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Abstract

Given an existing Mobile Edge Cloud (MEC) network including virtualization facilities of
limited capacity, and a set of mobile Access Points (AP) whose data tra�c demand changes
over time, we aim at �nding plans for assigning APs tra�c to MEC facilities so that the
demand of each AP is satis�ed and MEC facility capacities are not exceeded, yielding high
level of service to the users. Since demands are dynamic we allow each AP to be assigned to
di�erent MEC facilities at di�erent points in time, accounting for suitable switching costs.
We propose a general data-driven framework for our application including an optimization
core, a data pre-processing module, and a validation module to test plans accuracy. Our
optimization core entails a combinatorial problem that is a multi-period variant of the
Generalized Assignment Problem: we design a branch-and-price algorithm that, although
exact in nature, performs well also as a matheuristics when combined with early stopping.
Extensive experiments on both synthetic and real-world datasets demonstrate that our
approach is both computationally e�ective and accurate when employed for prescriptive
analytics.

Keywords: Mobile Edge Computing, Prescriptive Analytics, Generalized Assignment,
Branch-and-Price.

1. Introduction

Communication networks have been undergoing a rapid evolution in the last few years,
embracing software-based system virtualization as a way to optimize physical resource
e�ciency and network operational expenditures, and to increase the user's quality of expe-
rience. A particularly promising area of research is the one deriving from the installation
of application servers into the access network, by means of a virtualization system, to
decrease the network distance between users and servers, hence o�ering higher reliability
and performance to network connection, besides an ideally lower energy foot-print on the
Internet infrastructure. In telecommunications standardization bodies and open source
code communities, this rising area is referred to as Mobile Edge Computing (MEC) [1].

Thanks to MEC deployment, the user experience can be augmented by drastically
reducing the server access latency, so as to enable collaborative networking, tactile Internet
(i.e., communications made possible by an extremely low latency such as augmented reality
applications) [2], and more generally computation o�oading to a nearby cloud with the
goals to control mobile device energy consumption and to run computationally heavy
applications using tiny low-power devices [3].
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Figure 1: APs dynamic assignment to MEC facilities

Motivation and problem description . In a MEC infrastructure, virtualization clusters �
called `MEC facilities' or `MEC hosts' in the standardization documents, or cloudlets in
academic jargon � are connected to access network nodes to deliver access to mobile ap-
plication servers run as Virtual Machines (VMs). Various innovative operations to deal
with changing mobile access demands can be applied and include Access Point (AP) to
MEC facility dynamic assignment, VM capacity rescaling (addition or removal of com-
puting power in terms of live memory or virtual processors) and VM migration (a VM
state is moved from one MEC facility to another one). An `orchestrator' is in charge of
implementing such decisions into the MEC virtualization layer. Each orchestration action
comes at a cost, often referred to as migration or switching cost, as it requires synchro-
nizing states across a geographical network under stringent performance guarantees. The
technology to perform MEC orchestration operations is becoming mature [4, 5]. However,
the MEC orchestrator intelligence is still being developed, with as major goal to perform
both reactive decisions to cope with sudden, unpredicted, changes, and proactive decisions
to anticipate expectable network impairments.

Motivated by the reliability of network load forecasting methods, in this paper we
focus on producing proactive tactical decisions on how to optimally assign APs to MEC
facilities over time. We address such a MEC orchestration challenge from an algorithmic
perspective. Our aim is to propose algorithms to take robust decisions about AP-MEC
assignments and related tra�c routing, while taking into consideration the corresponding
VM switching costs. Our dynamic assignment application contains a combinatorial core:
APs have associated mobile tra�c demand, that changes over time. Each MEC facility has
a certain capacity, limiting the overall amount of demand it can serve simultaneously. APs
must be assigned to MEC facilities; each assignment implies a cost for each user connected
to the AP in terms of latency for communicating with the associated MEC server. A
simpli�ed application example is presented in Figure 1: a MEC network with two MEC
facilities (K1 and K2) and four APs (A to D) is considered in three consecutive time-slots
(t=0, 1 and 2). Mobile users connected to each AP are represented by small rectangles.
At time 0, APs A and B are assigned to MEC facility K1 while APs C and D are assigned
to K2. That means, each user connected to AP A has a VM running in K1, each user
connected to AP C has a VM running in K2, and so on. The network is fairly balanced,
as 7 VMs run in K1, and 9 VMs run in K2. Due to capacity limits it might be not always
a good decision to assign each AP to its MEC facility of minimum latency; furthermore,
since demand changes over time, an assignment pattern would hardly remain an e�cient
one over the whole planning horizon. For instance, suppose that at time 1 three users
move from the region served by AP B to the region served by AP C; if the assignment of
APs to MEC facilities is kept constant, the load of the MEC facility K2 increases to 12,
causing an overload. We therefore leave the option of changing assignments over time,
taking into account that each change implies a switching cost for the network, for example
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in terms of signaling to move session data of active users. In the running example, our
orchestrator may decide for instance to change the assignment of AP C from K2 to K1, to
keep a balancing on the number of VMs running in the two facilities. As a side e�ect,
however, the VMs of the users connected to C need to be migrated from K2 to K1, thereby
requiring synchronization tra�c.

The aim of our proactive approach is to actually prevent the critical situation at time 1,
by performing the assignment change in advance. An optimization problem arises, that is
to assign APs to MEC facilities over time, respecting capacity constraints and minimizing
a combination of users (assignment) and network (switching) costs.

Literature Review. An important amount of work has appeared in the area of mobile edge
computing during the recent few years. We can distinguish two broad classes of studies:
those related to infrastructure aspects, i.e., dealing with novel protocols and architectures
able to expose the necessary edge computing features, and those focused on terminals and
objects, i.e., dealing with their integration with edge computing resources.

Concerning edge computing infrastructure design, pioneering experimental activities on
the design of cloudlet systems have shown the huge impact of cloud access latency reduction
in terms of throughput gain [6]. Subsequent works have investigated the design of cloud
network overlay protocol and controller for the adaptive mobility of virtual machines as a
function of the mobility of users [5], and the capacity planning in the placement of edge
computing facilities [7]. These studies have proceeded in parallel with standardization
e�orts at ETSI [8],

The literature is even larger when it comes to MEC-connected terminals and objects.
Most works are in the area of mobile computation o�oading to edge cloud facilities, i.e.,
allowing mobile devices to exploit edge computing resources. Prominent examples include
MAUI [9], CloneCloud [10], Cuckoo [11], AIOLOS [12], Thinkair [13] and COSMOS [14],
which are frameworks allowing mobile devices to run (part of) their applications in edge
cloud facilities, for di�erent operating systems, with di�erent goals (e.g., energy saving,
execution time, etc.), and at di�erent levels of operating system intrusiveness.

A last focus lies in the optimization of edge computing resource allocation. Here, the
authors of [15] allocate computation resources using a capital-budgeting technique typi-
cally used in the �eld of �nancial option valuation. The approach allows choosing the best
remote servers among many, based on an o�oading cost (execution time) and a transmis-
sion cost (transmission time). Authors of [16] approach the resource allocation problem by
foraging computation resources from di�erent mobile devices. Mobile devices share their
available resource and schedule their work based on their available computation resources.

Unlike the previous studies above, our aim is to conceive a data-driven MEC man-
agement optimization framework. Therefore, our work pertains to the �eld of cognitive
network management, an emerging research area in computer networks which investigates
the integration of data analytics into planning and operation of next-generation mobile net-
works [17]. The motivation for cognitive network management arises from the fact that the
tra�c demand in mobile networks is increasingly characterized by signi�cant �uctuations
in space and time, due to the diverse activities of subscribers at di�erent times and loca-
tions [18, 19], as well as to the heterogeneity of mobile services [20]. 5G systems will have
to accommodate such a growing variability: therefore, they will implement new paradigms
that allow dynamically (re-)allocating resources at multiple network levels, hence granting
the needed �exibility.

