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Introduction

Communication networks have been undergoing a rapid evolution in the last few years, embracing software-based system virtualization as a way to optimize physical resource eciency and network operational expenditures, and to increase the user's quality of experience. A particularly promising area of research is the one deriving from the installation of application servers into the access network, by means of a virtualization system, to decrease the network distance between users and servers, hence oering higher reliability and performance to network connection, besides an ideally lower energy foot-print on the Internet infrastructure. In telecommunications standardization bodies and open source code communities, this rising area is referred to as Mobile Edge Computing (MEC) [START_REF] Hédé | Mobile-edge computing introductory technical white paper[END_REF].

Thanks to MEC deployment, the user experience can be augmented by drastically reducing the server access latency, so as to enable collaborative networking, tactile Internet (i.e., communications made possible by an extremely low latency such as augmented reality applications) [START_REF] Aijaz | Realizing the tactile internet: Haptic communications over next generation 5g cellular networks[END_REF], and more generally computation ooading to a nearby cloud with the goals to control mobile device energy consumption and to run computationally heavy applications using tiny low-power devices [START_REF] Tran | Collaborative mobile edge computing in 5g networks: New paradigms, scenarios, and challenges[END_REF].
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Figure 1: APs dynamic assignment to MEC facilities Motivation and problem description . In a MEC infrastructure, virtualization clusters called `MEC facilities' or `MEC hosts' in the standardization documents, or cloudlets in academic jargon are connected to access network nodes to deliver access to mobile application servers run as Virtual Machines (VMs). Various innovative operations to deal with changing mobile access demands can be applied and include Access Point (AP) to MEC facility dynamic assignment, VM capacity rescaling (addition or removal of computing power in terms of live memory or virtual processors) and VM migration (a VM state is moved from one MEC facility to another one). An `orchestrator' is in charge of implementing such decisions into the MEC virtualization layer. Each orchestration action comes at a cost, often referred to as migration or switching cost, as it requires synchronizing states across a geographical network under stringent performance guarantees. The technology to perform MEC orchestration operations is becoming mature [START_REF] Lindemeier | Mec proofs of concept[END_REF][START_REF] Secci | Linking virtual machine mobility to user mobility[END_REF]. However, the MEC orchestrator intelligence is still being developed, with as major goal to perform both reactive decisions to cope with sudden, unpredicted, changes, and proactive decisions to anticipate expectable network impairments.

Motivated by the reliability of network load forecasting methods, in this paper we focus on producing proactive tactical decisions on how to optimally assign APs to MEC facilities over time. We address such a MEC orchestration challenge from an algorithmic perspective. Our aim is to propose algorithms to take robust decisions about AP-MEC assignments and related trac routing, while taking into consideration the corresponding VM switching costs. Our dynamic assignment application contains a combinatorial core: APs have associated mobile trac demand, that changes over time. Each MEC facility has a certain capacity, limiting the overall amount of demand it can serve simultaneously. APs must be assigned to MEC facilities; each assignment implies a cost for each user connected to the AP in terms of latency for communicating with the associated MEC server. A simplied application example is presented in Figure 1: a MEC network with two MEC facilities (K1 and K2) and four APs (A to D) is considered in three consecutive time-slots (t=0, 1 and 2). Mobile users connected to each AP are represented by small rectangles. At time 0, APs A and B are assigned to MEC facility K1 while APs C and D are assigned to K2. That means, each user connected to AP A has a VM running in K1, each user connected to AP C has a VM running in K2, and so on. The network is fairly balanced, as 7 VMs run in K1, and 9 VMs run in K2. Due to capacity limits it might be not always a good decision to assign each AP to its MEC facility of minimum latency; furthermore, since demand changes over time, an assignment pattern would hardly remain an ecient one over the whole planning horizon. For instance, suppose that at time 1 three users move from the region served by AP B to the region served by AP C; if the assignment of APs to MEC facilities is kept constant, the load of the MEC facility K2 increases to 12, causing an overload. We therefore leave the option of changing assignments over time, taking into account that each change implies a switching cost for the network, for example in terms of signaling to move session data of active users. In the running example, our orchestrator may decide for instance to change the assignment of AP C from K2 to K1, to keep a balancing on the number of VMs running in the two facilities. As a side eect, however, the VMs of the users connected to C need to be migrated from K2 to K1, thereby requiring synchronization trac.

The aim of our proactive approach is to actually prevent the critical situation at time 1, by performing the assignment change in advance. An optimization problem arises, that is to assign APs to MEC facilities over time, respecting capacity constraints and minimizing a combination of users (assignment) and network (switching) costs.

Literature Review. An important amount of work has appeared in the area of mobile edge computing during the recent few years. We can distinguish two broad classes of studies: those related to infrastructure aspects, i.e., dealing with novel protocols and architectures able to expose the necessary edge computing features, and those focused on terminals and objects, i.e., dealing with their integration with edge computing resources.

Concerning edge computing infrastructure design, pioneering experimental activities on the design of cloudlet systems have shown the huge impact of cloud access latency reduction in terms of throughput gain [START_REF] Satyanarayanan | The case for vm-based cloudlets in mobile computing[END_REF]. Subsequent works have investigated the design of cloud network overlay protocol and controller for the adaptive mobility of virtual machines as a function of the mobility of users [START_REF] Secci | Linking virtual machine mobility to user mobility[END_REF], and the capacity planning in the placement of edge computing facilities [START_REF] Ceselli | Mobile edge cloud network design optimization[END_REF]. These studies have proceeded in parallel with standardization eorts at ETSI [START_REF]Mobile-Edge Computing[END_REF],

The literature is even larger when it comes to MEC-connected terminals and objects. Most works are in the area of mobile computation ooading to edge cloud facilities, i.e., allowing mobile devices to exploit edge computing resources. Prominent examples include MAUI [START_REF] Cuervo | MAUI: Making Smartphones Last Longer with Code Ooad[END_REF], CloneCloud [START_REF] Byung-Gon Chun | CloneCloud: Elastic Execution Between Mobile Device and Cloud[END_REF], Cuckoo [START_REF] Kemp | Cuckoo: A Computation Ooading Framework for Smartphones[END_REF], AIOLOS [START_REF] Verbelen | AIOLOS: Middleware for improving mobile application performance through cyber foraging[END_REF], Thinkair [START_REF] Kosta | Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code ooading[END_REF] and COSMOS [START_REF] Shi | COSMOS: Computation Ooading As a Service for Mobile Devices[END_REF], which are frameworks allowing mobile devices to run (part of) their applications in edge cloud facilities, for dierent operating systems, with dierent goals (e.g., energy saving, execution time, etc.), and at dierent levels of operating system intrusiveness.

