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ABSTRACT 

Hair cells of the inner ear can power spontaneous oscillations of their mechanosensory hair 

bundle, resulting in amplification of weak inputs near the characteristic frequency of oscillation.  

Recently, dynamic force measurements have revealed that delayed gating of the 

mechanosensitive ion channels responsible for mechanoelectrical transduction produces a 

friction force on the hair bundle.  The significance of this intrinsic source of dissipation for the 

dynamical process underlying active hair-bundle motility has remained elusive.  The aim of this 

work is to determine the role of friction in spontaneous hair-bundle oscillations.  To this end, 

we characterized key oscillation properties over a large ensemble of individual hair cells and 

measured how viscosity of the endolymph that bathes the hair bundles affects these properties.  

We found that hair-bundle movements were too slow to be impeded by viscous drag only.  

Moreover, the oscillation frequency was only marginally affected by increasing endolymph 

viscosity by up to thirtyfold.  Stochastic simulations could capture the observed behaviors by 

adding a contribution to friction that was 3−8 fold larger than viscous drag.  The extra friction 

could be attributed to delayed changes in tip-link tension as the result of the finite activation 

kinetics of the transduction channels.  We exploited our analysis of hair-bundle dynamics to 

infer the channel activation time, which was about 1 ms.  This timescale was two orders of 

magnitude shorter than the oscillation period.  However, because the channel activation time 

was significantly longer than the timescale of mechanical relaxation of the hair bundle, channel 

kinetics affected hair-bundle dynamics.  Our results suggest that friction from channel gating 

affects the waveform of oscillation and that the channel activation time can tune the 

characteristic frequency of the hair cell.  We conclude that the kinetics of transduction channels’ 

gating plays a fundamental role in the dynamic process that shapes spontaneous hair-bundle 

oscillations.   
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The cellular microphones of the inner ear −the hair cells− are each endowed with a hair 

bundle that extends from the cell’s apical surface into the surrounding fluid.  The hair bundle 

works as a mechanosensory antenna: sound evokes periodic deflections of the hair bundle, 

which elicits a receptor current through the hair cell by gating mechanosensitive transduction 

channels (1).  Remarkably, the hair cell can power spontaneous oscillations of its hair bundle, 

resulting in frequency-selective amplification of weak inputs near the characteristic frequency 

of spontaneous oscillation (2-5). 

Understanding the physical parameters that control the oscillation properties is of crucial 

importance to clarify how these properties may be tuned to provide sensitive detection at 

different frequencies (6, 7).  We focus here on friction, which by providing a source of 

mechanical noise and by impeding hair-bundle vibrations, challenges the sensitivity and limits 

the deflection velocity of a hair bundle (8-10).  Recently, dynamic force measurements on 

oscillatory hair bundles from the bullfrog’s sacculus have revealed that gating of the 

transduction channels is associated with an effective friction force on the micron-sized hair 

bundle, hereafter called “gating friction” (9).   

Gating friction is intimately related to the physics of hair-cell mechanosensitivity.  

Mechanosensitivity stems from direct activation of ion channels by tension changes in the tip 

links of the hair bundle (11).  As transduction channels opens or close, the extension of the tip 

links or of more compliant elements in series with the tip links decreases or increases, 

respectively, resulting in a change in tip-link tension (12).  Thus, gating of transduction 

channels produces a force on the hair bundle.  Gating forces affect the mechanical properties of 

the whole hair bundle.  First, they effectively reduce the stiffness of the hair bundle, a 

phenomenon called gating compliance (13).  Gating compliance can be strong enough to yield 

negative stiffness, providing a mechanical instability that is necessary for the emergence of 

spontaneous oscillations (14).  Second, gating forces also effectively increase friction on the 

hair bundle.  This is because the finite activation kinetics of the transduction channels delays 

changes of tip-link tension evoked by channel gating (9, 15).  As the hair bundle moves back 

and forth, delayed changes in tip-link tension result in hysteresis and energy dissipation.  

Interestingly, it was found that gating friction can dominate viscous drag by endolymph on the 

hair bundle.  This finding raises the possibility that gating friction may play an important role 

in the dynamic process that shapes spontaneous hair-bundle oscillations and sets their 

characteristic frequency. 
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Here, we studied the statistical properties of hair-bundle movements over a large ensemble 

of hair cells and for different viscosities of the fluid that bathes the hair bundle.  Combining 

experiments with theory, we identified signatures of gating friction on hair-bundle dynamics.  

Although the channel activation time is two orders of magnitude lower than the oscillation 

period, we found that channel kinetics provides a key determinant of the oscillation waveform 

and frequency. 

MATERIAL AND METHODS 

Experimental preparation 

All experimental procedures were performed in accordance with European and the French 

National Regulation for the Protection of Vertebrate Animals used for Experimental and other 

Scientific Purposes (Directive 2010/63; French Decree 2013-118).  Details of the experimental 

procedure have been published elsewhere (16).  In short, an excised preparation of the bullfrog’s 

(Rana catesbeiana) sacculus was mounted on a two-compartment chamber.  The basal bodies 

of hair cells bathed in a standard saline containing (in mM): 110 NaCl, 2 KCl, 4 CaCl2, 3 D-

glucose, 2 Na2-creatine phosphate, 2 Na-pyruvate and 5 Na-HEPES.  Hair bundles instead 

projected in an artificial endolymph of composition (in mM): 2 NaCl, 118 KCl, 0.25 CaCl2, 

3 D-glucose and 5 Na-HEPES.  To loosen the connection between the hair bundles and the 

overlying otolithic membrane, the apical surface of the preparation was exposed for 20 min to 

endolymph supplemented with 67 mg·ml-1 of the protease subtilisin (type XXIV, Sigma).  The 

otolithic membrane was then gently removed with an eyelash.  Under such conditions, the hair 

bundles routinely displayed spontaneous oscillations. 