Cognitive network management is the process driving the time-varying con�guration
of network resources, in a fully automated way. It builds on dedicated analytics to in-
fer user activity patterns from tra�c measurement data, and then acts on the network
resource allocation accordingly. The principles of cognitive network management are well-
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established [21, 22], and are envisioned to apply across enabling technologies such as small
cells [23], Cloud Radio Access Networks (C-RAN) [24], Software De�ned Networking (SDN)
and Network Function Virtualization (NFV) [25].

However, we currently miss substantial demonstrations of how data analytics can be
leveraged in the speci�c case of MEC architectures. Speci�cally, there is a need for analyt-
ics that mine MEC-level tra�c metadata, discover relevant knowledge about the network
status, and ultimately drive MEC optimization. In this paper, we employ clustering tech-
niques to process noisy raw measurement data, and identify a limited number of typical
con�gurations of the data tra�c demand across the APs. We then leverage such con�gura-
tions to fuel a cognitive allocation of access network resources to MEC facilities. We stress
that ours is a simple, conservative approach based on macroscopic network states. As such,
it serves as a basis for more complex approaches, which require continuous monitoring of
the demand and adaptation of resources. For instance, established techniques used for
Cloud resource management, such as receding horizon [26], could be used to �ne-tune the
�xed allocations returned by our proposed scheme.

More in detail, our proposal is to equip the system with an optimization core, exploiting
preprocessed data as input, and producing solutions whose structure is explicitly encoded
by mathematical programming models. Our setting requires to tackle a multi-period ex-
tension of the famous Generalized Assignment Problem (GAP) [27]. Indeed, GAP models
have been widely used in the context of network optimization. For instance, in [28] the
authors use a dynamic multi-resource GAP to perform capacity planning; recent examples
include [29], in which a �exible cell selection in cellular networks is tackled, and [30] in
which an allocation of VM to physical machines is considered, all extending GAP models.

We point to [31] for a detailed methodological review on the GAP and its extensions.
Despite the large body of research available on the GAP, we are not aware of many papers
directly dealing with its multi-period extensions. In [32] the authors face a single-source
allocation problem with a �exible model and an e�ective branch-and-price algorithm; how-
ever, their model does not allow to handle limited capacity, which is a crucial feature in our
application. The multi-period allocation problem discussed in [33], in which a dual ascent
technique from [34] is adapted to a telecommunication networks applications, is similarly
missing the feature of handling limited capacities.

Our problem does not require to decide the location of the facilities. Such a strategi-
cal decision belongs to the realm of infrastructural design and, as we extensively discuss
in [7], requires substantially di�erent models and solution techniques. It is therefore as-
sumed to be optimized in a prior planning round and given in input. At the same time, one
may expect features and computational challenges similar to those of multi-period location
problems [35]. Recent approaches on that �eld include [36]: the authors face a multi-period
concentrator location and dimensioning problem, providing MILP formulations and reduc-
tion techniques, and solving to optimality in less than one hour of computation instances
with up to 30 clients, 10 candidate location sites and 15 time periods, or 100 clients, 30
candidate locations and 5 time periods. In [37] the authors introduce exact methods for
a capacitated multi-period facility location problem in which however, unlike our case,
the demand of each client can be fractionally served by multiple facilities. Large scale
instances with up to 200 facilities, three periods and an arbitrary number of clients could
be solved with their algorithms. We �nally mention the recent contribution of [38], where
the authors propose MILP formulations and local search heuristics for an uncapacitated
p-median location problem involving two periods: in the �rst the location of facilities is
given, while in the second it can be changed at a price. Clients are always assigned to the
nearest facility. They provide good approximations to instances with up to 400 facilities
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in a few minutes of computation.

Contribution summary and paper outline. Our research provides three types of contri-
butions. The �rst is architectural: we design a data-driven framework for the dynamic
selection of AP to facility assignment in MEC networks, which relies on (i) historical data
clustering analytics, (ii) dedicated optimization techniques, and (iii) validation by simu-
lation. The second is algorithmic: we introduce mathematical programming formulations
and ad-hoc exact solution methods for a relevant multi-period extension of GAP. The third
is use case-oriented: we evaluate our framework with real-world datasets, which provides
practical insights for MEC resource management. We devote a substantial part of the
paper to the technical insights of our optimization core.

The manuscript is structured as follows. We �rst detail our framework (Section 2).
Then we focus on the optimization core component, introducing a compact Mixed Integer
Linear Programming (MILP) formulation for our problem, proving a few structural prop-
erties and providing an extended counterpart by means of Dantzig-Wolfe decomposition
(Section 3); we also design column generation procedures with ad-hoc pricing algorithms,
rounding heuristics, reduction techniques and branching rules to be embedded in a whole
exact solution method (Section 4). We show �rst of all that our algorithms are e�ective
from a computational point of view (Section 5). We then demonstrate the e�ectiveness
of our optimization tools in practical scenarios, using real-world tra�c demands collected
by a major mobile network operator in Milan, Italy (Section 6). We �nally draw some
conclusions (Section 7).

2. A data-driven MEC management optimization framework

We propose a high-level data-driven MEC management optimization framework whose
algorithmic core architecture is sketched in Figure 2. The framework receives as input
a representation of the (time-varying) data tra�c demand recorded at each AP of the
MEC network. The framework output are (multiple) assignment patterns of APs to MEC
facilities, meant to be enforced by the orchestrator on the MEC network over time through
switching operations.

The input data is collected as historical records of the mobile tra�c demands in the
MEC network. Part of the data is reserved for testing by the Validation Tool module.
Part instead is used for training, i.e., it is fed to the Preprocessing and Data Mining
module, which �lters by meta-data and produces a suitable time (and possibly space)
discretization and a corresponding data aggregation. The main output are demand pro�les,
that is sequences of values, one of each time slot and each AP in a certain periodic frame,
representing an estimate of the periodic load on that AP at each point in time. For
instance, if a periodic frame of one week is selected, together with an aggregation to
single-hour time slots, a demand pro�le would be a sequence of 168 values for each AP.
The demand pro�les are sent to the Optimization Core module, which leverages them to
compute candidate plans, that are assignments of APs to MEC facilities, one for each time
slot of the periodic frame. The Orchestrator module, in turn, receives the candidate plans
and queries the Validation Tool module for an evaluation on test data, so as to determine
their quality. Based on the result, the Orchestrator module �nally chooses a suitable plan
and implements it in the MEC network.

The framework is assumed to be constantly kept online, although its components, whose
description is given in the following paragraphs, are activated with di�erent frequencies.

Preprocessing and Data Mining. The �rst task of the module is to detect seasonalities in
data; such a task can be accomplished, for instance, by time series analysis and is assumed

5



Figure 2: A data-driven MEC management optimization framework.

to be performed very rarely (e.g. only when major technological changes occur). The sec-
ond task is to perform a suitable time discretization. We assume that switching can occur
only at certain points in time (e.g., once every �fteen minutes), due to practical limita-
tions of the MEC technology: this already introduces an implicit time discretization of the
system. In order to identify suitable discrete-time pro�les of the tra�c demand, di�erent
strategies can be employed in the Preprocessing and Data Mining module. The simplest
option is to aggregate the demand observed at each AP during every time step in the
training data. This returns one pro�le for each time step: since switching between assign-
ments cannot occur at shorter timescales than the time step, this is the highest resolution
useful to the Optimization Core � and the one deemed to return the highest-quality result.
However, it also creates a very large number of pro�les (e.g., in the order of thousands
for hour-long time steps over months of historical data) that may be computationally too
expensive to manage.