A last focus lies in the optimization of edge computing resource allocation. Here, the authors of [START_REF] Esteves | Real options for mobile communication management[END_REF] allocate computation resources using a capital-budgeting technique typically used in the eld of nancial option valuation. The approach allows choosing the best remote servers among many, based on an ooading cost (execution time) and a transmission cost (transmission time). Authors of [START_REF] Kristensen | Scavenger: Transparent development of ecient cyber foraging applications[END_REF] approach the resource allocation problem by foraging computation resources from dierent mobile devices. Mobile devices share their available resource and schedule their work based on their available computation resources.

Unlike the previous studies above, our aim is to conceive a data-driven MEC management optimization framework. Therefore, our work pertains to the eld of cognitive network management, an emerging research area in computer networks which investigates the integration of data analytics into planning and operation of next-generation mobile networks [START_REF]Ec h2020 5g infrastructure ppp. pre-structuring model[END_REF]. The motivation for cognitive network management arises from the fact that the trac demand in mobile networks is increasingly characterized by signicant uctuations in space and time, due to the diverse activities of subscribers at dierent times and locations [START_REF] Furno | Joint spatial and temporal classication of mobile trac demands[END_REF][START_REF] Xu | Understanding mobile trac patterns of large scale cellular towers in urban environment[END_REF], as well as to the heterogeneity of mobile services [START_REF] Marquez | Not all apps are created equal: Analysis of spatiotemporal heterogeneity in nationwide mobile service usage[END_REF]. 5G systems will have to accommodate such a growing variability: therefore, they will implement new paradigms that allow dynamically (re-)allocating resources at multiple network levels, hence granting the needed exibility.

Cognitive network management is the process driving the time-varying conguration of network resources, in a fully automated way. It builds on dedicated analytics to infer user activity patterns from trac measurement data, and then acts on the network resource allocation accordingly. The principles of cognitive network management are well-established [START_REF] Assem | Initial use cases, scenarios and requirements. H2020 5G-PPP CogNet[END_REF][START_REF] Zheng | Big datadriven optimization for mobile networks toward 5g[END_REF], and are envisioned to apply across enabling technologies such as small cells [START_REF] Lee | Dynamic, data-driven spectrum management in cognitive small cell networks[END_REF], Cloud Radio Access Networks (C-RAN) [START_REF] Foukas | Flexran: A exible and programmable platform for software-dened radio access networks[END_REF], Software Dened Networking (SDN) and Network Function Virtualization (NFV) [START_REF] Rost | Mobile network architecture evolution toward 5g[END_REF].

However, we currently miss substantial demonstrations of how data analytics can be leveraged in the specic case of MEC architectures. Specically, there is a need for analytics that mine MEC-level trac metadata, discover relevant knowledge about the network status, and ultimately drive MEC optimization. In this paper, we employ clustering techniques to process noisy raw measurement data, and identify a limited number of typical congurations of the data trac demand across the APs. We then leverage such congurations to fuel a cognitive allocation of access network resources to MEC facilities. We stress that ours is a simple, conservative approach based on macroscopic network states. As such, it serves as a basis for more complex approaches, which require continuous monitoring of the demand and adaptation of resources. For instance, established techniques used for Cloud resource management, such as receding horizon [START_REF] Ardagna | A receding horizon approach for the runtime management of iaas cloud systems[END_REF], could be used to ne-tune the xed allocations returned by our proposed scheme.

More in detail, our proposal is to equip the system with an optimization core, exploiting preprocessed data as input, and producing solutions whose structure is explicitly encoded by mathematical programming models. Our setting requires to tackle a multi-period extension of the famous Generalized Assignment Problem (GAP) [START_REF] Martello | Knapsack Problems: Algorithms and Computer Implementations[END_REF]. Indeed, GAP models have been widely used in the context of network optimization. For instance, in [START_REF] Shtub | Capacity planning by the dynamic multiresource generalized assignment problem[END_REF] the authors use a dynamic multi-resource GAP to perform capacity planning; recent examples include [START_REF] Rawitz | Flexible cell selection in cellular networks[END_REF], in which a exible cell selection in cellular networks is tackled, and [START_REF] Aroca | Powerecient assignment of virtual machines to physical machines[END_REF] in which an allocation of VM to physical machines is considered, all extending GAP models.

We point to [START_REF] Romero | The generalized assignment problem and extensions[END_REF] for a detailed methodological review on the GAP and its extensions. Despite the large body of research available on the GAP, we are not aware of many papers directly dealing with its multi-period extensions. In [START_REF] Richard Freling | A branch-and-price algorithm for the multiperiod single-sourcing problem[END_REF] the authors face a single-source allocation problem with a exible model and an eective branch-and-price algorithm; however, their model does not allow to handle limited capacity, which is a crucial feature in our application. The multi-period allocation problem discussed in [START_REF] Murthy | A dual-ascent procedure for the le allocation and join site selection problem on a telecommunications network[END_REF], in which a dual ascent technique from [START_REF] Murthy | Solving the multiperiod assignment problem with start-up costs using dual ascent[END_REF] is adapted to a telecommunication networks applications, is similarly missing the feature of handling limited capacities.

Our problem does not require to decide the location of the facilities. Such a strategical decision belongs to the realm of infrastructural design and, as we extensively discuss in [START_REF] Ceselli | Mobile edge cloud network design optimization[END_REF], requires substantially dierent models and solution techniques. It is therefore assumed to be optimized in a prior planning round and given in input. At the same time, one may expect features and computational challenges similar to those of multi-period location problems [START_REF] Nickel | Multi-period facility location[END_REF]. Recent approaches on that eld include [START_REF] Gourdin | Multi-period capacitated location with modular equipments[END_REF]: the authors face a multi-period concentrator location and dimensioning problem, providing MILP formulations and reduction techniques, and solving to optimality in less than one hour of computation instances with up to 30 clients, 10 candidate location sites and 15 time periods, or 100 clients, 30 candidate locations and 5 time periods. In [START_REF] Castro | A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method[END_REF] the authors introduce exact methods for a capacitated multi-period facility location problem in which however, unlike our case, the demand of each client can be fractionally served by multiple facilities. Large scale instances with up to 200 facilities, three periods and an arbitrary number of clients could be solved with their algorithms. We nally mention the recent contribution of [START_REF] Halper | Local search heuristics for the mobile facility location problem[END_REF], where the authors propose MILP formulations and local search heuristics for an uncapacitated p-median location problem involving two periods: in the rst the location of facilities is given, while in the second it can be changed at a price. Clients are always assigned to the nearest facility. They provide good approximations to instances with up to 400 facilities in a few minutes of computation. Contribution summary and paper outline. Our research provides three types of contributions. The rst is architectural: we design a data-driven framework for the dynamic selection of AP to facility assignment in MEC networks, which relies on (i) historical data clustering analytics, (ii) dedicated optimization techniques, and (iii) validation by simulation. The second is algorithmic: we introduce mathematical programming formulations and ad-hoc exact solution methods for a relevant multi-period extension of GAP. The third is use case-oriented: we evaluate our framework with real-world datasets, which provides practical insights for MEC resource management. We devote a substantial part of the paper to the technical insights of our optimization core.

