαβ := aαβ(θ), bαβ := bαβ(θ), and a := a(θ),

and, given any arbitrary immersion ψ ∈ C2(ω; E3), we let

Gαβ(ψ) := 1

2
(aαβ(ψ) − aαβ) and Rαβ(ψ) := bαβ(ψ) − bαβ

respectively denote the covariant components of the change of metric tensor and those of the change of curvature tensor
between the surfaces θ(ω) and ψ(ω).

Given a domain ω ⊂ R
2, a “small” parameter ε > 0, and an immersion θ ∈ C2(ω; E3), we let

� := ω × ]−ε, ε[ and � ∈ C1(�;E3)

denote the extension of the mapping θ defined by

�(y, x3) := θ(y) + x3a3(y) at each y ∈ ω and each x3 ∈ [−ε, ε].
Then one can show that, if ε > 0 is small enough, det ∇� > 0 in � and � is injective over �; cf. Theorem 4.1-1 in [5].

We let x = (xi) with (xα) = (yα) ∈ ω and x3 ∈ [−ε, ε] denote a generic point in �, we let ∂i := ∂/∂xi , and we let

gij := ∂i� · ∂ j� and (gkl) := (gij)
−1

respectively denote the covariant and contravariant components of the metric tensor field associated with the mapping �.
Finally, we let

Aijkl := λgij gkl + μ(gik g jl + gil g jk) in �,

and

aαβστ := 4λμ

λ + 2μ
aαβaστ + 2μ(aασ aβτ + aατ aβσ ) in ω,

respectively denote the contravariant components of the three-dimensional, and two-dimensional, elasticity tensor associated 
with an elastic material with Lamé constants λ and μ. If 3λ +2μ > 0 and μ > 0, both tensors are uniformly positive-definite, 
in the sense that there exist two constants C0 > 0 and c0 > 0 depending on λ and μ such that

C0

∑
i, j

(ti j)
2 ≤ Aijkl(x) tklti j for all x ∈ � and all symmetric 3 × 3 tensors (ti j),

and

c0

∑
α,β

(sαβ)2 ≤ aαβστ (y) sστ sαβ for all y ∈ ω and all symmetric 2 × 2 tensors (sαβ);

(cf. Theorems 3.9-1 and 4.4-1 in [5]). Note, however, that the Lamé constants of all known elastic materials satisfy the 
stronger assumptions λ > 0 and μ > 0.
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2. A brief review of the mathematical modeling of nonlinearly elastic shells

A nonlinearly elastic shell is a three-dimensional elastic body whose reference configuration is of the form

�(�) with � := ω × ]−ε, ε[,
where ε > 0 and � : � → E

3 is defined in terms of an immersion θ ∈ C2(ω; E3) as in Sect. 1. Then S = θ(ω) and 2ε > 0
respectively designate the middle surface and the thickness of the shell. Note that we assume for simplicity that the thickness 
of the shell is constant.

The deformation undergone by such a shell subjected to applied body and surface forces and to specific boundary conditions
can be computed by using either a three-dimensional model, i.e. where the shell is considered as a three-dimensional body, or a 
two-dimensional model, i.e. where the shell is assimilated to its middle surface.

The objective of this Note is to propose a new two-dimensional nonlinear shell model that has the advantage over the 
existing ones that the associated minimization problem has at least one solution for any type of geometry of the middle 
surface and any type of boundary conditions (Theorem 4 below), while being at the same time “formally asymptotically 
equivalent” (in a specific sense; cf. Theorem 3) to the classical nonlinear Koiter model, which is one of the most commonly 
used nonlinear shell models, but for which no existence theorem is available in the literature.

To begin with, we give a brief description of two available nonlinear shell models. For a detailed account, see, e.g., [3,4]
and the references therein.

The three-dimensional nonlinear shell model asserts that the deformation of a shell with (�̂)
−

as its reference configuration 
should minimize the total energy

Î(�̂) :=
∫

�̂

Ŵ (x̂, ∇̂�̂(x̂))dx̂ − L̂(�̂),

where

�̂ := �(�)

and Ŵ : (�̂)
− × M

3+ → R denotes the stored energy function of the elastic material constituting the shell and L̂ is a linear 
functional that takes into account the applied forces, over a set of admissible deformations (a precise definition of this set 
will be given later; for the time being, we simply mention that such deformations must be orientation-preserving, in the 
sense that det ∇̂�̂(x̂) > 0 at each x̂ ∈ (�̂)

−
).