Another option to identify suitable discrete-time pro�les of the tra�c demand is to
use temporal clustering analytics on the historical data, so as to group together time slots
that feature very similar distributions of the mobile tra�c demand across the APs. In
this case, the module returns a limited number of pro�les, each of which corresponds to
the typical demand observed in a large set of time slots. It is then possible to reduce the
computational cost at the Optimization Core, by feeding it with a small number of pro�les.
However, this comes at the expense of assignment quality, since typical pro�les can only
approximate the actual MEC network load at a speci�c time step. We provide an example
of temporal clustering analytics, which builds on the methodology of [39], in Section 6.1.

Optimization Core. Once the tra�c demand pro�les are de�ned, the Optimization Core
builds e�ective dynamic assignment plans on top of those. Plans include, for each time
slot, the set of APs to be connected to which MEC facility and, as a by-product, the set
of switching operations to be performed between subsequent time slots. We considered
di�erent operational options, subsequently selecting to employ a single assignment model,
in which an AP is associated to exactly one MEC facility in each point in time, and a
linear management of the planning horizon, in which the switching costs of the last time
slot are simply neglected. Being the core of our approach, we defer its detailed description
to the subsequent Sections. The Optimization Core is meant to be run o�ine, when the
Orchestrator triggers it (e.g. once per week).
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Validation Tool. Once a set of candidate plans is produced by the Optimization Core, a
Validation Tool is used to check their quality on test data. In our case, test data consist of a
few weeks of raw tra�c demand data: the Validation Tool evaluates the plan by simulating
its application in those weeks, and computing quality measures. Also the Validation Tool
is triggered by the Orchestrator: its frequency of activation is expected to be higher (e.g.
daily runs).

Orchestrator. The MEC orchestrator is the functional element in charge of actually send-
ing VM orchestration instructions to MEC hosts, monitoring the MEC system status and
the MEC network link states as well. Legacy cloud orchestrator systems typically take
orchestration decisions based on simple best-�t policies, as data-center network resources
are often over-dimensioned and a large set of clusters is made available; the placement and
assignment decision logic is therefore typically not bound to computing facility location.
Such orchestration algorithms however cannot be readily applied to a MEC context essen-
tially because of the geographical nature of MEC networks and the capacity limitation of
MEC facilities. This is typically done at the orchestrator subsystem level by adding an
abstraction layer, with a dedicated descriptive language to map computing resources to
physical location of servers. The Orchestrator is meant to be always online, triggering the
other modules by need.

3. Optimization models

A key component of the data-driven MEC management optimization framework is the
optimization core. Its task is to �nd suitable assignments of APs to MEC facilities over
time, together with corresponding user VMs migration patterns. As discussed, we focus
on the single-assignment linear-plan variant.

Let us denote as A the set of APs and as K the set of MEC facilities. We assume
the planning horizon to be discretized in a set T of time slots. For each AP i ∈ A, let us
indicate as dti the mobile tra�c demand that has to be accommodated by AP i at time
t ∈ T , and as mi,k the physical distance between AP i and MEC facility k ∈ K. Let Ck

be the capacity of MEC facility k ∈ K, and lk′,k′′ be the network distance between MEC
facilities k′, k′′ ∈ K. We assume lk,k = 0 for each k ∈ K, where with network distance we
mean a distance that can is directly proportional to the network latency (including packet
processing latency at intermediate nodes) and the physical distance.

Let xti,k be binary variables taking value 1 if tra�c from AP i ∈ A at time t ∈ T is

routed to MEC facility k ∈ K, 0 otherwise. Let yti,k′,k′′ be binary variables taking value
1 if AP i ∈ A is associated to MEC facility k′ ∈ K at time t − 1, and switches to MEC
facility k′′ ∈ K at time t.

Our Dynamic Assignment and Switching Problem (DASP) can be formulated as follows:
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min α
∑
t∈T

∑
i∈A

∑
(j,k)∈
K×K

dtiljky
t
ijk + β

∑
t∈T

∑
i∈A

∑
k∈K

dtimikx
t
ik (1)

s.t.
∑
i∈A

dtix
t
ik ≤ Ck ∀t ∈ T, ∀k ∈ K (2)∑

k∈K
xtik = 1 ∀i ∈ A, ∀t ∈ T (3)

xtik =
∑
l∈K

ytilk ∀i ∈ A, ∀t ∈ T \ {1},∀k ∈ K (4)

xtik =
∑
l∈K

yt+1
ikl ∀i ∈ A,∀t ∈ T \ {T},∀k ∈ K (5)

xti,k ∈ {0, 1} ∀i ∈ A,∀k ∈ K,∀t ∈ T (6)

yti,k′,k′′ ∈ {0, 1} ∀i ∈ A,∀k′, k′′ ∈ K,∀t ∈ T (7)

the objective (1) aims at �nding a trade-o� between the minimization of network- and
user-related costs. The former is generated by the change of AP-MEC facility associations
in consecutive time slots, which produces control overhead due to the necessity of migrating
VMs. The latter is instead the latency experienced by the user with the current AP-MEC
facility association. Parameters α and β represent the relative weight of the network-
and user-related costs in the objective function. Constraints (2) impose that the overall
demand assigned to MEC facility k at time t does not exceed its capacity. Constraints (3)
impose that each AP is connected to a single MEC facility during a time slot. Constraints
(4) and (5) link x and y variables in a �ow conservation fashion: when xtik = 0, that is AP
i is not assigned to MEC facility k at time t, they impose that no switching operation is
made; when xtik = 1, instead, they impose that a single switching operation assigns i to k
at time t and reassigns it at time t+ 1 (possibly involving the same MEC facility, in which
case the switching cost is zero).

A sample instance with three APs (squares), two MEC facilities (circles) and two time-
slots (left and right parts) is depicted in Figure 3: AP 2 is assigned to MEC facility A at
t = 1 and MEC facility B at time t = 2, therefore a switching operation from A to B needs
to be performed.

Model (1) � (7) has a few interesting features.

Observation 1. The DASP can be seen as a multi-period generalization of the Generalized
Assignment Problem (GAP).

In fact, when |T | = 1, the DASP reduces to a GAP.

Observation 2. For t > 1, constraints (3) are redundant.

Indeed, for t > 1, they are implied by constraints (4) and (5) and
∑

k∈K x1
ik = 1 for each

i ∈ A. It is easy to check it by induction over t: for each i ∈ A, constraints (5) ensure that
if a k ∈ K exists such that xt−1

ik = 1 then
∑

l∈K ytikl = 1; then by aggregating constraints
(4), we obtain that if

∑
k∈K

∑
l∈K ytikl = 1 then

∑
k∈K xtik = 1. In turn, since the x

variables are binary,
∑

k∈K xtik = 1 implies that a k ∈ K exists, such that xtik = 1. All we
need to additionally enforce is the base case t = 1.

Proposition 1. When all xtik variables take integer values, the ytikl variables also (auto-
matically) take integer values in any feasible solution. The converse is also true.
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In fact, for each i ∈ A and each t ∈ T , due to constraints (5) if xtik = 0 then yt+1
ikl = 0 for

each l ∈ K. If xtik = 1, assume by contradiction that a feasible solution exists, containing
fractional yt+1

ikl values; each fractional yt+1
ikl will appear in a di�erent constraint of family (4),

that can be feasible only if xt+1
ik = 1 for more than a single k ∈ K, violating constraints (3),

yielding infeasibility and thus leading to a contradiction. The converse is trivially implied
by both constraints (4) and (5).

That is, in the search for optimal solutions by means of algorithms exploiting continuous
relaxations, branching on ytikl variables is unnecessary.