The manuscript is structured as follows. We rst detail our framework (Section 2). Then we focus on the optimization core component, introducing a compact Mixed Integer Linear Programming (MILP) formulation for our problem, proving a few structural properties and providing an extended counterpart by means of Dantzig-Wolfe decomposition (Section 3); we also design column generation procedures with ad-hoc pricing algorithms, rounding heuristics, reduction techniques and branching rules to be embedded in a whole exact solution method (Section 4). We show rst of all that our algorithms are eective from a computational point of view (Section 5). We then demonstrate the eectiveness of our optimization tools in practical scenarios, using real-world trac demands collected by a major mobile network operator in Milan, Italy (Section 6). We nally draw some conclusions (Section 7).

A data-driven MEC management optimization framework

We propose a high-level data-driven MEC management optimization framework whose algorithmic core architecture is sketched in Figure 2. The framework receives as input a representation of the (time-varying) data trac demand recorded at each AP of the MEC network. The framework output are (multiple) assignment patterns of APs to MEC facilities, meant to be enforced by the orchestrator on the MEC network over time through switching operations.

The input data is collected as historical records of the mobile trac demands in the MEC network. Part of the data is reserved for testing by the Validation Tool module.

Part instead is used for training, i.e., it is fed to the Preprocessing and Data Mining module, which lters by meta-data and produces a suitable time (and possibly space) discretization and a corresponding data aggregation. The main output are demand proles, that is sequences of values, one of each time slot and each AP in a certain periodic frame, representing an estimate of the periodic load on that AP at each point in time. For instance, if a periodic frame of one week is selected, together with an aggregation to single-hour time slots, a demand prole would be a sequence of 168 values for each AP. The demand proles are sent to the Optimization Core module, which leverages them to compute candidate plans, that are assignments of APs to MEC facilities, one for each time slot of the periodic frame. The Orchestrator module, in turn, receives the candidate plans and queries the Validation Tool module for an evaluation on test data, so as to determine their quality. Based on the result, the Orchestrator module nally chooses a suitable plan and implements it in the MEC network.

The framework is assumed to be constantly kept online, although its components, whose description is given in the following paragraphs, are activated with dierent frequencies.

Preprocessing and Data Mining. The rst task of the module is to detect seasonalities in data; such a task can be accomplished, for instance, by time series analysis and is assumed to be performed very rarely (e.g. only when major technological changes occur). The second task is to perform a suitable time discretization. We assume that switching can occur only at certain points in time (e.g., once every fteen minutes), due to practical limitations of the MEC technology: this already introduces an implicit time discretization of the system. In order to identify suitable discrete-time proles of the trac demand, dierent strategies can be employed in the Preprocessing and Data Mining module. The simplest option is to aggregate the demand observed at each AP during every time step in the training data. This returns one prole for each time step: since switching between assignments cannot occur at shorter timescales than the time step, this is the highest resolution useful to the Optimization Core and the one deemed to return the highest-quality result. However, it also creates a very large number of proles (e.g., in the order of thousands for hour-long time steps over months of historical data) that may be computationally too expensive to manage.

Another option to identify suitable discrete-time proles of the trac demand is to use temporal clustering analytics on the historical data, so as to group together time slots that feature very similar distributions of the mobile trac demand across the APs. In this case, the module returns a limited number of proles, each of which corresponds to the typical demand observed in a large set of time slots. It is then possible to reduce the computational cost at the Optimization Core, by feeding it with a small number of proles. However, this comes at the expense of assignment quality, since typical proles can only approximate the actual MEC network load at a specic time step. We provide an example of temporal clustering analytics, which builds on the methodology of [START_REF] Furno | Mobile demand proling for cellular cognitive networking[END_REF], in Section 6.1.

Optimization Core. Once the trac demand proles are dened, the Optimization Core builds eective dynamic assignment plans on top of those. Plans include, for each time slot, the set of APs to be connected to which MEC facility and, as a by-product, the set of switching operations to be performed between subsequent time slots. We considered dierent operational options, subsequently selecting to employ a single assignment model, in which an AP is associated to exactly one MEC facility in each point in time, and a linear management of the planning horizon, in which the switching costs of the last time slot are simply neglected. Being the core of our approach, we defer its detailed description to the subsequent Sections. The Optimization Core is meant to be run oine, when the Orchestrator triggers it (e.g. once per week). Validation Tool is used to check their quality on test data. In our case, test data consist of a few weeks of raw trac demand data: the Validation Tool evaluates the plan by simulating its application in those weeks, and computing quality measures. Also the Validation Tool is triggered by the Orchestrator: its frequency of activation is expected to be higher (e.g. daily runs).
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Orchestrator. The MEC orchestrator is the functional element in charge of actually sending VM orchestration instructions to MEC hosts, monitoring the MEC system status and the MEC network link states as well. Legacy cloud orchestrator systems typically take orchestration decisions based on simple best-t policies, as data-center network resources are often over-dimensioned and a large set of clusters is made available; the placement and assignment decision logic is therefore typically not bound to computing facility location. Such orchestration algorithms however cannot be readily applied to a MEC context essentially because of the geographical nature of MEC networks and the capacity limitation of MEC facilities. This is typically done at the orchestrator subsystem level by adding an abstraction layer, with a dedicated descriptive language to map computing resources to physical location of servers. The Orchestrator is meant to be always online, triggering the other modules by need.

Optimization models

A key component of the data-driven MEC management optimization framework is the optimization core. Its task is to nd suitable assignments of APs to MEC facilities over time, together with corresponding user VMs migration patterns. As discussed, we focus on the single-assignment linear-plan variant.

Let us denote as A the set of APs and as K the set of MEC facilities. We assume the planning horizon to be discretized in a set T of time slots. For each AP i ∈ A, let us indicate as d t i the mobile trac demand that has to be accommodated by AP i at time t ∈ T , and as m i,k the physical distance between AP i and MEC facility k ∈ K. Let C k be the capacity of MEC facility k ∈ K, and l k ,k be the network distance between MEC facilities k , k ∈ K. We assume l k,k = 0 for each k ∈ K, where with network distance we mean a distance that can is directly proportional to the network latency (including packet processing latency at intermediate nodes) and the physical distance. Let x t i,k be binary variables taking value 1 if trac from AP i ∈ A at time t ∈ T is routed to MEC facility k ∈ K, 0 otherwise. Let y t i,k ,k be binary variables taking value 1 if AP i ∈ A is associated to MEC facility k ∈ K at time t -1, and switches to MEC facility k ∈ K at time t.