Microscopic apparatus and mechanical stimulation 

The preparation was viewed through a ×60 water-immersion objective of an upright microscope 

(BX51WI, Olympus).  Spontaneous hair-bundle oscillations were recorded by imaging, at a 

magnification of ×1,000, the top of the longest stereociliary row onto a displacement monitor 

that included a dual photodiode.  The contrast between the hair bundle and the surrounding 

endolymph was always sufficient to record oscillations of freely moving hair bundles.  

Calibration was performed before each recording of an oscillation by measuring the output 

voltages of this photometric system in response to a series of offset displacements.  Before 

filtering, sampling and acquisition, the signal produced by our displacement monitor went 
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through a voltage amplifier (AMP502 Tektronics); the amplificatory gain was adjusted to 

ensure a calibration constant of about 10 mV/nm. 

To characterize the mechanical properties of individual oscillatory hair bundles, the tip of a 

flexible glass fiber was affixed to the kinociliary bulb of the hair bundle and imaged onto the 

photodiodes.  Stimulus fibers were pulled from borosilicate capillaries and coated with a thin 

layer of gold-palladium to enhance contrast.  For a free fiber immersed in water, the power 

spectral density of fluctuations at the fiber’s tip was fitted by a Lorentzian, which provided a 

stiffness kF = 100-380 µN·m-1 and a drag coefficient λF = 20-100 nN·s·m-1 (9).  The fiber was 

secured by its base to a stack-type piezoelectric actuator (PA-4/12, Piezosystem Jena) driven 

by a custom-made power supply (Elbatech).  Movements ∆ of the fiber’s base resulted in the 

application of a force 𝐹𝐹 onto an attached hair bundle and thus in a bundle movement 𝑋𝑋. 

Characterization of the force-displacement relation 

Using displacement-clamp circuitry (17), we imposed step displacements to the hair bundle and 

measured tip and base positions of the fiber at a time 5-7 ms after the step onset.  This delay 

ensured that the transduction channels had reached thermal equilibrium and that frictional 

forces had vanished.  During the time window of the recording, the fiber was nearly stationary 

and thus subjected to no or very weak frictional forces.  The applied force 𝐹𝐹 = 𝑘𝑘𝐹𝐹 (Δ− 𝑋𝑋) 

was purely elastic and could thus be calculated by multiplying the deflection of the fiber by the 

fiber’s stiffness.  In turn, this procedure allowed for the characterization of a bundle’s elastic 

properties.  In accordance with the gating-spring model of mechano-electrical transduction (12), 

we fitted the measured force-displacement relation with the relation: 

𝐹𝐹(𝑋𝑋) = 𝛫𝛫∞𝑋𝑋 − 𝑁𝑁𝑁𝑁 𝑃𝑃𝑜𝑜(𝑋𝑋) + 𝐹𝐹0,   (1) 

in which 𝛫𝛫∞ represents the hair-bundle stiffness at large positive or negative displacements, N 

is the number of transduction elements operating in parallel in the hair bundle, Z is the single-

channel gating force, and the constant force 𝐹𝐹0 is such that 𝐹𝐹(0) = 0.  The channels’ open 

probability obeys its equilibrium expression 𝑃𝑃𝑜𝑜(𝑋𝑋) = 𝑃𝑃∞(𝑋𝑋) with: 

𝑃𝑃∞(𝑋𝑋) = 1 [1 + exp(−𝑍𝑍 (𝑋𝑋 − 𝑋𝑋0) (𝑘𝑘𝐵𝐵𝑇𝑇)⁄ )]⁄ ,   (2) 

in which 𝑋𝑋0 is the bundle deflection at which the open probability is 1/2 and 𝑘𝑘𝐵𝐵𝑇𝑇 represents the 

thermal energy, with kB the Boltzmann constant and T the temperature.  The force-displacement 

relation of oscillatory hair bundles shows a region of negative stiffness (14). 
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Signal generation and acquisition 

All signals were generated and acquired under the control of a computer running a user interface 

programmed with LabVIEW software (version 8.6; National Instruments).  The command 

signal controlling the movement of the base of a stimulus fiber was produced by a 16-bit 

interface card at a sampling rate of 2.5 kHz (PCI-6733, National Instruments).  A second 

interface card (PCI-6250, National Instruments) conducted signal acquisition with a precision 

of 16 bits and a sampling rate of 2.5 kHz.  Signals coming from the displacement monitor or 

going to the stimulation apparatus were conditioned with an eight-pole Bessel antialiasing filter 

adjusted to a low-pass half-power frequency of 1 kHz.  By recording 14 hair-bundle oscillations 

at a sampling rate at 15 kHz or more, we could test whether low-pass filtering resulted in a 

significant reduction of the maximal speed of hair-bundle movement that was recorded 

(Fig. 1D).  We found that the effect was relatively small, for the maximal bundle speed 

decreased by only 1.9-7.3% (mean: 4.2%) when the cut-off frequency varied from 5 to 1 kHz. 

Analysis of spontaneous oscillations 

We recorded from 196 oscillatory hair bundles in 93 ears.  To characterize the properties of 

spontaneous oscillations, we monitored the time course 𝑋𝑋(𝑡𝑡) of hair-bundle position for 30 s.  