4. Optimization Algorithms

Unfortunately, when the size of the MEC network is large, even solving the continuous
relaxation of model (1) � (7) turns out to be computationally hard. Therefore, we devise
an ad-hoc exact solution approach based on decomposition.

Following the Dantzig-Wolfe reformulation principle [40], let

P i = {(xtik, ytikl) : (3), (4), (5), (6), (7)}

represent the convex hull of the feasible region respect to constraints (3) � (7). Let Ωi be
the set of corresponding extreme integer points, and for each p ∈ Ωi let x̃t,pik and ỹt,pijk be

the coe�cients encoding point p. Each element of P i can be represented as a linear convex
combination of points in Ωi. Therefore we introduce a set of variables zp ≥ 0, expressing
multipliers in such a combination, and we reformulate the continuous relaxation of (1) �
(7) as the following Master Problem (MP):

min
∑
i∈A

∑
p∈Ωi

(
α
∑
t∈T

∑
(j,k)∈
K×K

dtiljkỹ
t,p
ijk + β

∑
t∈T

∑
k∈K

dtimikx̃
t,p
i,k

)
zp (8)

s.t. −
∑
i∈A

∑
p∈Ωi

dtix̃
t,p
ik z

p ≥ −Ck ∀t ∈ T, ∀k ∈ K (9)

∑
p∈Ωi

zp = 1 ∀i ∈ A (10)

zp ≥ 0 (11)

The MP has an exponential number of variables. We optimize it by column generation:
we replace Ωi by a small representative subset Ω̄i (see subsection 4.1) and we solve the
Restricted Master Problem (RMP) obtained in this way; then, for each i ∈ A, we search if
any element of Ωi exists whose corresponding variable has negative reduced cost, by solving
a pricing problem (see subsection 4.2): any such element is added to Ω̄i and the process
is iterated. Otherwise we stop: the solution obtained by restricting to Ω̄i is optimal also
for the full problem. Our overall approach is to optimize the DASP by (implicit) recursive
tree search as follows:

1. inizialize (subsection 4.1)

2. perform column generation to obtain a valid lower bound to the DASP (subsection
4.2)

3. if the solution is fractional, run rounding heuristics (subsection 4.3) to obtain a
corresponding upper bound

4. if upper and lower bounds do not match, perform probing to potentially �x variables
(subsection 4.4)

5. if needed, perform branching (see subsection 4.5), and recursively reoptimize each
subproblem from step 2.
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Algorithm 1 Greedy Binary AP-MEC facility assignment

k̄a = none , ∀a ∈ A {MEC facility associated to AP a in previous time-slot}
for all t ∈ T do

As = sortDec(dta|a ∈ A) {sort AP for non-increasing demand at time t}
ck = 0 , ∀k ∈ K {used capacity of MEC facility k}
for all a ∈ As do

k = k̄a {�rst choice is the previous assignment}
if k = none ∨ ck + dta ≤ C then

k = nearestAvailable(a, dta, ck) {get nearest MEC facility with enough residual
capacity}

end if

xta,k = 1.0

ck = ck + dta {update used capacity of chosen MEC facility}
if t > 0 ∧ k 6= k̄a then
yt
a,k̄a,k

= 1.0
end if

k̄a = k
end for

end for

4.1. Initialization

In order to populate the initial sets Ω̄i, as well as obtaining an initial primal bound, we
run a simple greedy heuristic that builds the solution time-slot by time-slot and AP by AP.
The corresponding pseudo-code is reported as Algorithm 1. In particular, for each time
slot, APs are sorted by non-increasing demand and each AP is associated to a pro�table
MEC facility following this order. The choice for the most pro�table MEC facility to which
to associate an AP i at time t follows these rules: let k̄ be the MEC facility to which the
AP i was associated in the previous time slot t− 1:

1. if t > 1 and the demand of the AP i does not exceed the residual capacity of the
MEC facility k̄, assign i to k̄;

2. otherwise, �nd the nearest MEC facility (in terms of distance mik) to which the AP
demand does not exceed the residual capacity; if no such a MEC facility exists, stop
in a FAIL state.

This algorithm always terminates in O(|T ||A| log(|A|)|K|) time. Unfortunately, as
for a �xed t the problem is a special instance of GAP, even the problem of �nding an
arbitrary feasible solution is NP-Hard. Indeed, the algorithm might stop in a FAIL state,
without producing feasible solutions. However, in our computational experiments that
never happened.

Nevertheless, to complete the population of the initial RMP, we insert also a single
dummy column of very high cost, having coe�cient 0 in each constraint (9). This ensures
RMP feasibility also after branching.

4.2. Pricing algorithms

Let λt,k be the (non-negative) dual variables corresponding to constraints (9), and ηi
be the (free) dual variables corresponding to constraints (10).

For each î ∈ A, the problem of �nding the element of Ωî corresponding to the variable
of minimum reduced cost can be formulated as follows:
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minπi =− ηî + α
∑
t∈T

∑
(j,k)∈
K×K

dt
î
ljky

t
îjk

+

+
∑
t∈T

∑
k∈K

(
βdt

î
mik + dt

î
λt,k
)
xt
î,k

(12)

s.t.
∑
k∈K

xt
îk

= 1 ∀t ∈ T (13)

xt
îk

=
∑
j∈K

yt
îjk

∀t ∈ T \ {1},∀k ∈ K (14)

xt
îk

=
∑
j∈K

yt+1
îkj

∀t ∈ T \ {T},∀k ∈ K (15)

x ∈ {0, 1},y ∈ {0, 1} (16)

Proposition 2. The pricing problem (12) - (16) possesses the integrality property.

In fact, according to Observation 2, constraints (13) can be removed for t > 1, and con-
straints (14) used to replace xt

îk
in (15) and then removed. The remaining is basically a

network �ow matrix, which is known to be totally unimodular [40].
On one hand, Proposition 2 implies that the lower bound obtained by the MP through

column generation is equivalent to that obtained by optimally solving the continuous re-
laxation of the original model (1) � (7). On the other hand, it allows to employ polynomial
time Linear Programming solution algorithms, making us to expect the solution process
to be fast. Indeed, we could exploit its structure even further, as the elements of Ωi have a
particular combinatorial interpretation: they correspond to all feasible association paths,
that is sequences of MEC facilities to which the AP i is assigned in consecutive time-slots.
More in details, we build a directed layered graph G(N,A), with a layer for each time-slot,
as follows. Each layer has one node for each MEC facility; each pair of nodes in consecutive
layers are connected by an arc. Each node (t, k) ∈ T × K, modeling the assignment to
MEC facility k at time t, has an associated traversal cost given by atik = dti(βmik + λt,k),
while each arc connecting nodes (t, j) and (t+ 1, k) has an associated traversal cost given
by btijk = dt+1

i αlj,k. We also add a dummy source σ (resp. sink τ) nodes, having one
outgoing arc to each node in layer t = 1 (resp. one incoming arc from each node in layer
t = |T |) of zero cost. Figure 4 sketches the structure of G for a certain AP î on a sample
instance with two MEC facilities (A and B): a potential solution assigns i to A at time
t = 1, to B at time t = 2 and so forth.

In fact, an optimal pricing solution corresponds to a shortest σ − τ path in G.

Proposition 3. For each i ∈ A, the pricing problem can be solved in O(|T ||K|2) time.

In fact, for solving the pricing problems we devise a simple dynamic programming algo-
rithm, which is presented as Algorithm 2.