Our Dynamic Assignment and Switching Problem (DASP) can be formulated as follows:

min α t∈T i∈A (j,k)∈ K×K d t i l jk y t ijk + β t∈T i∈A k∈K d t i m ik x t ik (1) s.t. i∈A d t i x t ik ≤ C k ∀t ∈ T, ∀k ∈ K (2) k∈K x t ik = 1 ∀i ∈ A, ∀t ∈ T (3) x t ik = l∈K y t ilk ∀i ∈ A, ∀t ∈ T \ {1}, ∀k ∈ K (4) x t ik = l∈K y t+1 ikl ∀i ∈ A, ∀t ∈ T \ {T }, ∀k ∈ K (5) x t i,k ∈ {0, 1} ∀i ∈ A, ∀k ∈ K, ∀t ∈ T (6)
y t i,k ,k ∈ {0, 1} ∀i ∈ A, ∀k , k ∈ K, ∀t ∈ T (7)
the objective (1) aims at nding a trade-o between the minimization of network-and user-related costs. The former is generated by the change of AP-MEC facility associations in consecutive time slots, which produces control overhead due to the necessity of migrating VMs. The latter is instead the latency experienced by the user with the current AP-MEC facility association. Parameters α and β represent the relative weight of the networkand user-related costs in the objective function. Constraints [START_REF] Aijaz | Realizing the tactile internet: Haptic communications over next generation 5g cellular networks[END_REF] impose that the overall demand assigned to MEC facility k at time t does not exceed its capacity. Constraints [START_REF] Tran | Collaborative mobile edge computing in 5g networks: New paradigms, scenarios, and challenges[END_REF] impose that each AP is connected to a single MEC facility during a time slot. Constraints (4) and ( 5) link x and y variables in a ow conservation fashion: when x t ik = 0, that is AP i is not assigned to MEC facility k at time t, they impose that no switching operation is made; when x t ik = 1, instead, they impose that a single switching operation assigns i to k at time t and reassigns it at time t + 1 (possibly involving the same MEC facility, in which case the switching cost is zero).

A sample instance with three APs (squares), two MEC facilities (circles) and two timeslots (left and right parts) is depicted in Figure 3: AP 2 is assigned to MEC facility A at t = 1 and MEC facility B at time t = 2, therefore a switching operation from A to B needs to be performed.

Model (1) (7) has a few interesting features.

Observation 1. The DASP can be seen as a multi-period generalization of the Generalized Assignment Problem (GAP).

In fact, when |T | = 1, the DASP reduces to a GAP.

Observation 2. For t > 1, constraints (3) are redundant.

Indeed, for t > 1, they are implied by constraints (4) and ( 5) and k∈K x 1 ik = 1 for each i ∈ A. It is easy to check it by induction over t: for each i ∈ A, constraints (5) ensure that if a k ∈ K exists such that x t-1 ik = 1 then l∈K y t ikl = 1; then by aggregating constraints (4), we obtain that if k∈K l∈K y t ikl = 1 then k∈K x t ik = 1. In turn, since the x variables are binary, k∈K x t ik = 1 implies that a k ∈ K exists, such that x t ik = 1. All we need to additionally enforce is the base case t = 1.

Proposition 1. When all x t ik variables take integer values, the y t ikl variables also (automatically) take integer values in any feasible solution. The converse is also true.

In fact, for each i ∈ A and each t ∈ T , due to constraints (5) if x t ik = 0 then y t+1 ikl = 0 for each l ∈ K. If x t ik = 1, assume by contradiction that a feasible solution exists, containing fractional y t+1 ikl values; each fractional y t+1 ikl will appear in a dierent constraint of family (4), that can be feasible only if x t+1 ik = 1 for more than a single k ∈ K, violating constraints (3), yielding infeasibility and thus leading to a contradiction. The converse is trivially implied by both constraints (4) and [START_REF] Secci | Linking virtual machine mobility to user mobility[END_REF].

That is, in the search for optimal solutions by means of algorithms exploiting continuous relaxations, branching on y t ikl variables is unnecessary.

Optimization Algorithms

Unfortunately, when the size of the MEC network is large, even solving the continuous relaxation of model (1) (7) turns out to be computationally hard. Therefore, we devise an ad-hoc exact solution approach based on decomposition.

Following the Dantzig-Wolfe reformulation principle [START_REF] Wolsey | Integer programming[END_REF], let 4), ( 5), ( 6), ( 7)} represent the convex hull of the feasible region respect to constraints (3) [START_REF] Ceselli | Mobile edge cloud network design optimization[END_REF]. Let Ω i be the set of corresponding extreme integer points, and for each p ∈ Ω i let xt,p ik and ỹt,p ijk be the coecients encoding point p. Each element of P i can be represented as a linear convex combination of points in Ω i . Therefore we introduce a set of variables z p ≥ 0, expressing multipliers in such a combination, and we reformulate the continuous relaxation of (1) [START_REF] Ceselli | Mobile edge cloud network design optimization[END_REF] as the following Master Problem (MP):

P i = {(x t ik , y t ikl ) : (3), (
min i∈A p∈Ω i α t∈T (j,k)∈ K×K d t i l jk ỹt,p ijk + β t∈T k∈K d t i m ik xt,p i,k z p (8) s.t. - i∈A p∈Ω i d t i xt,p ik z p ≥ -C k ∀t ∈ T, ∀k ∈ K ( 9 
)
p∈Ω i z p = 1 ∀i ∈ A (10) 
z p ≥ 0 (11) 
The MP has an exponential number of variables. We optimize it by column generation: we replace Ω i by a small representative subset Ωi (see subsection 4.1) and we solve the Restricted Master Problem (RMP) obtained in this way; then, for each i ∈ A, we search if any element of Ω i exists whose corresponding variable has negative reduced cost, by solving a pricing problem (see subsection 4.2): any such element is added to Ωi and the process is iterated. Otherwise we stop: the solution obtained by restricting to Ωi is optimal also for the full problem. Our overall approach is to optimize the DASP by (implicit) recursive tree search as follows: 

Initialization

In order to populate the initial sets Ωi , as well as obtaining an initial primal bound, we run a simple greedy heuristic that builds the solution time-slot by time-slot and AP by AP. The corresponding pseudo-code is reported as Algorithm 1. In particular, for each time slot, APs are sorted by non-increasing demand and each AP is associated to a protable MEC facility following this order. The choice for the most protable MEC facility to which to associate an AP i at time t follows these rules: let k be the MEC facility to which the AP i was associated in the previous time slot t -1:

1. if t > 1 and the demand of the AP i does not exceed the residual capacity of the MEC facility k, assign i to k; 2. otherwise, nd the nearest MEC facility (in terms of distance m ik ) to which the AP demand does not exceed the residual capacity; if no such a MEC facility exists, stop in a FAIL state.