The relation between the power spectral density 𝐶̃𝐶(𝑓𝑓) of the movement and frequency f peaked 

at a characteristic frequency f0.  We smoothed the relation 𝐶̃𝐶(𝑓𝑓) by performing a moving average 

over a number of points (range: 3-100) corresponding to a frequency window (0.1-4 Hz) of 

about one-twentieth of the oscillation’s frequency (2-80 Hz).  We then fitted the result by the 

sum of two Lorentzian functions (Fig. 1C) (18, 19): 

𝐶̃𝐶(𝑓𝑓) = 𝐴𝐴
(𝑓𝑓0 2𝑄𝑄⁄ )2+(𝑓𝑓−𝑓𝑓0)2 + 𝐴𝐴

(𝑓𝑓0 2𝑄𝑄⁄ )2+(𝑓𝑓+𝑓𝑓0)2    (3) 

The fit provided numerical values for the quality factor Q, the characteristic frequency f0, and 

parameter A, which is related to the root-mean-square magnitude 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 = 〈(𝑋𝑋(𝑡𝑡) − 〈𝑋𝑋〉)2〉 =

∫ 𝐶̃𝐶(𝑓𝑓) 𝑑𝑑𝑑𝑑+∞
−∞ = �4𝜋𝜋𝜋𝜋𝜋𝜋 𝑓𝑓0⁄  of the movement. 

In this study, the probability density of position of an oscillatory hair bundle was most often 

bimodal, although additional peaks could be observed in about 30% of oscillatory hair bundles 

(91 out of 287 cells), as reported before (20).  Such oscillations were excluded from the analysis.  

We fitted bimodal position distributions by the sum of two Gaussian functions (Fig. 1B) and 



7 
 

estimated, from the fit, the fractional area under the Gaussian that was centered at a positive 

position with respect to the mean bundle position.  As indicated by numerical simulations 

(Fig. S1 in the Supporting Material), this quantity provides a functional estimate of the open 

probability 𝑃𝑃𝑜𝑜,𝑆𝑆 of transduction channels at steady state, which defines the operating point of 

transduction apparatus.  In particular, an open probability of ½ yields a symmetric “rectangular” 

oscillation with equal dwell times at nearly stationary positions before position switches in the 

positive and the negative directions, corresponding to channel opening and closure, 

respectively.  Indeed, direct coupling between a bundle’s position and the open probability of 

the mechanosensitive transduction channels imposes a close correspondence between position 

and transduction-current waveforms of oscillation (16, 17, 21). 

We developed an algorithm to study the kinetics of position switches during a spontaneous 

oscillation.  The hair-bundle movement was smoothed by a moving average over a 2 ms time 

window.  The time derivative of the resulting signal was then smoothed over the same time 

window.  Peaks exceeding twice the standard deviation of the smoothed derivative were defined 

as switches and the switch times were recorded (Fig. 1A).  Using the raw oscillation, positive 

and negative switches, respectively, were then aligned and averaged (Fig. 1D).  To determine 

the mean speed of a switch, the time derivative of the switch-triggered average, which was bell 

shaped (Fig. 1D), was fitted by a Gaussian function.  The mean speeds of positive and negative 

switches were not significantly different and their values were thus averaged to define the 

switch velocity VMAX.  In the following, we refer to ‘oscillatory properties’ of a given hair bundle 

as the set of 5 parameters:𝑃𝑃𝑜𝑜,𝑆𝑆, f0, Q, XRMS, and VMAX.  Data analysis was performed using 

Matlab® (version R2015a, the Mathworks). 

Increasing viscous drag on a hair bundle 

Adding a polymer of sucrose (Dextran 500, Dextran 40, or Ficoll PM 400, Amersham 

Biosciences) into endolymph afforded a means to increase fluid viscosity and thus viscous drag 

on the hair bundle.  Solutions of high-molecular-weight polymers can form entangled 

filamentous networks that behave as non-Newtonian porous gels (22).  As a result, viscous drag 

on a moving object can in principle depend on its size, geometry, as well as on the shear rate.  

A viscous solution with large pores relative to the hair-bundle size may only weakly impede 

hair-bundle movements with respect to viscous drag resulting from standard endolymph.  To 

rule out this possibility, the relation between polymer concentration and viscosity was 

calibrated by analyzing thermal fluctuations of a flexible fiber’s tip (length: ~250 µm; diameter: 
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~400 nm) and of micron-sized beads (diameter 0.97 µm and 2.32 µm) in an optical trap 

(Fig. S2).  The different calibration methods yielded identical results.  The power spectra of the 

fluctuations were well described by Lorentzian functions, demonstrating that our solutions had 

a viscosity that did not depend on the movement frequency and in turn behaved as Newtonian 

fluids.  In addition, viscosity values were close to those measured at a microscopic scale using 

a viscometer (datasheet from the provider).  These calibrations indicated that, for moving 

objects that are at least one micrometer in size, which is the case for the hair bundle, the sugar 

solutions behaved as simple fluids with a viscosity that increases exponentially with the sugar 

concentration.  At a concentration of 100 mg/mL, a solution of Dextran 500 had a viscosity ×30 

that of regular endolymph.  The sugar is a globular molecule with a hydrodynamic radius (4-15 

nm) (23) that is comparable to or larger than the size of the conformational change associated 

to channel gating (14) and too large to go through the transduction channels (24).  Although it 

could increase viscous drag on the micron-sized hair bundle, this viscotropic agent was thus 

unlikely to affect the kinetics of channel gating and in turn the magnitude of gating friction (9). 

We defined the relative viscosity x = µ / µ0 of the viscous fluid (1 < 𝑥𝑥 < 30), where the 

viscosity 𝜇𝜇0= 10-3 kg/(m∙s) of standard endolymph, i.e. of endolymph when no polymer was 

added, is near that of pure water.  Because viscous drag is proportional to viscosity, the 

corresponding friction coefficient  𝜆𝜆 = 𝑥𝑥 ∙ 𝜆𝜆𝐻𝐻  was proportional to the friction 

coefficient  𝜆𝜆𝐻𝐻 = 85 nN·s·m-1 of the hair bundle that was measured in standard endolymph (9). 