4.3. Rounding Heuristics

In order to �nd good primal bounds, a simple rounding algorithm (presented in Algo-
rithm 3) is executed at every column generation iteration. Let z̃ be the (possibly fractional)
variable values of the RMP at a certain iteration: we can compute the values of the corre-
sponding x̃ variables as

x̃tik =
∑
p∈Ωi

x̃t,pik z̃
p.
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Algorithm 2 Pricing Algorithm

for all i ∈ A do

c1
k = a1

ik ∀k ∈ K {cost of path starting at MEC facility k}
p1
k = {k} ∀k ∈ K {path starting at node k′ at time}
for all t ∈ 2..T do

for all k ∈ K do

k∗ = arg mink′∈K(ct−1
k′ + btik′k)

ctk = ct−1
k∗ + btik∗k + atik

ptk = pt−1
k∗ ∪ {k

∗}
end for

end for

k∗ = arg mink∈K{c
|T |
k } {minimum reduced cost related to AP i}

π∗ = c
|T |
k∗ − ηi

if π∗ < 0− ε then
add variable related to minimum cost path pk∗ to the model

end if

end for

For each time-slot t ∈ T , for each APs i the highest x̃tik is retrieved. For each AP, sorted by
descending highest x̃ value, the assignment is made with the MEC facility corresponding
to the highest x̃ and with enough residual capacity. Although no guarantee in feasibility
is given, our computational experiments revealed it to be highly e�ective.

4.4. Variables �xing.

We also experimented with probing techniques to potentially perform problem reduc-
tion during the column generation process. In particular, we employed Lagrangean probing
to �x variables at a pricing level. The main idea is to run the Pricing Problem Resolution
Algorithm twice: the �rst time as described in 2, that is considering each layer t = 1 . . . |T |
in forward order; the second time, instead, considering the layers in backward order, that is

initializing c
|T |
k = 0 and updating each ctk = mink∗∈K ct+1

k∗ +dt+1
i (αlk,k∗ +βmi,k∗ +λt+1,k∗).

In this way, the cost χt
k of the best path in which at time t an assignment is forced to MEC

facility k can be computed by summing the forward and backward labels ctk.
A valid dual bound LB can be computed at each column generation iteration as

LB = ρ−
∑
i∈A

πi

where ρ is the value of the last RMP solution. Let UB be the value of the best primal
(integer) solution found so far.

t = 1

A

a1
îA
x̃1
îA

B

t = 2

A

B

a2
îB
x̃2
îB

. . .

. . .

t = |T |

A

a
|T |
îA
x̃
|T |
îA

B

b2
îAB

ỹ2
îAB

0 · ỹ3
îBB

b
|T |
îBA

ỹ
|T |
îBA

Figure 4: Pricing Problem Structure
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Algorithm 3 Rounding heuristic

Input: variable values x̃ from a RMP fractional solution
Output: x̂ = 0, ŷ = 0 {integer solution}
for all t ∈ T do

rk = Ck ∀k ∈ K {residual capacity of MEC facility k}
Ã = sort(A,maxk∈K x̃tik) {sort the set of AP by non-increasing value of fractional
assignment to the 'most desirable' MEC facility}
for all i ∈ Ã do

{consider APs in such an order}
if {k ∈ K|dti ≤ rk} = ∅ then
FAIL {no MEC facility with enough capacity: exit with FAIL status}

else

k = arg maxk∈K|dti≤rk x̃
t
ik {get highest assignment}

x̂ti,k = 1.0 {�x assignment with MEC facility}

rk = rk − dti {update residual capacity}
end if

end for

end for

ŷ = compute_shift(x̂) {compute ŷ variable values to be consistent with x̂}

For each i ∈ A, let s(t) be the MEC facility at which AP i has been assigned at time t
in the optimal pricing solution returned by Algorithm 2. We perform the following �xes:

• for each t ∈ T and k ∈ K if LB + χt
s(t) − χ

t
k ≥ UB, then if assignment to MEC

facility k was forced, no improvement in the primal bound would ever be obtained.
Therefore node k can be removed from layer t without losing optimization power,
that means �xing variable xtik = 0 in the original model;

• for each t ∈ T if LB+χt
s(t)−mink∈K\{s(t)} χ

t
k ≥ UB, then if such an assignment was

forbidden, no improvement in the primal bound would ever be obtained. Therefore
all nodes k 6= s(t) can be removed from layer t without losing optimization power;
that means �xing variable xtis(t) = 1 in the original model.

A similar �xing procedure is run on arcs of the pricing graph, thereby allowing to �x ytk′′,k′
variables in the original model.

From an implementation point of view, we always allowed a relative tolerance of 5e−4
in the �xing test, to prevent numerical troubles. We run the �xing procedure at the end
of the column generation process of every node of the search tree; additionally, at the root
node, we run it whenever an improving primal solution is found.

4.5. Branch-and-price

When upper and lower bounds at the end of the column generation process do not
match, we proceed to branching. We branch on original variables x rather than on variables
of the MP. Fixing variable xti,k to value 0 corresponds to �xing to value 0 all variables

zp ∈ Ωi that assign AP i to MEC facility k at time t. Similarly, �xing variable xti,k to value
1 corresponds to �xing to value 0 all variables zp ∈ Ωi that do not assign AP i to MEC
facility k at time t. Neither forbidding nor forcing assignments change the structure of the
pricing problem: these conditions are easily included within the dynamic programming
algorithm by simply removing nodes from the pricing graph. According to Proposition 1,
no branching on y variables is needed.

We considered the following two branching rules:
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1. considering all possible assignments of AP i at time t, take the pair (i′, t′) which has
greatest number of variables xt

′
i′,k with strictly positive value, that is, that AP whose

assignment at a certain time is split among the greatest number of di�erent MEC
facilities. Sort variables xt

′
i′,k by non-increasing value and partition this ordered set

in two: the �rst set containing variables in the odd positions of ordered set and the
second set containing variables in the even positions. A left (resp. right) branch is
created, �xing to zero all the variables in the �rst (resp. second) set.

2. select the variable xti,k whose value is closer to 0.5, i.e. the variable related to the most
fractional assignment. Create two branches �xing the selected variable respectively
to value 0 or to value 1.

We always consider branching rule 1 �rst, triggering rule 2 only when all (i, t) pairs
have at most two corresponding fractional xti,k variables. During preliminary experiments,
a simple depth-�rst exploration policy showed to perform best. When rule 2 is used, the
xti,k = 1 branch is explored �rst.

5. Computational evaluation

We implemented our algorithms in C++, using CPLEX 12.6 [41] to solve the master
LP subproblems, running tests on an Intel i7 4GHz workstation equipped with 32 GB of
RAM.

Our �rst investigation is computational, benchmarking the e�ectiveness of our algo-
rithms in comparison to the branch-and-cut ILP solver of CPLEX using formulation (1) �
(7).

5.1. Dataset

We have access to a dataset of real-world mobile tra�c demands [42], encompassing two
months with a time granularity of �fteen minutes. The geographical area covered by the
dataset extends for more than 2500 km2. The demand is not associated to access points of
the mobile network, whose location is unknown, but rather to a geographical tessellation
of the area in 1419 rectangular cells of di�erent sizes, with smaller (and more dense) cells
in the center of the area. We select the centers of every rectangular cell as elements of the
set A of access points locations.

Then, we create ten clusters of access points using a standard k-means model, taking
as input the euclidean distances between APs, optimizing it with the classical heuristics
of [43]. The centers of these clusters are selected to de�ne the locations of the set K of
MEC facilities. The network distances mik and ljk are computed as euclidean distances
accordingly, and rounded to the nearest integer (hence supposing packet processing latency
is negligible).

Given this network infrastructure, we generate di�erent problem instances by randomly
drawing demands in each AP in di�erent ways.

In details, we create two random datasets.