We will assume here that the reference configuration (�̂)
−

of the shell is a natural state (i.e. stress free) and that the 
elastic material constituting the shell is isotropic, homogeneous, and satisfies the axiom of frame-indifference. Then one can show 
(cf., e.g., [3, Theorem 4.5-1]) that, in this case, the following Taylor expansion must hold at each x̂ ∈ (�̂)

−
and each F ∈M

3+:

Ŵ (x̂, F ) = λ

2
(tr E)2 + μ‖E‖2 +O(‖E‖3) with E := 1

2
(F T F − I),

where λ > 0 and μ > 0 are the Lamé constants of the given elastic material.
While the Lamé constants are generally known for each elastic material, the remainder O(‖E‖3) is not. As a consequence, 

several competing expressions of Ŵ exist in the literature. Among the various examples of stored energy functions available 
in the literature, of particular relevance to this paper is that proposed by Ciarlet and Geymonat in [7], viz.,

Ŵ (F ) := a ‖F‖2 + b ‖CofF‖2 + c (det F )2 − d log(det F ) + e at each F ∈M
3+,

where the constants a > 0, b > 0, c > 0, d > 0, and e ∈ R, are chosen in terms of two given Lamé constants λ > 0 and μ > 0
in such a way that the principal part of Ŵ with respect to E := (F T F − I)/2 is “governed” by the Lamé constants λ and μ, 
according to the above formula for the Taylor expansion of Ŵ (x̂, F ). This stored energy function is in addition polyconvex
and becomes infinite as det F → 0+ , so that the corresponding total energy Î possesses at least a minimizer in a specific set of 
admissible deformations, according to the landmark existence theorem of Ball [1].

The two-dimensional nonlinear shell model of W.T. Koiter asserts that the deformation of the middle surface of a shell with 
�(�) as its reference configuration is a sufficiently regular immersion ψ : ω → E

3 that minimizes the total energy (cf. [13])

jK(ψ) := ε

2

∫
ω

{
aαβστ Gστ (ψ)Gαβ(ψ) + ε2

3
aαβστ Rστ (ψ)Rαβ(ψ)

}√
a dy − �(ψ),

where the functions aαβστ , Gαβ(ψ), Rαβ(ψ), and 
√

a, are those defined in Sect. 1, and

�(ψ) := L̂(�KL ◦ �−1),
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where L̂ is the linear functional appearing in the expression of the total energy Î above and �KL is the Kirchhoff–Love 
deformation associated with ψ , viz., the mapping �KL : � → E

3 defined by

�KL(·, x3) := ψ + x3a3(ψ) in ω at each x3 ∈ [−ε, ε].
The two-dimensional nonlinear shell model of W.T. Koiter is one of the most commonly used two-dimensional nonlinear 

shell models in computational mechanics, in spite of the fact that it has not yet been justified by an existence theorem (and 
most likely will never be).

Our objective here is to define a two-dimensional nonlinear shell model that is similar to Koiter’s model (Theorem 3), while 
being in addition justified by an existence theorem (Theorem 4).

It is worthwhile mentioning that the two-dimensional nonlinear shell model defined in this paper can be used for any 
type of shell, without any restriction on the geometry of the surface or on the boundary conditions, by contrast with 
the two-dimensional nonlinear shell models that have been justified so far in the literature by existence theorems: the 
membrane-dominated model (see Le Dret & Raoult [14]), the flexural-dominated model (see Ciarlet & Coutand [6] and Friesecke, 
James, Mora & Müller [10]), and the two-dimensional model of Koiter’s type for spherical and “almost spherical shells” ob-
tained by R. Bunoiu and the authors of the present paper [2,8].

Details of those proofs that are only briefly sketched here will appear in a forthcoming paper [9].

3. A new stored energy function

The starting point of the definition of our new nonlinear shell model (Sect. 4) is the following stored energy function, 
which is different from, but of the same type as, the stored energy function proposed in [7]: both are polyconvex and the 
principal part of their Taylor expansions in terms of E := (FᵀF − I)/2 is similarly governed by the Lamé constants λ and μ.

Theorem 1. Given constants λ and μ that satisfy 3λ + μ > 0 and μ > 0, define the function G : ]0, ∞[ → R by

G(t) = (λ − 2μ

3
)
√

t − (λ + μ

3
) log

√
t − (λ + μ

12
) for each t > 0.