Model of active hair-bundle motility 

We used a physical description of active hair-bundle motility that was previously published (9), 

but with added noise terms.  The simulated positions 𝑋𝑋� and 𝑋𝑋�𝑎𝑎 of hair bundle and adaptation 

motors, respectively, vary with time according to: 

𝜆𝜆 𝑑𝑑𝑋𝑋
�

𝑑𝑑𝑑𝑑
= −𝐾𝐾𝐺𝐺𝐺𝐺(𝑋𝑋� − 𝑋𝑋�𝑎𝑎 − 𝐷𝐷𝑃𝑃o) − 𝐾𝐾𝑆𝑆𝑆𝑆𝑋𝑋� + 𝜉𝜉    (4) 

𝜆𝜆𝑎𝑎
𝑑𝑑𝑋𝑋�𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝐺𝐺𝐺𝐺(𝑋𝑋� − 𝑋𝑋�𝑎𝑎 − 𝐷𝐷𝑃𝑃𝑜𝑜) − 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑆𝑆𝑃𝑃o) + 𝜉𝜉𝑎𝑎   (5) 

In addition, we described the finite activation kinetics of the transduction channels by using 

first-order relaxation kinetics: 

 𝜏𝜏𝐶𝐶
𝑑𝑑𝑑𝑑𝑜𝑜
𝑑𝑑𝑑𝑑

= 𝑃𝑃∞ − 𝑃𝑃𝑜𝑜 + 𝜉𝜉𝐶𝐶  .     (6) 
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At thermal equilibrium, the open probability of transduction channels is given by  

 𝑃𝑃∞ = 1 {1 + 𝐴𝐴 exp[− (𝑋𝑋� − 𝑋𝑋�𝑎𝑎) 𝛿𝛿⁄ ]}⁄ ,    (7) 

where 𝛿𝛿 = (𝑘𝑘𝐵𝐵𝑇𝑇) (𝐾𝐾𝐺𝐺𝐺𝐺𝐷𝐷 𝑁𝑁⁄ )⁄ , N is the number of transduction elements, and 𝑘𝑘𝐵𝐵𝑇𝑇 is the thermal 

energy.  The parameter 𝐴𝐴 = exp([Δ𝐺𝐺 + (𝐾𝐾𝐺𝐺𝐺𝐺𝐷𝐷2) (2𝑁𝑁)⁄ ] (𝑘𝑘𝐵𝐵𝑇𝑇)⁄ ) is related to the intrinsic 

energy difference Δ𝐺𝐺 = 10𝑘𝑘𝐵𝐵𝑇𝑇 between open and closed states of the channels.  In Eq. 6, the 

characteristic timescale of transduction channels’ activation depends on position according to: 

 𝜏𝜏𝐶𝐶 = 𝜏𝜏 {cosh[(𝑋𝑋� − 𝑋𝑋�𝑎𝑎) (2𝛿𝛿) − (ln𝐴𝐴) 2⁄⁄ ]}⁄ .   (8) 

There, parameter 𝜏𝜏 corresponds to the exponential relaxation time of the channels’ open 

probability 𝑃𝑃𝑜𝑜 towards a steady-state for which 𝑃𝑃𝑜𝑜 = 𝑃𝑃∞ = 1/2 in response to a step deflection 

of the hair bundle from another steady state (9).  In Eqs. 4-5, 𝜆𝜆 and 𝜆𝜆𝑎𝑎 are friction coefficients, 

𝐾𝐾𝐺𝐺𝐺𝐺 and 𝐾𝐾𝑆𝑆𝑆𝑆 are elastic coefficients, D is the gating swing, 𝜉𝜉(𝑡𝑡), 𝜉𝜉𝑎𝑎(𝑡𝑡) and 𝜉𝜉𝐶𝐶(𝑡𝑡) are time-

dependent, Gaussian noise terms with autocorrelations 〈𝜉𝜉(𝑡𝑡)𝜉𝜉(𝑡𝑡′)〉 = 2𝑘𝑘𝐵𝐵𝑇𝑇 𝜆𝜆 𝛿𝛿(𝑡𝑡 − 𝑡𝑡′), 

〈𝜉𝜉𝑎𝑎(𝑡𝑡)𝜉𝜉𝑎𝑎(𝑡𝑡′)〉 = 2𝑘𝑘𝐵𝐵𝑇𝑇𝑎𝑎 𝜆𝜆𝑎𝑎 𝛿𝛿(𝑡𝑡 − 𝑡𝑡′), in which 𝑇𝑇𝑎𝑎 = 1.5 𝑇𝑇 is an effective temperature and T is 

the ambient temperature (10), and 〈𝜉𝜉𝐶𝐶(𝑡𝑡)𝜉𝜉𝐶𝐶(𝑡𝑡′)〉 = 2 𝑃𝑃𝑜𝑜,𝑆𝑆 ∙ �1 − 𝑃𝑃𝑜𝑜,𝑆𝑆� ∙ 𝜏𝜏 𝑁𝑁⁄  𝛿𝛿(𝑡𝑡 − 𝑡𝑡′).  In the 

latter expression, for simplicity, we ignored the dependence of channel-clatter noise on bundle 

and motor positions and estimated its value at steady state with 𝑃𝑃𝑜𝑜,𝑆𝑆 = 𝑃𝑃∞�𝑋𝑋�𝑆𝑆,𝑋𝑋�𝑎𝑎,𝑆𝑆� and with a 

constant channel activation time 𝜏𝜏.  The gating force Z of a transduction channel, defined as the 

reduction in gating-spring tension upon channel opening, is given by 𝑍𝑍 = 𝐾𝐾𝐺𝐺𝐺𝐺𝐷𝐷 𝑁𝑁⁄ .  The 

deflection 𝑋𝑋(𝑡𝑡) = 𝑋𝑋� −  𝑋𝑋�𝑆𝑆 of the hair bundle and the displacement of the motors 

𝑋𝑋𝑎𝑎(𝑡𝑡) = 𝑋𝑋�𝑎𝑎(𝑡𝑡) − 𝑋𝑋�𝑎𝑎,𝑆𝑆 are calculated with respect to their steady-state values 𝑋𝑋�𝑆𝑆 and 𝑋𝑋�𝑎𝑎,𝑆𝑆, 

respectively.   