Dataset A is synthetic, and aims at stressing our algorithms from a pure computational point
of view. We consider a planning horizon of one day, split in 96 consecutive �fteen-
minute time slots. Let d (resp. d̄) be the minimum (resp. maximum) demand
observed in any AP and time slot in [42]. Demands dti for each AP i at time t are
drawn uniformly at random independently in each �fteen-minute time slot, in the
range [d, d̄]. That is, demands do not follow particular trends, even if falling into the
same range of real data.

Dataset B is realistic, reproducing the main features of the starting data. We choose a single
day at random from the two months included in the dataset [42], we perform a direct
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query to the demand of each AP at each time slot in that day, and then we perturb
all demands with noise, uniformly drawn at random in the interval [−5%,+5%].

All demand values are rounded to the nearest integer. Besides the initial horizon of 96
time-slots, we consider planning time horizons of 48, 24 and 12 time-slots by merging
respectively 2, 3 or 4 subsequent time-slots, setting their demands as the average on the
merged time-slots. Five instances are generated in both datasets A and B.

We also consider a dataset of raw real demands.

Dataset C is obtained by considering a random week taken from the dataset [42], and merging
the time-slots in either 168 slots of 1 hour each (1h), 84 slots of 2 hours (2h), 56
slots of 3 hours (3h), 42 slots of 4 hours (4h) or 38 slots obtained by the clustering
methods described in subsection 6.2 (clust). The demand of each AP in each slot t
is taken as the maximum over the the �fteen-minute time slots merged in t.

For every instance, each MEC facility capacity Ck is set to
(

maxt∈T
∑

i∈A d
t
i/|K|

)
·1.05,

and parameters α and β are both set to value 0.5.

5.2. Column Generation pro�ling

We �rst report on the computational behaviour of our Column Generation algorithm
(CG). In this test we consider the single-assignment non-periodic variant.

In Tables 1a, 1b and 1c we include the details of the root node column generation
process, for each instance of datasets A, B and C, respectively. A best known solution
value z∗ is taken from a previous run of exact algorithms (see subsection 5.3). Besides
instance details (columns `|T |' and `inst'), we include the relative gap between the primal
bound value (resp. dual bound value) and z∗, the number of column generation iterations
needed to reach convergence, the overall CPU time spent for solving the pricing problems
and the CPU time required to complete the column generation process. As benchmark
we also report the performances of CPLEX 12.6.3 ILP solver, when stopped at the root
node, including the corresponding primal and dual bound gaps and the time required to
complete its root node computation.

We set a time limit of two hours to each computation, marking in the tables as `T.L.'
those computations hitting that limit.

We �rst note that CG has good convergence behaviour: less than 90 iterations are
always enough to complete the computation. The high number of pricing subproblems
yields to a high number of generated columns, but thanks to our dynamic programming
algorithm, the overall pricing time remains low (below 10 seconds in all cases but one).

By rounding in CG we are always able to obtain good integer solutions (that is, below
1% from best known solutions in all cases but 4). CPLEX is not consistent: in a few
instances (e.g. block |T | = 48 of the Realistic Dataset B) it is able to �nd very good
primal solutions, while in other cases (e.g. block |T | = 24 of Dataset B, or block |T | = 48
of Dataset A), only very weak primal bounds can be obtained.

We also observe that CG and CPLEX dual bounds are always similar. That is, on one
hand the integrality property of our pricing problem warns that no improvement can be
obtained by CG with respect to the continuous relaxation of the original formulation; on
the other hand, CPLEX generic cuts have no signi�cant e�ect on strengthening the same
continuous relaxation bound.

Finally, in more than 37% of the instances, CPLEX is unable to terminate the root
node computation within the time limit, while CG always completes the computation.
When both CG and CPLEX terminate, the CPU time required by CG is up to two orders
of magnitude lower that required by CPLEX.

We highlight that the (possibly fractional) solution found by CG is a global optimal
solution for the split-assignment model variants: no further computing is needed in that
case.
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CG Root CPLEX Root

|T | inst. PB−z∗

z∗
|DB−z∗|

z∗ # iter # cols tp t PB−z∗

z∗
|DB−z∗|

z∗ t

12

1 0.130% 1.212% 19 10808 0 4 0.724% 1.197% 864

2 0.735% 1.955% 14 8715 0 4 244.932% 1.949% 410

3 0.793% 1.351% 13 7074 0 3 0.167% 1.345% 328

4 0.945% 0.999% 14 7515 0 3 2.824% 0.994% 344

5 1.206% 1.630% 13 7892 0 3 3.052% 1.627% 356

24

1 0.061% 1.475% 26 17027 1 15 0.249% 1.471% 2826

2 1.202% 1.537% 19 11429 1 11 274.940% 1.533% 1943

3 0.867% 2.019% 19 12296 0 13 267.368% 2.015% 1852

4 0.846% 1.864% 19 12525 0 12 123.542% 1.860% 1861

5 0.909% 1.764% 18 12077 0 12 267.486% 1.761% 1781

48

1 0.463% 1.819% 41 27035 6 114 246.767% 1.816% T.L.

2 0.221% 2.468% 32 20897 1 90 270.039% 2.465% T.L.

3 0.746% 2.336% 33 21468 4 95 269.274% 2.332% T.L.

4 0.295% 2.036% 31 20496 0 74 282.422% 2.033% T.L.

5 0.265% 2.514% 35 22707 0 106 258.676% 2.510% T.L.

96

1 0.176% 2.274% 68 47500 5 949 259.445% - T.L.

2 0.055% 2.633% 59 42621 6 913 - - T.L.

3 0.034% 2.779% 61 43107 9 863 - - T.L.

4 0.187% 2.528% 61 42692 5 850 - - T.L.

5 0.124% 2.568% 60 41913 6 815 272.834% - T.L.

(a) Synthetic Dataset A

CG Root CPLEX Root

|T | inst. PB−z∗

z∗
|DB−z∗|

z∗ # iter # cols tp t PB−z∗

z∗
|DB−z∗|

z∗ t

12

1 0.809% 0.107% 12 6542 1 2 0.055% 0.105% 138

2 0.917% 0.112% 11 6150 0 2 0.924% 0.110% 146

3 1.043% 0.125% 12 6611 0 2 0.155% 0.123% 158

4 0.797% 0.103% 11 5843 0 2 349.538% 0.102% 120

5 0.781% 0.102% 11 6548 0 2 349.089% 0.101% 113

24

1 0.766% 0.425% 15 9713 0 4 305.781% 0.424% 532

2 0.481% 0.280% 16 9715 0 3 306.562% 0.278% 587

3 0.613% 0.576% 15 9492 1 3 304.188% 0.575% 622

4 0.960% 0.183% 17 10345 0 3 306.874% 0.182% 615

5 0.648% 0.221% 16 10217 0 4 307.199% 0.220% 413

48

1 1.031% 0.264% 27 15539 1 16 0.253% 0.262% 2113

2 0.782% 0.344% 25 15636 2 15 0.557% 0.343% 2249

3 0.500% 0.363% 26 15286 1 15 0% 0.362% 2674

4 0.741% 0.314% 26 15791 3 18 0.049% 0.312% 2445

5 0.829% 0.296% 29 16294 0 15 0.651% 0.295% 1878

96

1 0.077% 0.933% 51 29786 6 130 - - T.L.

2 0.315% 0.766% 43 28272 3 125 - - T.L.

3 0.249% 0.853% 46 28221 9 129 - - T.L.

4 0.395% 0.692% 49 29320 5 126 - - T.L.

5 0.154% 0.726% 48 29005 4 120 - - T.L.