Then the stored energy function Ŵ :M3+ →R defined by

Ŵ (F ) := μ

12

(
tr(FᵀF )

)2 + G(det(FᵀF )) for each F ∈M
3+,

has the following properties:
(i) Ŵ satisfies the axiom of frame indifference:

Ŵ (R F ) = Ŵ (F ) for all F ∈M
3+ and all R ∈O

3+;
(ii) Ŵ becomes infinite under infinite compression or dilatation, in the sense that

lim
det F→0+ Ŵ (F ) = +∞ and lim

det F→+∞
Ŵ (F ) = +∞;

(iii) Ŵ is coercive, in the sense that

Ŵ (F ) ≥ μ
( 1

16
‖F‖4 − 16

)
for all F ∈ M

3+;

(iv) the principal part of Ŵ with respect to the strain tensor E is governed by the Lamé constants λ and μ, in the sense that

Ŵ (F ) = λ

2
(tr E)2 + μ‖E‖2 +O(‖E‖3), where E := 1

2
(FᵀF − I);

(v) Ŵ is polyconvex, in the sense that

Ŵ (F ) = W(F ,det F ) for all F ∈M
3+,

where W :M3 × ]0, ∞[ →R is the convex function defined by

W(F , t) := μ

12
‖F‖4 + (λ − 2μ

3
)t − (λ + μ

3
) log t − (λ + μ

12
) for all (F , t) ∈M

3 × ]0,∞[. �
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Sketch of the proof. The proofs of parts (i), (ii), and (v) are straightforward.
Part (iii) is proved by combining the following estimates, satisfied by all matrices F ∈M

3+:

Ŵ (F ) = μ

12
‖F‖4 + G((det F )2) ≥ μ

12
‖F‖4 − μdet F + μ

4

and

det F ≤ 1

3
√

3
‖F‖3.

Part (iv) is a straightforward consequence of the following relations, satisfied by all matrices F ∈M
3+:

FᵀF = I + 2E, tr(FᵀF ) = 3 + 2 tr E,

det(FᵀF ) = 1 + 2 tr E + 2(tr E)2 − 2 tr(E2) + 8 det E.

Remark 1. The assumptions 3λ + μ > 0 and μ > 0 made in Theorem 1 are thus slightly stronger than those used for 
establishing the uniform positive-definiteness of the three-dimensional and two-dimensional elasticity tensors, viz., 3λ +
2μ > 0 and μ > 0 (cf. Sect. 1); but they are significantly weaker than those that were made in [7], viz., λ > 0 and μ > 0, 
however. �

The next theorem, together with Theorem 1(iv), shows that the stored energy function defined in Theorem 1 is indeed 
an alternative to the stored energy function proposed in [7].

Theorem 2. Let �̂ be a domain in R3 , let �̂0 be a non-empty relatively open subset of the boundary of �̂, let Ŵ : M3+ → R be the 
stored energy function defined in Theorem 1, let L̂ : W 1,4(�̂; E3) → R be a continuous linear form, and let �̂0 ∈ W 1,4(�̂; E3) be a 
mapping that satisfies det ∇̂�̂0 > 0 a.e. in �̂.

Define the subset U (�̂; E3) of W 1,4(�̂; E3) and the functional Ĵ : U (�̂; E3) →R ∪ {+∞} by

U (�̂;E3) := {�̂ ∈ W 1,4(�̂;E3); det ∇̂�̂ > 0 a.e. in �̂ and �̂ = �̂0 on �̂0},
Ĵ (�̂) :=

∫

�̂

Ŵ (∇̂�̂)dx̂ − L̂(�̂) at each �̂ ∈ U (�̂;E3).

Then there exists �̂∗ ∈ U (�̂; E3) such that

Ĵ (�̂∗) = inf
�̂∈U (�̂;E3)

Ĵ (�̂). �

Sketch of the proof. It is easy to see that

‖CofF‖ ≤ ‖F‖2 and det F ≤ 1

3
√

3
‖F‖3 for each F ∈ M

3+.

Then we infer from the coercivity property of Ŵ established in Theorem 1(iii) that

Ŵ (F ) ≥ μ

34

(
‖F‖4 + ‖CofF‖2 + |det F |4/3

)
− 16μ for each F ∈M

3+.