Stochastic simulations 

Simulations and their analysis were performed using Matlab® (version R2015a, the 

Mathworks).  Eqs. 4-6 were integrated using the Euler method with a step time of 10 µs.  The 

simulated hair-bundle movement X(t) was filtered with an eight-pole Bessel antialiasing filter 

adjusted to a low-pass half-power frequency of 1 kHz, as in experiments.  Using the same 

procedure as in the analysis of experimental recordings, we then characterized the oscillatory 

behavior of the system by estimating the channels’ open probability Po,S, as well as the 
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characteristic frequency f0, the root-mean-squared magnitude XRMS, the quality factor Q, and the 

mean switch velocity VMAX of the oscillation. 

Parameters Definition Value 

𝜆𝜆𝐻𝐻 Hydrodynamic friction coefficient of the hair bundle 85 nN∙s∙m-1 

𝜆𝜆𝐶𝐶 Additional friction coefficient of the hair bundle 0–4915 nN∙s∙m-1 

𝜆𝜆𝑎𝑎 Slope of the force-velocity relation of adaptation motors 2–13 µN∙s∙m-1 

KGS Combined stiffness of the gating springs 0.4–0.8 mN∙m-1 

KSP Combined stiffness of the stereociliary pivots 0.1–0.3 mN∙m-1 

D Reduction of gating-spring extension upon channel opening 35–63 nm 

Fmax Maximal motor force 43–64 pN 

S Calcium feedback strength 0.4–0.8 

N Number of transduction elements 40–60 

𝜏𝜏 Channel activation time near an open probability of 1/2 0.05–5 ms 

Table 1: Parameters’ definition and value for stochastic simulations. 

We generated 50 libraries of 4,000 simulations in two cases.  Case I:  the channels were fast 

(𝜏𝜏 = 0 ms) and friction 𝜆𝜆 = 𝜆𝜆𝐻𝐻 + 𝜆𝜆𝐶𝐶 resulted from the sum of viscous drag 𝜆𝜆𝐻𝐻 and of an 

additional source of friction 𝜆𝜆𝐶𝐶.  We considered 25 values of the friction coefficient 𝜆𝜆 that were 

distributed logarithmically within the range 85–5000 nN∙s∙m-1; the lowest of these values 

corresponds to viscous drag measured experimentally (9).  For each value of 𝜆𝜆, we ran 4,000 

simulations of Eqs. 4-6, corresponding to sets of 7 parameters that were each randomly chosen 

within the intervals given in Table 1.  To generate an oscillatory movement X(t) that was 

compatible with experiments (Fig. 2), we first selected combinations of parameters that 

satisfied the condition of negative stiffness (i.e. 𝐾𝐾𝐺𝐺𝐺𝐺𝐷𝐷 𝑁𝑁⁄ > 2�𝑘𝑘𝐵𝐵𝑇𝑇 (𝐾𝐾𝐺𝐺𝐺𝐺 + 𝐾𝐾𝑆𝑆𝑆𝑆) 𝑁𝑁⁄ ).  Second, 

we imposed that the channels’ open probability at steady state fell between 0.2 and 0.8 

(Fig. 2A).  Third, we kept only simulations for which the oscillation frequency was 2–200 Hz 

(Fig. 2B) and the quality factor was 0.8–15 (Fig. 2D).  Finally, we made sure that the simulated 

position histograms were bimodal (Fig. 1) by imposing that the histogram was well fitted by 

the sum of two Gaussian functions whose peaks were separated by at least 0.8 times the average 

half-width of the two peaks.  Case II: the channels had a finite activation time 𝜏𝜏 and the friction 
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coefficient 𝜆𝜆 = 𝜆𝜆𝐻𝐻 =85 nN·s·m-1 resulted from viscous drag only.  We considered 25 values of 

the channel activation time that were logarithmically distributed within the range 0.05-5 ms.  

For a given value of the channel activation time, we then ran 4,000 simulations according to 

the procedure described in Case I. 

For each of the 50 libraries, we determined the best value of the friction coefficient 𝜆𝜆 (Case 

I) or of the channel activation time 𝜏𝜏 (Case II) by maximizing the correlation between the 

experimental and the simulated distributions of hair-bundle oscillations.  We computed 2D 

histograms for all pairs of oscillation properties among the open probability Po,S, the 

characteristic frequency f0, the RMS magnitude XRMS, the quality factor Q, and the switch 

velocity VMAX.  From each value of a given property that was obtained in simulations, we 

subtracted the experimental average and then normalized the result by the experimental 

standard deviation.  For the experimental data, this procedure corresponds to a z-score 

normalization.  Using these normalized variables, the histograms were computed over a fixed 

grid with a mesh size of 0.1 and smoothed by performing a moving average over a square 

surface of 7×7 pixels.  We quantified the overlap between the experimental and the simulated 

histograms by calculating their 2D-correlation coefficient (Fig. 5).  Because we dealt with 5 

oscillation properties, we obtained 10 correlation coefficients.  The net correlation between 

experimental and simulated distributions of spontaneous oscillations was calculated as the 

harmonic mean of these 10 coefficients.  Note that this procedure takes into account both the 

distributions of individual oscillation features and their pair-wise relations (Fig. 2). 