This algorithm always terminates in O(|T ||A| log(|A|)|K|) time. Unfortunately, as for a xed t the problem is a special instance of GAP, even the problem of nding an arbitrary feasible solution is NP-Hard. Indeed, the algorithm might stop in a FAIL state, without producing feasible solutions. However, in our computational experiments that never happened.

Nevertheless, to complete the population of the initial RMP, we insert also a single dummy column of very high cost, having coecient 0 in each constraint [START_REF] Cuervo | MAUI: Making Smartphones Last Longer with Code Ooad[END_REF]. This ensures RMP feasibility also after branching.

Pricing algorithms

Let λ t,k be the (non-negative) dual variables corresponding to constraints [START_REF] Cuervo | MAUI: Making Smartphones Last Longer with Code Ooad[END_REF], and η i be the (free) dual variables corresponding to constraints [START_REF] Byung-Gon Chun | CloneCloud: Elastic Execution Between Mobile Device and Cloud[END_REF].

For each î ∈ A, the problem of nding the element of Ω î corresponding to the variable of minimum reduced cost can be formulated as follows:

min π i = -η î + α t∈T (j,k)∈ K×K d t îl jk y t îjk + + t∈T k∈K βd t îm ik + d t îλ t,k x t î,k (12) 
s.t.

k∈K x t îk = 1 ∀t ∈ T ( 13 
)
x t îk = j∈K y t îjk ∀t ∈ T \ {1}, ∀k ∈ K ( 14 
)
x t îk = j∈K y t+1 îkj ∀t ∈ T \ {T }, ∀k ∈ K (15) 
x ∈ {0, 1}, y ∈ {0, 1}

Proposition 2. The pricing problem ( 12) -( 16) possesses the integrality property.

In fact, according to Observation 2, constraints (13) can be removed for t > 1, and constraints ( 14) used to replace x t îk in ( 15) and then removed. The remaining is basically a network ow matrix, which is known to be totally unimodular [START_REF] Wolsey | Integer programming[END_REF].

On one hand, Proposition 2 implies that the lower bound obtained by the MP through column generation is equivalent to that obtained by optimally solving the continuous relaxation of the original model (1) [START_REF] Ceselli | Mobile edge cloud network design optimization[END_REF]. On the other hand, it allows to employ polynomial time Linear Programming solution algorithms, making us to expect the solution process to be fast. Indeed, we could exploit its structure even further, as the elements of Ω i have a particular combinatorial interpretation: they correspond to all feasible association paths, that is sequences of MEC facilities to which the AP i is assigned in consecutive time-slots. More in details, we build a directed layered graph G(N, A), with a layer for each time-slot, as follows. Each layer has one node for each MEC facility; each pair of nodes in consecutive layers are connected by an arc. Each node (t, k) ∈ T × K, modeling the assignment to MEC facility k at time t, has an associated traversal cost given by a t ik = d t i (βm ik + λ t,k ), while each arc connecting nodes (t, j) and (t + 1, k) has an associated traversal cost given by b t ijk = d t+1 i αl j,k . We also add a dummy source σ (resp. sink τ ) nodes, having one outgoing arc to each node in layer t = 1 (resp. one incoming arc from each node in layer t = |T |) of zero cost. Figure 4 sketches the structure of G for a certain AP î on a sample instance with two MEC facilities (A and B): a potential solution assigns i to A at time t = 1, to B at time t = 2 and so forth.

In fact, an optimal pricing solution corresponds to a shortest σ -τ path in G.

Proposition 3. For each i ∈ A, the pricing problem can be solved in O(|T ||K| 2 ) time.

In fact, for solving the pricing problems we devise a simple dynamic programming algorithm, which is presented as Algorithm 2.

Rounding Heuristics

In order to nd good primal bounds, a simple rounding algorithm (presented in Algorithm 3) is executed at every column generation iteration. Let z be the ( For each time-slot t ∈ T , for each APs i the highest xt ik is retrieved. For each AP, sorted by descending highest x value, the assignment is made with the MEC facility corresponding to the highest x and with enough residual capacity. Although no guarantee in feasibility is given, our computational experiments revealed it to be highly eective.

+ b t ik k ) c t k = c t-1 k * + b t ik * k + a t ik p t k = p t-1 k * ∪ {k * } end for end for k * = arg min k∈K {c |T | k } {minimum reduced cost related to AP i} π * = c |T | k * -η i if π * < 0 -

Variables xing.

We also experimented with probing techniques to potentially perform problem reduction during the column generation process. In particular, we employed Lagrangean probing to x variables at a pricing level. The main idea is to run the Pricing Problem Resolution Algorithm twice: the rst time as described in 2, that is considering each layer t = 1 . . . |T | in forward order; the second time, instead, considering the layers in backward order, that is initializing c

|T | k = 0 and updating each c t k = min k * ∈K c t+1 k * + d t+1 i (αl k,k * + βm i,k * + λ t+1,k * ).
In this way, the cost χ t k of the best path in which at time t an assignment is forced to MEC facility k can be computed by summing the forward and backward labels c t k .

A valid dual bound LB can be computed at each column generation iteration as

LB = ρ - i∈A π i
where ρ is the value of the last RMP solution. Let UB be the value of the best primal (integer) solution found so far. For each i ∈ A, let s(t) be the MEC facility at which AP i has been assigned at time t in the optimal pricing solution returned by Algorithm 2. We perform the following xes:

• for each t ∈ T and k ∈ K if LB + χ t s(t) -χ t k ≥ U B
, then if assignment to MEC facility k was forced, no improvement in the primal bound would ever be obtained. Therefore node k can be removed from layer t without losing optimization power, that means xing variable x t ik = 0 in the original model;

• for each t ∈ T if LB + χ t s(t) -min k∈K\{s(t)} χ t k ≥ U B, then if such an assignment was forbidden, no improvement in the primal bound would ever be obtained. Therefore all nodes k = s(t) can be removed from layer t without losing optimization power; that means xing variable x t is(t) = 1 in the original model.

A similar xing procedure is run on arcs of the pricing graph, thereby allowing to x y t k ,k variables in the original model. From an implementation point of view, we always allowed a relative tolerance of 5e-4 in the xing test, to prevent numerical troubles. We run the xing procedure at the end of the column generation process of every node of the search tree; additionally, at the root node, we run it whenever an improving primal solution is found.