Together with the other properties of Ŵ established in Theorem 1, this shows that the functional Ĵ and set U (�̂; E3)

satisfy all the assumptions of John Ball’s fundamental existence theorem (see [1]), which thus ensures the existence of a 
minimizer �̂∗ of Ĵ over the set U (�̂; E3). �

We now establish that the stored energy function of Theorem 1, in addition to being suited for modeling three-
dimensional nonlinear elastic bodies, is also equally well suited for modeling two-dimensional nonlinearly elastic shells in the 
following sense: it shows that the two-dimensional strain energy obtained from Ŵ by integrating across the thickness the 
corresponding strain energy restricted to a specific class of deformations coincides “to within the first order” with Koiter’s strain 
energy.

Theorem 3. Given ε > 0, an open subset ω of R2 , and an immersion θ ∈ C3(ω; E3), let

� := ω × ]−ε, ε[ and �̂ := �(�),

where the immersion � : � → E
3 is defined as in Sect. 1 in terms of θ .
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Given any immersion ψ ∈ C3(ω; E3), define the mapping �̃KL ∈ C1(�; E3) by

�̃KL(·, x3) = ψ + x3

(
1 − λaαβ

λ + 2μ

(
Gαβ(ψ) − x3

2
Rαβ(ψ)

))
a3(ψ) in ω at each x3 ∈ [ε, ε].

Let Ŵ :M3+ →R be the stored energy function defined in Theorem 1. Then

1

2ε

ε∫

−ε

Ŵ (∇̂(�̃KL ◦ �−1)) ◦ �dx3 = 1

4

{
aαβστ Gστ (ψ)Gαβ(ψ) + ε2

3
aαβστ Rστ (ψ)Rαβ(ψ)

}
+ δ(ε,ψ) in ω,

where δ(ε, ψ) ∈ C0(ω) is of a higher order than the term 
{

aαβστ Gστ (ψ)Gαβ(ψ) + ε2

3 aαβστ Rστ (ψ)Rαβ(ψ)
}

above, in the sense 
that it either depends at least cubically on Gαβ(ψ) and ε Rαβ(ψ), or quadratically, but then with a multiplicative factor of ε to a power 
≥ 1. �
Sketch of the proof. The proof is based on the following three observations.

First, given any mapping � ∈ C1(�; E3), Theorem 1(iv) implies that

Ŵ (∇̂(� ◦ �−1)) ◦ � = 1

2
�i j(�)Eij(�) + δ1((Eij(�))) in �,

where

�i j(�) := Aijkl Ekl(�) and Eij(�) := 1

2
(∂i� · ∂ j� − ∂i� · ∂ j�),

and δ1 is a function that depends on the matrix field (Eij(�)) at least cubically.
Second, given any immersion ψ ∈ C3(ω; E3), we infer from the specific definitions of the mapping �̃KL in terms of ψ

given in the statement of the theorem, and of the functions Aijkl and aαβστ given in terms of θ in Sect. 1, that

Eαβ(�̃KL) =
(

Gαβ(ψ) − x3 Rαβ(ψ)
)

+ δ2(x3,ψ) in �,

�αβ(�̃KL) = 1

2
aαβστ

(
Gστ (ψ) − x3 Rστ (ψ)

)
+ δ3(x3,ψ) in �,

�3i(�̃KL) = �i3(�̃KL) = δ4(x3,ψ) in �,

where δ2, δ3, and δ4, are functions that either depend at least cubically on the matrix fields (Gαβ(ψ)) and (x3 Rαβ(ψ)), or 
quadratically, but then with a multiplicative factor of x3 to a power ≥ 1 (recall that |x3| ≤ ε and that ε is the half-thickness 
of the shell, which may be chosen as small as we please). Consequently, there exists a function δ5 satisfying the same 
properties as the functions δ2, δ3, δ4 above such that

�i j(�̃KL)Eij(�̃KL) = 1

2
aαβστ

(
Gστ (ψ) − x3 Rστ (ψ)

)(
Gαβ(ψ) − x3 Rαβ(ψ)

)
+ δ5(x3,ψ) in �.