To test the effects of increasing viscosity on simulated hair-bundle oscillations, we selected, 

within each of our 50 simulation libraries, 14 sets of parameters that best matched the oscillatory 

properties of the 14 experimentally-measured hair bundles for which we had varied endolymph 

viscosity (Fig. 4),.  In Case I (fast channels), we assumed that the friction coefficient of the hair 

bundle could be written as 𝜆𝜆 = 𝑥𝑥 × 𝜆𝜆𝐻𝐻 + 𝜆𝜆𝐶𝐶 where x was the viscosity relative to that of 

standard endolymph, while keeping all other parameters unchanged.  We ran simulations for 20 

values of the normalized viscosity x that were logarithmically distributed between 1 and 30 and 

characterized the resulting oscillations by estimating the open probability Po,S, characteristic 

frequency f0, root-mean-squared magnitude XRMS, quality factor Q, and mean switch velocity 

VMAX.  As in experiments, these values were normalized by their corresponding values for x = 1 

and averaged across the 14 simulated hair bundles.  To determine the value of 𝜆𝜆𝐶𝐶 that best 

reproduced the experimental data, we calculated the root-mean-squared error between 



12 
 

experimental and simulated relations for each oscillation property (Po,S, f0, XRMS, Q, VMAX) as a 

function of the normalized viscosity x and quantified the deviation between experimental and 

simulated oscillations by computing the geometrical mean of these 5 error coefficients.  The 

result is plotted as a function of  𝜆𝜆 = 𝜆𝜆𝐻𝐻 + 𝜆𝜆𝐶𝐶 in Fig. S3B. 

In Case II, for which channels had a finite time constant 𝜏𝜏 and 𝜆𝜆𝐶𝐶 = 0, the friction coefficient 

of the hair bundle was increased proportionally to the normalized viscosity x as 𝜆𝜆 = 𝑥𝑥 × 𝜆𝜆𝐻𝐻.  

The procedure was then identical to that used for Case I, except that we here determined the 

value of the channel activation time 𝜏𝜏 that best reproduced the experimental data (Fig. 4D-H, 

red lines).  The deviation between simulations and experiments is plotted as a function of 𝜏𝜏 in 

Fig. S3A. 

RESULTS 

Statistics of spontaneous hair-bundle oscillations 

We used an excised preparation of the bullfrog’s sacculus where hair cells routinely displayed 

spontaneous oscillations of their hair bundles (see Methods).  We recorded from 196 oscillatory 

hair bundles to fully characterize the oscillation properties across the population of hair cells 

(Figs. 1-2).  As noted before (17, 18, 25), the hair bundle switched back and forth between two 

nearly-stationary positions (Fig. 1A).  Consequently, the probability density of bundle position 

was bimodal (Fig. 1B).  The fractional area under the positive peak yielded an estimate 𝑃𝑃𝑜𝑜,𝑆𝑆 of 

the open probability of the transduction channels at steady state (Fig. S1).  For the ensemble of 

cells, the median value of this estimate was 𝑃𝑃𝑜𝑜,𝑆𝑆 = 0.47 (Fig. 2A).  Correspondingly, the 

waveforms of oscillation were approximately rectangular with dwell times at the maximal and 

minimal positions that were nearly equal.  The power-spectral density of bundle movement 

displayed a clear peak (Fig. 1C) centered at a characteristic frequency f0 ranging from 2 to 80 Hz 

(median: 16.4 Hz; Fig. 2B).  The root-mean-squared (RMS) magnitude 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 of oscillation 

varied between 5 and 50 nm (median: 14.6 nm; Fig. 2C).  The degree of regularity of the 

oscillation could be assessed by computing the ratio of the characteristic frequency and the 

peak-width of the spectrum at half its maximal height (Fig. 1C).  This quantity defined the 

quality factor Q (range: 0.5-8; median: 1.64; Fig. 2D).  The maximal speed 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 of bundle 

motion, measured when the bundle switched between its two most-favored positions (Fig. 1D), 

ranged between 3 and 38 µm/s (median: 11.6 µm/s; Fig. 2E). 
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Having a large ensemble of oscillatory hair bundles allowed us to probe correlations between 

pairs of oscillation characteristics.  We observed that the characteristic frequency f0 was 

inversely correlated with the oscillation magnitude 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 (Fig. 2F).  The largest values of the 

quality factor occurred near an open probability of 𝑃𝑃𝑜𝑜,𝑆𝑆 = 0.5 (Fig. 2G).  Interestingly, the 

oscillation magnitude 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 was positively correlated to the switch velocity 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 (Fig. 2H).  A 

linear fit to the data yielded an offset and a slope.  The offset corresponded to the magnitude of 

position fluctuations that were independent on switching and the slope provided the average 

duration 𝜏𝜏𝑆𝑆 = 2 ∆𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 ∆𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀⁄ = 1.16 ms of the switch, where the factor 2 resulted from the 

ratio between the peak-to-peak and root-mean-squared magnitudes of a rectangular waveform.  

Finally, we also computed the switch duration 𝜏𝜏𝑆𝑆 = 2 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀⁄  for individual hair bundles.  

We found that the oscillation frequency f0 was inversely correlated to the switch duration 𝜏𝜏𝑆𝑆 

(Fig. 2I).  Because the oscillation frequency f0 decreased more steeply with the switch duration 

𝜏𝜏𝑆𝑆 than with the magnitude 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅, the oscillation frequency f0 had to be positively correlated to 

𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 (Fig. 2J). 