(b) Realistic Dataset B

CG Root CPLEX Root

inst. PB−z∗

z∗
|DB−z∗|

z∗ # iter # cols tp t PB−z∗

z∗
|DB−z∗|

z∗ t
clust 0.590% 0.092% 21 12928 2 9 0.429% 0.091% 468

4h 0.630% 0.272% 30 20690 2 25 0.175% 0.271% 5191

3h 0.513% 0.471% 37 25960 3 58 0.766% 0.470% 2814

2h 0.192% 0.724% 50 31706 2 133 - - T.L.

1h 0.097% 0.905% 85 56322 18 953 - - T.L.

(c) Raw Real Demand Dataset C

Table 1: Computational Results - CG Root vs. CPLEX Root
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5.3. Exactly solving the DASP

In a second round of experiments we let both our Branch-and-Price (BaP) and CPLEX
12.6 ILP solver (CPX) run for two hours, also exploring their branching trees. In Tables
2a, 2b, 2c we report the results of this experiment on each instance of datasets A, B and C,
respectively. In each Table we report the relative gap between the primal bound PB (resp.
the dual bound DB) at the end of computation and the best known integer solution value
z∗, and the number of explored branch-and-bound nodes, for both our BaP and CPX.
We report no computing time because, surprisingly, neither BaP nor CPX could bring
the duality gap below 0.1% within the time limit, except for instance 4 with |T | = 12 of
Dataset A, 5 with |T | = 12 of Dataset B and 'clust' of Dataset C, that CPX is able to
close (but still using more than 90% of the available CPU time).

In terms of �nal dual bounds the results of both methods are very similar. Our expla-
nation for this phenomenon is the following: the root dual bound is already very close to
the integer optimum value, and therefore the real challenge is to �nd an optimal primal
solution. At the same time, the high number of time-slots yields values of primal solutions
on the order of magnitude of 108: as soon as the duality gap becomes small, numerical
approximation issues prevent to coherently explore the remaining search tree.

In terms of searching for good primal solutions in the inner nodes of the branching tree,
instead, BaP and CPX are not equivalent: in Figure 5a we plot the typical primal bound
value (y axis) improvements as the computation (x axis) proceeds (instance 1, |T | = 24,
dataset B); for the sake of comparison, the x axis report relative values with respect to
the overall number of branch-and-bound nodes for CPX and the overall number of column
generation iterations for BaP. Eventually, CPX is more numerically stable, o�ering after
two hours of computation primal solutions values a few tenths of percentage points better
(up to 0.5% of improvement). In turn, BaP allows to �nd near-optimal integer solutions
much more quickly, that is in fact already at the root node. The behaviour of BaP in the
early steps of computation is further detailed in Figure 5b: the quality of the primal bound
steeply increase during the column generation iterations at the root node.

As a synthetic �nal assessment of our computational evaluation we can report that
when the number of time-slots is small, and the planner has no particular need for quick
optimization algorithms, both BaP and CPLEX might be viable alternatives to optimize
the DASP.

BaP is faster, especially when used heuristically, stopping the computation either at
the root node or after exploring a few nodes of the branch-and-bound tree. This makes it
well suited also when quick optimization is needed, like in what-if-analyses.

When the number of time-slots increases, however, using CPLEX is not an option
anymore.

6. Practical case study

Our �nal aim is to assess the e�ectiveness of our optimization core in the context
of the data-driven MEC management optimization framework. To this end, we rely on
the complete real-world dataset in [42], and run actual analytics on it so as to generate
the demand pro�les. We then feed our optimization models with such pro�les, which,
ultimately, lets us measure the quality of the assignment plans it returns in a practical
case.

6.1. Experimental setup

The real-world mobile tra�c data covers a planning period of eight weeks, split in a set
T̃ of �fteen-minute snapshots. The �rst approach we take in order to infer demand pro�les
exploits a well-known property of mobile tra�c, i.e., its weekly periodicity [44]. Namely, a
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B-&-P CPLEX

|T | inst. PB−z∗

z∗
|DB−z∗|

z∗ # nodes PB−z∗

z∗
|DB−z∗|

z∗ # nodes

12

1 0% 1.208% 17661 0.411% 1.197% 203

2 0% 1.951% 17038 0.777% 1.949% 371

3 0.198% 1.347% 18572 0% 1.345% 452

4 0.370% 0.997% 19198 0% 0.993% 548

5 0.020% 1.626% 18013 0% 1.626% 699

24

1 0% 1.473% 8576 0.249% 1.471% 14

2 0% 1.535% 8657 0.855% 1.533% 24

3 0% 2.018% 9349 267.368% 2.015% 46

4 0% 1.863% 9353 123.542% 1.860% 38

5 0% 1.763% 10204 267.486% 1.761% 40

48

1 0% 1.818% 2123 246.767% 1.816% 0

2 0% 2.468% 2724 270.039% 2.465% 0

3 0% 2.335% 2558 269.274% 2.332% 0

4 0% 2.036% 3133 282.422% 2.033% 0

5 0% 2.514% 2528 258.676% 2.510% 0

96

1 0% 2.274% 113 259.445% - T.L.

2 0% 2.633% 217 - - T.L.

3 0% 2.779% 168 - - T.L.

4 0% 2.528% 135 - - T.L.

5 0% 2.568% 207 272.834% - T.L.

(a) Synthetic Dataset A

B-&-P CPLEX

|T | inst. PB−z∗

z∗
|DB−z∗|

z∗ # nodes PB−z∗

z∗
|DB−z∗|

z∗ # nodes

12

1 0.160% 0.105% 35112 0% 0.103% 2398

2 0.235% 0.111% 30708 0% 0.109% 2579

3 0.320% 0.124% 26374 0% 0.122% 1818

4 0.406% 0.102% 26490 0% 0.100% 1932

5 0.267% 0.100% 24714 0% 0.098% 1844

24

1 0.133% 0.424% 17961 0% 0.423% 144

2 0.274% 0.279% 18354 0% 0.278% 109

3 0% 0.576% 20016 0.717% 0.574% 225

4 0.353% 0.183% 17481 0% 0.182% 232

5 0.284% 0.220% 20446 0% 0.220% 522

48

1 0.312% 0.263% 10738 0% 0.262% 20

2 0.249% 0.343% 10465 0% 0.343% 18

3 0.113% 0.363% 10482 0% 0.360% 17

4 0.227% 0.313% 10321 0% 0.311% 16

5 0.226% 0.295% 10818 0% 0.295% 21

96

1 0% 0.932% 3133 - - T.L.

2 0% 0.765% 3193 - - T.L.

3 0% 0.852% 3398 - - T.L.

4 0% 0.691% 3099 - - T.L.

5 0% 0.726% 3299 - - T.L.

(b) Realistic Dataset B

B-&-P CPLEX

inst. PB−z∗

z∗
|DB−z∗|

z∗ # nodes PB−z∗

z∗
|DB−z∗|

z∗ # nodes

clust 0.376% 0.091% 13849 0% 0.091% 812

4h 0.442% 0.272% 8985 0% 0.270% 30

3h 0.403% 0.471% 5086 0% 0.470% 33

2h 0% 0.724% 2864 - - T.L.

1h 0% 0.905% 370 - - T.L.

(c) Raw Real Demand Dataset C

Table 2: Computational Results - BaP vs. CPLEX
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(a) BaP vs. CPLEX (b) BaP Detail

Figure 5: Primal Bound

single week is taken as training data, and the mobile tra�c recorded in each �fteen-minute
time-slot is considered as a pro�le. The tasks performed by the data mining and validation
modules are kept as simple as possible, in order to highlight the e�ect of the optimization
core.