Third,

ε∫

−ε

aαβστ
(

Gστ (ψ) − x3 Rστ (ψ)
)(

Gαβ(ψ) − x3 Rαβ(ψ)
)

dx3

= 2ε
{

aαβστ Gστ (ψ)Gαβ(ψ) + ε2

3
aαβστ Rστ (ψ)Rαβ(ψ)

}
in ω. �

Remark 2. The vector fields �̃KL defined in Theorem 3 are quadratic with respect to the transverse variable x3, while the 
Kirchhoff–Love deformations �KL appearing in the definition of the two-dimensional nonlinear shell model of W.T. Koiter 
(Sect. 2) are only affine with respect to x3. The reason why Kirchhoff–Love deformations �KL cannot be used in Theorem 3
instead of the vector fields �̃KL is that the normal stress �33(�KL) associated with a Kirchhoff–Love deformation is not of 
an order lower than that of the tangential stress tensor field (�αβ(�KL)), as it should, according to John [11,12]; indeed,

�33(�KL) := A33kl Ekl(�KL) = λgστ Eστ (�KL)

is of the same order as

�αβ(�KL) := Aαβkl Ekl(�KL) = Aαβστ Eστ (�KL) = (λgαβ gστ + 2μgασ gβτ )Eστ (�KL),

while, as shown in the proof above, �33(�̃KL) is of a lower order than (�αβ(�̃KL)). �
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4. A two-dimensional nonlinear model of Koiter’s type

We are now in a position to define our new nonlinear shell model and to justify this model by an existence theorem. Note 
that this new model, defined in part (ii) of the next theorem, is two-dimensional since its unknown is the matrix field 
(ψ, η, ζ ) : ω →M

3 formed by a vector field ψ : ω → E
3 that governs the deformation of the middle surface of the shell and 

by two colinear vector fields η : ω → E
3 and ζ : ω → E

3 that govern the deformation of the fibers orthogonal to the middle 
surface of the undeformed shell, all of which being thus defined over the two-dimensional domain ω.

Theorem 4. Given ε > 0, an open subset ω of R2 , and an immersion θ ∈ C3(ω; E3), let

� := ω × ]−ε, ε[ and �̂ := �(�),

where the immersion � : � → E
3 is defined as in Sect. 1 in terms of θ . Let γ0 be a non-empty relatively open subset of the boundary 

of ω, let L̂ : W 1,4(�̂; E3) → R be a continuous linear form, and let G : ]0, ∞[ → R be the function defined in Theorem 1.
(i) Define the subset U (�; E3) of W 1,4(�; E3) and the functional J : U (�; E3) →R ∪ {+∞} by

U (�;E3) := {� ∈ W 1,4(�;E3); det∇� > 0 a.e. in � and � = � on γ0 × ]−ε, ε[},
J (�) :=

∫

�

{ μ

12

[
tr(C i

j(�))
]2 + G(det(C i

j(�)))
}√

g dx − L̂(� ◦ �−1) at each � ∈ U (�;E3),

where

gij := ∂i� · ∂ j�, g := det(gij), (gkl) := (gij)
−1, and C i

j(�) := gik(∂k� · ∂ j�).

Then there exists �∗ ∈ U (�; E3) such that

J (�∗) = inf
�∈U (�;E3)

J (�).

(ii) Define the subset V (ω; M3) of W 1,4(ω; M3) and the functional j : V (ω; M3) →R ∪ {+∞} by

V (ω;M3) := {(ψ,η, ζ ) ∈ W 1,4(ω;M3); η ∧ ζ = 0 a.e. in ω and �η,ζ ∈ U (�;E3)},
j(ψ,η, ζ ) := J (�η,ζ ) at each (ψ,η, ζ ) ∈ V (ω;M3),

where

�η,ζ (y, x3) := ψ(y) + x3η(y) + x2
3ζ (y) at each (y, x3) ∈ �.

Then there exists (ψ∗, η∗, ζ ∗) ∈ V (ω; M3) such that

j(ψ∗,η∗, ζ ∗) = inf
(ψ,η,ζ )∈V (ω;M3)

j(ψ,η, ζ ). �

Sketch of the proof. Part (i) of the theorem is a straightforward consequence of Theorem 2 with

U (�̂;E3) := {� ◦ �−1; � ∈ U (�;E3)} and Ĵ (�̂) := J (�̂ ◦ �) for each �̂ ∈ U (�̂;E3).

Part (ii) of the theorem is proved by showing that the set

V (�̂;E3) := {�η,ζ ◦ �−1; �η,ζ (·, x3) := ψ + x3η + x2
3ζ in ω, x3 ∈ ]−ε, ε[, (ψ,η, ζ ) ∈ V (ω;M3)}

is sequentially weakly closed in the space W 1,4(�̂; E3) and that the restriction of the above functional Ĵ to the set 
V (�̂; E3) is sequentially weakly semi-continuous. To this end, we note that the stored energy function of the functional 
Ĵ is precisely the function Ŵ defined in Theorem 1, so that we can use John Ball’s arguments in [1] to establish the 
existence of a minimizer. �
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