Position switches and negative stiffness 

Position switches in the oscillation of a hair bundle have been interpreted as signatures of a 

mechanical instability by which the bundle traverses a region of negative slope in its force-

displacement relation (14).  As adaptation strives to set the operating point of the bundle within 

this unstable region, the bundle periodically jumps across the positions of negative stiffness to 

reach a stable branch of positive stiffness within its force-displacement relation.  Because the 

mean switch duration 𝜏𝜏𝑆𝑆 was much shorter (Fig. 2H) than typical adaptation timescales 

(>10 ms) (26), adaptation motors were expected to remain nearly stationary during a switch.  In 

this case, during the switch, the hair bundle should behave as a simple overdamped system 

whose dynamics is characterized by force balance between friction and the bundle’s elasticity.  

As a result, the switch velocity is expected to obey 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 ≅ ∆𝐹𝐹 𝜆𝜆⁄ , where ∆𝐹𝐹 represents the 

force difference between the local extrema that flank the negative-stiffness region of the 

bundle’s force-displacement relation and λ is the friction coefficient of the hair bundle.  Using 

a displacement-clamp procedure, we measured the force-displacement relation of 36 oscillatory 

hair bundles and confirmed that the switch velocity was indeed positively correlated with ∆𝐹𝐹 

(Fig. 3).  A linear fit to the data yielded a friction coefficient λ = 430±80 nN∙s/m (95% 

confidence bounds).  This value is five-fold larger than that of the friction coefficient 𝜆𝜆𝐻𝐻 ≅ 85 

nN∙s/m expected from viscous drag on the stereovillar bundle structure, but is remarkably 
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similar to a direct estimate of the bundle’s friction coefficient that was obtained by applying 

periodic force stimuli to the hair bundle (9).  Because the friction force that adds to viscous drag 

can be attributed to gating friction (9), our result suggests that gating friction limits the switch 

velocity and thus influences the waveform of oscillation. 

Oscillations at higher endolymph viscosity 

If gating friction is the primary source of passive dissipation in an oscillatory hair bundle, we 

reasoned that increasing viscous drag, without affecting gating friction, should have minor 

effects on the oscillation waveform until both friction sources become comparable in 

magnitude.  Adding a polymer of sucrose into endolymph afforded a means to increase fluid 

viscosity and thus viscous drag on moving objects with the size of the hair bundle (see Methods 

and Fig. S2).  Upon raising endolymph viscosity, we observed that the frequency of oscillation 

𝑓𝑓0, as well as the switch velocity 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀, displayed a nonlinear decrease (Fig. 4).  The oscillation 

frequency remained nearly constant for viscosities up to 4-fold that of standard endolymph, 

decreasing significantly only beyond this value (Fig. 4A-D).  The switch velocity also 

decreased with increasing viscosities (Fig. 4E).  This variation was much more modest than the 

inverse-proportionality relation that would be expected if viscous drag limited the velocity of 

the switch.  At a viscosity of ×30, the oscillation frequency and switch velocity had on average 

decreased by 55% (Fig. 4D) and 66% (Fig. 4E), respectively.  Within the same range of 

viscosities, the oscillation magnitude decreased by only 20% (Fig. 4F).  Interestingly, the 

quality factor of oscillation appeared to slightly increase with viscosity, reaching a maximum 

at intermediate values (Fig. 4B and G).  This phenomenon is reminiscent of stochastic 

resonance (27), a nonlinear phenomenon that may operate in hair cells (28).  Finally, the open 

probability did not vary with endolymph viscosity (Fig. 4H).  Overall, hair-bundle oscillations, 

in particular their characteristic frequencies and switch velocities, appeared relatively 

insensitive to the imposed variations of endolymph viscosity.  These observations make sense 

if the hair bundle is not only subjected to viscous drag but also to another source of friction that 

is not significantly affected by the addition of a sugar polymer to endolymph. 

Numerical simulations of hair-bundle oscillations 

To confirm that gating friction can explain our observations, we used a physical description of 

active hair-bundle motility (9, 29) that can account for both viscous drag and gating friction.  In 

this model, gating friction emerges from the delayed kinetics of the transduction channels (see 
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Methods).  The characteristics of spontaneous oscillations (Fig. 2) and their dependence on 

viscosity (Fig. 4) were not reproduced by numerical simulations if the transduction channels 

were fast enough to instantaneously relax to thermal equilibrium, leaving viscous drag as the 

only friction force on the hair-bundle structure (blue data points in Fig. 5 and blue lines in 

Fig. 4).  With fast channels, the oscillation frequency and switch velocity ought to decrease 

steeply with viscosity (Fig. 4D-E).  In particular, at a viscosity of ×4, the frequency of the 

simulated oscillations was already half of its initial value whereas experimental oscillations 

were practically unaffected.  In addition, the observed distributions, as well as their pair-wise 

correlations, of the open probability Po,S, characteristic frequency f0, RMS magnitude XRMS, 

quality factor Q, and switch velocity VMAX of spontaneous oscillations (Fig. 2) could not be 

matched by simulations with fast channels (Fig. 5A). 