Branch-and-price

When upper and lower bounds at the end of the column generation process do not match, we proceed to branching. We branch on original variables x rather than on variables of the MP. Fixing variable x t i,k to value 0 corresponds to xing to value 0 all variables z p ∈ Ω i that assign AP i to MEC facility k at time t. Similarly, xing variable x t i,k to value 1 corresponds to xing to value 0 all variables z p ∈ Ω i that do not assign AP i to MEC facility k at time t. Neither forbidding nor forcing assignments change the structure of the pricing problem: these conditions are easily included within the dynamic programming algorithm by simply removing nodes from the pricing graph. According to Proposition 1, no branching on y variables is needed.

We considered the following two branching rules:

1. considering all possible assignments of AP i at time t, take the pair (i , t ) which has greatest number of variables x t i ,k with strictly positive value, that is, that AP whose assignment at a certain time is split among the greatest number of dierent MEC facilities. Sort variables x t i ,k by non-increasing value and partition this ordered set in two: the rst set containing variables in the odd positions of ordered set and the second set containing variables in the even positions. A left (resp. right) branch is created, xing to zero all the variables in the rst (resp. second) set. 2. select the variable x t i,k whose value is closer to 0.5, i.e. the variable related to the most fractional assignment. Create two branches xing the selected variable respectively to value 0 or to value 1.

We always consider branching rule 1 rst, triggering rule 2 only when all (i, t) pairs have at most two corresponding fractional x t i,k variables. During preliminary experiments, a simple depth-rst exploration policy showed to perform best. When rule 2 is used, the x t i,k = 1 branch is explored rst.

Computational evaluation

We implemented our algorithms in C++, using CPLEX 12.6 [START_REF][END_REF] to solve the master LP subproblems, running tests on an Intel i7 4GHz workstation equipped with 32 GB of RAM.

Our rst investigation is computational, benchmarking the eectiveness of our algorithms in comparison to the branch-and-cut ILP solver of CPLEX using formulation (1) (7).

Dataset

We have access to a dataset of real-world mobile trac demands [START_REF] Barlacchi | A multi-source dataset of urban life in the city of milan and the province of trentino[END_REF], encompassing two months with a time granularity of fteen minutes. The geographical area covered by the dataset extends for more than 2500 km 2 . The demand is not associated to access points of the mobile network, whose location is unknown, but rather to a geographical tessellation of the area in 1419 rectangular cells of dierent sizes, with smaller (and more dense) cells in the center of the area. We select the centers of every rectangular cell as elements of the set A of access points locations.

Then, we create ten clusters of access points using a standard k-means model, taking as input the euclidean distances between APs, optimizing it with the classical heuristics of [START_REF] John | Algorithm as 136: A k-means clustering algorithm[END_REF]. The centers of these clusters are selected to dene the locations of the set K of MEC facilities. The network distances m ik and l jk are computed as euclidean distances accordingly, and rounded to the nearest integer (hence supposing packet processing latency is negligible).

Given this network infrastructure, we generate dierent problem instances by randomly drawing demands in each AP in dierent ways.

In details, we create two random datasets.

Dataset A is synthetic, and aims at stressing our algorithms from a pure computational point of view. We consider a planning horizon of one day, split in 96 consecutive fteenminute time slots. Let d (resp. d) be the minimum (resp. maximum) demand observed in any AP and time slot in [START_REF] Barlacchi | A multi-source dataset of urban life in the city of milan and the province of trentino[END_REF]. Demands d t i for each AP i at time t are drawn uniformly at random independently in each fteen-minute time slot, in the range [d, d]. That is, demands do not follow particular trends, even if falling into the same range of real data. Dataset B is realistic, reproducing the main features of the starting data. We choose a single day at random from the two months included in the dataset [START_REF] Barlacchi | A multi-source dataset of urban life in the city of milan and the province of trentino[END_REF], we perform a direct query to the demand of each AP at each time slot in that day, and then we perturb all demands with noise, uniformly drawn at random in the interval [-5%, +5%].

All demand values are rounded to the nearest integer. Besides the initial horizon of 96 time-slots, we consider planning time horizons of 48, 24 and 12 time-slots by merging respectively 2, 3 or 4 subsequent time-slots, setting their demands as the average on the merged time-slots. Five instances are generated in both datasets A and B. We also consider a dataset of raw real demands.

Dataset C is obtained by considering a random week taken from the dataset [START_REF] Barlacchi | A multi-source dataset of urban life in the city of milan and the province of trentino[END_REF], and merging the time-slots in either 168 slots of 1 hour each (1h), 84 slots of 2 hours (2h), 56 slots of 3 hours (3h), 42 slots of 4 hours (4h) or 38 slots obtained by the clustering methods described in subsection 6.2 (clust). The demand of each AP in each slot t is taken as the maximum over the the fteen-minute time slots merged in t.

For every instance, each MEC facility capacity C k is set to max t∈T i∈A d t i /|K| •1.05, and parameters α and β are both set to value 0.5.

Column Generation proling

We rst report on the computational behaviour of our Column Generation algorithm (CG). In this test we consider the single-assignment non-periodic variant.

In Tables 1a, 1b and 1c we include the details of the root node column generation process, for each instance of datasets A, B and C, respectively. A best known solution value z * is taken from a previous run of exact algorithms (see subsection 5.3). Besides instance details (columns `|T |' and `inst'), we include the relative gap between the primal bound value (resp. dual bound value) and z * , the number of column generation iterations needed to reach convergence, the overall CPU time spent for solving the pricing problems and the CPU time required to complete the column generation process. As benchmark we also report the performances of CPLEX 12.6.3 ILP solver, when stopped at the root node, including the corresponding primal and dual bound gaps and the time required to complete its root node computation.

We set a time limit of two hours to each computation, marking in the tables as `T.L.' those computations hitting that limit.

We rst note that CG has good convergence behaviour: less than 90 iterations are always enough to complete the computation. The high number of pricing subproblems yields to a high number of generated columns, but thanks to our dynamic programming algorithm, the overall pricing time remains low (below 10 seconds in all cases but one).

By rounding in CG we are always able to obtain good integer solutions (that is, below 1% from best known solutions in all cases but 4). CPLEX is not consistent: in a few instances (e.g. block |T | = 48 of the Realistic Dataset B) it is able to nd very good primal solutions, while in other cases (e.g. block |T | = 24 of Dataset B, or block |T | = 48 of Dataset A), only very weak primal bounds can be obtained.

We also observe that CG and CPLEX dual bounds are always similar. That is, on one hand the integrality property of our pricing problem warns that no improvement can be obtained by CG with respect to the continuous relaxation of the original formulation; on the other hand, CPLEX generic cuts have no signicant eect on strengthening the same continuous relaxation bound.