Training. Conceptually, the resulting 4 × 24 × 7 = 672 training pro�les are then used as
input for our optimization algorithms. By optimizing over the training data we obtain
a planning solution, which becomes our assignment plan: we apply such a plan to the
remaining seven weeks of test data. As an example, optimizing over training data yields a
solution including a speci�c assignment of APs to MEC facilities on Monday between 7:00
am and 7:15 am: we then blindly apply the same assignments on the 7:00-7:15 am time
slots of each Monday in the test data, presuming that the demand con�guration is similar
on all Mondays at the same time. In a sense, this is a worst-case situation, in which the
decision maker simply observes the system for one week before deciding on the planning
for the remaining weeks.

Practically, we do not directly use the 672 �fteen-minutes time-slots for training. We
assume, instead, that the preprocessing and data-mining module produces suitable ag-
gregations. We experimented therefore with simple aggregation of the pro�les, merging
time-slots sequentially over 1, 2, 3 or 4 hours. Each aggregation step was performed by
considering in each AP and in each aggregated time-slot the maximum demand value of
that AP over the corresponding base time-slots. The optimized solution was then dis-
aggregated in post-processing, simply replicating the same plan over the �fteen-minutes
time-slots composing each aggregated time-slot. By choosing the maximum demand values
during aggregation, we ensure that our optimized solutions remain feasible after disaggre-
gation.

It is apparent that less aggregated pro�les entail a higher potential for optimization:
in the baseline scenario the assignment of APs to MEC facilities can be changed every
15 minutes, possibly assigning to the same MEC facility APs that experience very high
peaks of demand in subsequent time slots. They are, however, more prone to over�tting,
as peaks in particular hours of the training week do not necessarily correspond to peaks
in the corresponding hour of testing weeks. In addition, they are more clearly expensive
from a computational standpoint.

More aggregated instances, instead, are more conservative: two APs with very high
demand peaks in the same four-hours time slot cannot be assigned to the same MEC
facility, thus possibly preventing capacity violations in the test weeks if those peaks slightly
move in time. They are also less demanding in terms of computational costs. However,
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aggregation forces the a same con�guration for longer timeframes, making the optimization
possibly oblivious of fast dynamics in the demand.

In order to further balance the aggressive optimization process during the training
phase of low aggregation instances, we found empirically useful to set the Ck capacity
values to

(
maxt∈T

∑
i∈A d

t
i/|K|

)
· 1.05 in each test. That is, one-hour time-slot instances

are optimized with lower capacity values.

Test. To ensure fairness in the comparison, during the test phase only disaggregated so-
lutions are considered. That is, independently on the aggregation used for training, only
solutions de�ned over the original �fteen-minutes time-slots are compared. Similarly, the
reference MEC capacity value was �xed to

(
maxt∈T̃

∑
i∈A d

t
i/|K|

)
·1.10 in any comparison.

Clearly, neither the cost nor the capacity usage are guaranteed to remain the same
when the planning obtained with training data is applied to test data, as �uctuations in
the demand may occur across weeks. The quality of our solutions is therefore evaluated
according to two measures: (i) the assignment and switching cost of the planning and (ii)
the amount of violations in capacity constraints, both measured on test data. The latter
is computed as follows:

max
t∈T̃

∑
k∈K

max{
∑

i∈A d
t
ix

t
ik − Ck, 0}

|K| · Ck

that is, the overall amount of violation in capacity constraints, as a relative value respect
to the available capacity, in the worst time-slot.

These measures are computed for each plan by the validation module through simple
simulation on the seven weeks of test data.

Advanced Clustering Benchmark. An alternative to employing our ad-hoc technique on
the optimization module would be to perform a more aggressive aggregation over time,
producing instances that are small enough to be optimized by CPLEX. We experimented
on such an option, adapting the temporal clustering solution presented in [39] to our
needs. Speci�cally, we take the following steps: (i) we generate a median week of mobile
tra�c demand, by computing the median load recorded at each AP during every hour of
the week, using it as training data; (ii) we perform two separate hierarchical clusterings,
respectively using the total volume and normalized distance metrics introduced in [39]; (iii)
we �nd the intersection of the two cluster sets obtained at the previous point. Very few
time-slots are actually produced this way, allowing CPLEX to optimize the corresponding
instances. Consecutive time-slots belonging to the same cluster are then aggregated. The
aggregated instance is optimized and the solution obtained in this way is then disaggregated
in �fteen-minute time-slots plans, as in the previous case, during post-processing, before
being compared on test data.

6.2. Experimental evaluation

Following the computational results of Section 5, our core optimization module always
employs our Branch-and-Price as a heuristic (HBP), stopping its computation at the root
node, except for the aggregated instances produced by time-clustering. Having |T | = 38,
these are manageable e�ciently even by general purpose solvers: CPLEX 12.6.3 ILP solver
was then used to solve them to proven optimality. The scatter plot in Figure 6 summarizes
our results. Each point represents the outcome on a single week of test data. Di�erent
shapes refer to di�erent demand pro�le aggregation methods, obtained by merging 1, 2, 3 or
4 consecutive one-hour time slots, as well as using the Advanced Clustering and CPLEX
(Bench-CPLEX). The y axis coordinate of each point represents the capacity violation
measure, as introduced above; the x axis coordinate of each point represents the solution
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Figure 6: 1-Week Plan - Time Aggreg. Comparison

Inst.
Week

train 1 2 3 4 5 6 7

Bench-CPLEX 9.59% 7.03% 5.71% 4.25% 2.57% 3.88% 14.68% 9.51%
4h 2.09% 1.54% 1.72% 0.66% 0.00% 2.54% 11.63% 2.92%
3h 1.94% 1.42% 1.48% 1.10% 1.25% 1.58% 11.07% 2.98%
2h 2.20% 2.58% 1.99% 1.19% 2.26% 2.82% 11.22% 4.15%
1h 2.84% 2.38% 4.17% 1.14% 1.92% 4.04% 10.65% 5.47%

Table 3: Time-Slot Peak Exceeded Capacity Over Available Capacity

cost measure, expressed as percentage value of that of the optimal solution employing the
Advanced Clustering Benchmark method. Therefore, negative (resp. positive) percentages
map to a performance improvement (resp. reduction) with respect to the benchmark. The
details about capacity violation measures are reported also in Table 3 for each week in the
training set (columns) and for each demand pro�le aggregation method (rows).

A �rst remarkable result is that in all cases our HBP with sequential clustering allows for
solutions with less capacity violations. In particular, HBP with either four-hours or three-
hours aggregation o�er almost no capacity violations, coming at the price of three to �ve
percent increase in solutions cost. HBP with two-hours aggregation always outperforms the
benchmark method both in terms of exceeded capacity and in terms of solution costs. HBP
with one-hour aggregation further decrease costs at the price of slightly higher capacity
violation.

7. Conclusions

To tackle the complex problem of assigning APs to MEC facilities over time we have
proposed a data-driven MEC management optimization framework, including an optimiza-
tion core component, that is combined with preprocessing and data-mining and validation
by simulation modules.

As a main result, we veri�ed that instances arising in practical analyses strongly bene�t
from the explicit use of mathematical programming models in such an optimization core.
The performances of the framework are enhanced even further when our ad-hoc algorithms
are exploited: being much more e�ective than a general purpose solver like CPLEX, they
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allow to create candidate assignment plans with a �ner time discretization; this proved to
be bene�cial in a training-and-test evaluation on real data.

From a computational point of view, although exact in nature, the main appealing
feature of our algorithms is their ability of �nding near-optimal integer solutions very
quickly, providing at the same time good dual bound guarantees. This makes them well
suited also for what-if analyses.

A promising future step is the tighter integration of temporal clustering and ad-hoc
optimization algorithms, allowing for a higher number of time slots of potentially di�erent
size, obtained through data mining. From an application perspective, our good compu-
tational results open also the possibility of optimizing simultaneously more than a single
service.

Our source code is released under GPL license and available online [45], together with
our test instances.
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