Finally, in more than 37% of the instances, CPLEX is unable to terminate the root node computation within the time limit, while CG always completes the computation. When both CG and CPLEX terminate, the CPU time required by CG is up to two orders of magnitude lower that required by CPLEX.

We highlight that the (possibly fractional) solution found by CG is a global optimal solution for the split-assignment model variants: no further computing is needed in that case. 

CG Root

CPLEX Root

|T | inst. P B-z * z * |DB-z * | z * # iter # cols t p t P B-z * z * |DB-z * | z *

Exactly solving the DASP

In a second round of experiments we let both our Branch-and-Price (BaP) and CPLEX 12.6 ILP solver (CPX) run for two hours, also exploring their branching trees. In Tables 2a, 2b, 2c we report the results of this experiment on each instance of datasets A, B and C, respectively. In each Table we report the relative gap between the primal bound PB (resp. the dual bound DB) at the end of computation and the best known integer solution value z * , and the number of explored branch-and-bound nodes, for both our BaP and CPX. We report no computing time because, surprisingly, neither BaP nor CPX could bring the duality gap below 0.1% within the time limit, except for instance 4 with |T | = 12 of Dataset A, 5 with |T | = 12 of Dataset B and 'clust' of Dataset C, that CPX is able to close (but still using more than 90% of the available CPU time).

In terms of nal dual bounds the results of both methods are very similar. Our explanation for this phenomenon is the following: the root dual bound is already very close to the integer optimum value, and therefore the real challenge is to nd an optimal primal solution. At the same time, the high number of time-slots yields values of primal solutions on the order of magnitude of 10 8 : as soon as the duality gap becomes small, numerical approximation issues prevent to coherently explore the remaining search tree.

In terms of searching for good primal solutions in the inner nodes of the branching tree, instead, BaP and CPX are not equivalent: in Figure 5a we plot the typical primal bound value (y axis) improvements as the computation (x axis) proceeds (instance 1, |T | = 24, dataset B); for the sake of comparison, the x axis report relative values with respect to the overall number of branch-and-bound nodes for CPX and the overall number of column generation iterations for BaP. Eventually, CPX is more numerically stable, oering after two hours of computation primal solutions values a few tenths of percentage points better (up to 0.5% of improvement). In turn, BaP allows to nd near-optimal integer solutions much more quickly, that is in fact already at the root node. The behaviour of BaP in the early steps of computation is further detailed in Figure 5b: the quality of the primal bound steeply increase during the column generation iterations at the root node.

As a synthetic nal assessment of our computational evaluation we can report that when the number of time-slots is small, and the planner has no particular need for quick optimization algorithms, both BaP and CPLEX might be viable alternatives to optimize the DASP.

BaP is faster, especially when used heuristically, stopping the computation either at the root node or after exploring a few nodes of the branch-and-bound tree. This makes it well suited also when quick optimization is needed, like in what-if-analyses.

When the number of time-slots increases, however, using CPLEX is not an option anymore.

Practical case study

Our nal aim is to assess the eectiveness of our optimization core in the context of the data-driven MEC management optimization framework. To this end, we rely on the complete real-world dataset in [START_REF] Barlacchi | A multi-source dataset of urban life in the city of milan and the province of trentino[END_REF], and run actual analytics on it so as to generate the demand proles. We then feed our optimization models with such proles, which, ultimately, lets us measure the quality of the assignment plans it returns in a practical case.

Experimental setup

The real-world mobile trac data covers a planning period of eight weeks, split in a set T of fteen-minute snapshots. The rst approach we take in order to infer demand proles exploits a well-known property of mobile trac, i.e., its weekly periodicity [START_REF] Keralapura | Proling users in a 3g network using hourglass co-clustering[END_REF]. Namely, a Training. Conceptually, the resulting 4 × 24 × 7 = 672 training proles are then used as input for our optimization algorithms. By optimizing over the training data we obtain a planning solution, which becomes our assignment plan: we apply such a plan to the remaining seven weeks of test data. As an example, optimizing over training data yields a solution including a specic assignment of APs to MEC facilities on Monday between 7:00 am and 7:15 am: we then blindly apply the same assignments on the 7:00-7:15 am time slots of each Monday in the test data, presuming that the demand conguration is similar on all Mondays at the same time. In a sense, this is a worst-case situation, in which the decision maker simply observes the system for one week before deciding on the planning for the remaining weeks. Practically, we do not directly use the 672 fteen-minutes time-slots for training. We assume, instead, that the preprocessing and data-mining module produces suitable aggregations. We experimented therefore with simple aggregation of the proles, merging time-slots sequentially over 1, 2, 3 or 4 hours. Each aggregation step was performed by considering in each AP and in each aggregated time-slot the maximum demand value of that AP over the corresponding base time-slots. The optimized solution was then disaggregated in post-processing, simply replicating the same plan over the fteen-minutes time-slots composing each aggregated time-slot. By choosing the maximum demand values during aggregation, we ensure that our optimized solutions remain feasible after disaggregation.

It is apparent that less aggregated proles entail a higher potential for optimization: in the baseline scenario the assignment of APs to MEC facilities can be changed every 15 minutes, possibly assigning to the same MEC facility APs that experience very high peaks of demand in subsequent time slots. They are, however, more prone to overtting, as peaks in particular hours of the training week do not necessarily correspond to peaks in the corresponding hour of testing weeks. In addition, they are more clearly expensive from a computational standpoint.

More aggregated instances, instead, are more conservative: two APs with very high demand peaks in the same four-hours time slot cannot be assigned to the same MEC facility, thus possibly preventing capacity violations in the test weeks if those peaks slightly move in time. They are also less demanding in terms of computational costs. However, aggregation forces the a same conguration for longer timeframes, making the optimization possibly oblivious of fast dynamics in the demand.

In order to further balance the aggressive optimization process during the training phase of low aggregation instances, we found empirically useful to set the C k capacity values to max t∈T i∈A d t i /|K| • 1.05 in each test. That is, one-hour time-slot instances are optimized with lower capacity values.

Test. To ensure fairness in the comparison, during the test phase only disaggregated solutions are considered. That is, independently on the aggregation used for training, only solutions dened over the original fteen-minutes time-slots are compared. Similarly, the reference MEC capacity value was xed to max t∈ T i∈A d t i /|K| •1.10 in any comparison. Clearly, neither the cost nor the capacity usage are guaranteed to remain the same when the planning obtained with training data is applied to test data, as uctuations in the demand may occur across weeks. The quality of our solutions is therefore evaluated according to two measures: (i) the assignment and switching cost of the planning and (ii) the amount of violations in capacity constraints, both measured on test data. The latter is computed as follows:

max t∈ T k∈K max{ i∈A d t i x t ik -C k , 0} |K| • C k
that is, the overall amount of violation in capacity constraints, as a relative value respect to the available capacity, in the worst time-slot.

These measures are computed for each plan by the validation module through simple simulation on the seven weeks of test data. Advanced Clustering Benchmark. An alternative to employing our ad-hoc technique on the optimization module would be to perform a more aggressive aggregation over time, producing instances that are small enough to be optimized by CPLEX. We experimented on such an option, adapting the temporal clustering solution presented in [START_REF] Furno | Mobile demand proling for cellular cognitive networking[END_REF] to our needs. Specically, we take the following steps: (i) we generate a median week of mobile trac demand, by computing the median load recorded at each AP during every hour of the week, using it as training data; (ii) we perform two separate hierarchical clusterings, respectively using the total volume and normalized distance metrics introduced in [START_REF] Furno | Mobile demand proling for cellular cognitive networking[END_REF]; (iii) we nd the intersection of the two cluster sets obtained at the previous point. Very few time-slots are actually produced this way, allowing CPLEX to optimize the corresponding instances. Consecutive time-slots belonging to the same cluster are then aggregated. The aggregated instance is optimized and the solution obtained in this way is then disaggregated in fteen-minute time-slots plans, as in the previous case, during post-processing, before being compared on test data.

Experimental evaluation

Following the computational results of Section 5, our core optimization module always employs our Branch-and-Price as a heuristic (HBP), stopping its computation at the root node, except for the aggregated instances produced by time-clustering. Having |T | = 38, these are manageable eciently even by general purpose solvers: CPLEX 12.6.3 ILP solver was then used to solve them to proven optimality. The scatter plot in Figure 6 summarizes our results. Each point represents the outcome on a single week of test data. Dierent shapes refer to dierent demand prole aggregation methods, obtained by merging 1, 2, 3 or 4 consecutive one-hour time slots, as well as using the Advanced Clustering and CPLEX (Bench-CPLEX). The y axis coordinate of each point represents the capacity violation measure, as introduced above; the x axis coordinate of each point represents the solution cost measure, expressed as percentage value of that of the optimal solution employing the Advanced Clustering Benchmark method. Therefore, negative (resp. positive) percentages map to a performance improvement (resp. reduction) with respect to the benchmark. The details about capacity violation measures are reported also in Table 3 for each week in the training set (columns) and for each demand prole aggregation method (rows).

A rst remarkable result is that in all cases our HBP with sequential clustering allows for solutions with less capacity violations. In particular, HBP with either four-hours or threehours aggregation oer almost no capacity violations, coming at the price of three to ve percent increase in solutions cost. HBP with two-hours aggregation always outperforms the benchmark method both in terms of exceeded capacity and in terms of solution costs. HBP with one-hour aggregation further decrease costs at the price of slightly higher capacity violation.

Conclusions

To tackle the complex problem of assigning APs to MEC facilities over time we have proposed a data-driven MEC management optimization framework, including an optimization core component, that is combined with preprocessing and data-mining and validation by simulation modules.

As a main result, we veried that instances arising in practical analyses strongly benet from the explicit use of mathematical programming models in such an optimization core. The performances of the framework are enhanced even further when our ad-hoc algorithms are exploited: being much more eective than a general purpose solver like CPLEX, they allow to create candidate assignment plans with a ner time discretization; this proved to be benecial in a training-and-test evaluation on real data.

From a computational point of view, although exact in nature, the main appealing feature of our algorithms is their ability of nding near-optimal integer solutions very quickly, providing at the same time good dual bound guarantees. This makes them well suited also for what-if analyses.

A promising future step is the tighter integration of temporal clustering and ad-hoc optimization algorithms, allowing for a higher number of time slots of potentially dierent size, obtained through data mining. From an application perspective, our good computational results open also the possibility of optimizing simultaneously more than a single service.

Our source code is released under GPL license and available online [START_REF] Ceselli | Optimized assignment patterns in mec networks -repository[END_REF], together with our test instances.
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  Greedy Binary AP-MEC facility assignment ka = none , ∀a ∈ A {MEC facility associated to AP a in previous time-slot} for all t ∈ T do A s = sortDec(d t a |a ∈ A) {sort AP for non-increasing demand at time t} c k = 0 , ∀k ∈ K {used capacity of MEC facility k} for all a ∈ A s do k = ka {rst choice is the previous assignment} if k = none ∨ c k + d t a ≤ C then k = nearestAvailable(a, d t a , c k ) {get nearest MEC facility with enough residual capacity}

	end if	
	x t a,k = 1.0
	c k = c k + d t a {update used capacity of chosen MEC facility} if t > 0 ∧ k = ka then
	y t a, ka,k	= 1.0
	end if	
	ka = k	
	end for	
	end for	
	1. inizialize (subsection 4.1)
	2. perform column generation to obtain a valid lower bound to the DASP (subsection
	4.2)	
	3. if the solution is fractional, run rounding heuristics (subsection 4.3) to obtain a
	corresponding upper bound
	4. if upper and lower bounds do not match, perform probing to potentially x variables
	(subsection 4.4)
	5. if needed, perform branching (see subsection 4.5), and recursively reoptimize each
	subproblem from step 2.

Algorithm 1

  possibly fractional) variable values of the RMP at a certain iteration: we can compute the values of the corresponding x variables as xt ik =

	Algorithm 2 Pricing Algorithm
	for all i ∈ A do
	c 1 k = a 1 ik ∀k ∈ K {cost of path starting at MEC facility k} p 1 k = {k} ∀k ∈ K {path starting at node k at time}
	for all t ∈ 2..T do
	for all k ∈ K do
	k
	xt,p
	p∈Ω i

ik zp . * = arg min k ∈K (c t-1 k
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 1 Computational Results -CG Root vs. CPLEX Root

	t

* z * |DB-z * | z * # iter # cols t p t P B-z * z * |DB-z * | z *

  CPLEX 9.59% 7.03% 5.71% 4.25% 2.57% 3.88% 14.68% 9.51%

				Week				
	train	1	2	3	4	5	6	7
	Bench-							

4h 2.09% 1.54% 1.72% 0.66% 0.00% 2.54% 11.63% 2.92% 3h 1.94% 1.42% 1.48% 1.10% 1.25% 1.58% 11.07% 2.98% 2h 2.20% 2.58% 1.99% 1.19% 2.26% 2.82% 11.22% 4.15% 1h 2.84% 2.38% 4.17% 1.14% 1.92% 4.04% 10.65% 5.47%

Table 3 :

 3 Time-Slot Peak Exceeded Capacity Over Available Capacity
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