Instead, we could explain the experimental data (orange lines in Fig 4D-H; orange data 

points in Fig. 5A) when the activation kinetics of the transduction channels in the model was 

slow enough that these channels were out of thermal equilibrium.  Maximizing the correlation 

between experimental and simulated distributions of the five oscillation characteristics (Po,S, f0, 

XRMS, Q, and VMAX) by varying the channel activation time 𝜏𝜏 in the model provided the estimate 

𝜏𝜏 =0.8±0.4 ms (half width at 90% maximum; Fig. 5B).  A global fit to the dependence of these 

five characteristics on viscosity (orange line in Fig. 4D-H and Fig. S3A) provided a similar 

value 𝜏𝜏 =0.4-2 ms, although there was not a clear optimum within this range.  The two 

estimates of the channel activation time are compatible with a previous assessment on single 

oscillatory hair bundles (9).  However, the transduction channels appear here to be significantly 

slower than in early measurements of trans-epithelial currents from the entire bullfrog’s 

sacculus (11). 

Finally, we also considered an effective description of hair-bundle mechanics where the 

transduction channels instantaneously relax to their open probability at thermal equilibrium.  

Gating friction was captured by a contribution 𝜆𝜆𝐶𝐶 to the friction coefficient 𝜆𝜆 = 𝜆𝜆𝐻𝐻 + 𝜆𝜆𝐶𝐶 of the 

hair bundle (see Methods) (10).  This effective description also provided a good fit to the 

experimental data (magenta line in Fig. 4D-H, Fig. S3B, magenta data points in Fig. 5).  We 

noted, however, that the dependence of the quality factor on the normalized viscosity was better 

described when the finite activation kinetics of the channels was taken into account (Fig. 4G; 

compare orange and magenta lines).  Maximizing the correlation between experimental and 

simulated distributions of the five oscillation characteristics (Fig. 5C) or a global fit of the 
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dependence of these characteristics on viscosity (Fig. S3B) yielded a value 𝜆𝜆𝐶𝐶 = (3 − 8) × 𝜆𝜆𝐻𝐻.  

This value agrees with direct estimates of gating friction through dynamic force measurements 

(9).  Comparing the model that includes channel kinetics and the effective model confirms that 

the transduction channels produce internal friction forces corresponding to a friction coefficient 

almost one order of magnitude larger than that associated with viscous drag on the hair bundle. 

Varying the activation time of the transduction channels affords a means to modulate the 

magnitude of gating friction (9).  Although experimentally impractical, this task could readily 

be performed in simulations (Fig. 6).  The overall relation between the channel activation time 

and the oscillation frequency displayed low-pass characteristics: the frequency plateaued at a 

maximal value for τ < 100 µs and showed a logarithmic decline for τ > 1 ms.  With a channel 

activation time τ = 1 ms, a value that accords with our experiments (Fig. 5B and Fig. S3A), we 

observed that the oscillation frequency was 25% lower than with fast channels (τ = 0).  Our 

simulations thus indicate that the characteristic frequency of observed hair-bundle oscillations 

is set in part by the finite activation kinetics of the transduction channels. 

DISCUSSION 

Gating friction shapes hair-bundle oscillations 

Our detailed analysis of spontaneous hair-bundle oscillations and their dependence on 

endolymph viscosity betrays several signatures of friction from transduction channels’ gating.  

First, the maximal speed of the position switches within the rectangular waveform of oscillation 

is too low to be limited by viscous drag only, indicating that an additional friction impedes these 

movements (Fig. 3 and blue points in Fig. 5).  Positive and negative switches of bundle position 

are associated, respectively, with opening and closing of the transduction channels (16, 17, 21).  

It is precisely during gating that friction on the hair bundle is expected to increase (9, 15).  

Second, the switch velocity and the oscillation frequency are only marginally affected by an 

increase of endolymph viscosity by up to thirtyfold (Fig. 4).  This result is consistent with the 

existence of an intrinsic source of friction that dominates viscous drag and whose magnitude 

does not vary significantly with the addition of a polymer of sucrose in endolymph.  

Accordingly, this viscotropic agent increases viscous drag on micron-sized objects like the hair 

bundle but is unlikely to affect the kinetics of channel gating and in turn the magnitude of gating 

friction (see Methods).  Third, the pair-wise correlations of oscillation characteristics are 

reproduced by our description of hair-bundle mechanics when the finite activation kinetics of 
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the transduction channels is included (Fig. 5).  An effective description with fast channels but 

for which a constant (𝜆𝜆𝐶𝐶) is added to the hydrodynamic friction coefficient (𝜆𝜆𝐻𝐻) of the hair 

bundle also accounts for the data.  Together, these two observations confirm that the finite 

activation kinetics of the channels results in an additional source of hair-bundle friction (9, 15).  

They also qualify the effective description as a simplified model to account for gating friction 

(10). 

Gating friction is related to channel kinetics 

The gating friction coefficient 𝜆𝜆𝐶𝐶 in the effective model can be related to the activation time τ 

of a transduction channel in the full model.  For a channels’ open probability 𝑃𝑃𝑜𝑜,𝑆𝑆 near ½, the 

gating friction coefficient can be approximated as: 𝜆𝜆𝐶𝐶 ≅ ∆𝐾𝐾 × 𝜏𝜏 (9, 10, 15).  The prefactor 

∆𝐾𝐾 = [𝑁𝑁𝑁𝑁2 (4 𝑘𝑘𝐵𝐵𝑇𝑇)⁄ ] has units of stiffness and corresponds to the maximal gating compliance 

produced by N transduction channels that operate in parallel in the hair bundle.  Here, Z is the 

internal force produced by gating of a transduction channel ‒the gating force‒, kB is the 

Boltzmann constant and T is temperature.  Thus, the slower the channels, the higher the friction 

that is produced by channel gating.  Comparing the friction coefficient associated with gating 

friction (𝜆𝜆𝐶𝐶) to that resulting from viscous drag (𝜆𝜆𝐻𝐻), we find that gating friction dominates 

viscous drag if the transduction channels are slower than a characteristic time 

𝜏𝜏∅ = 4 𝑘𝑘𝐵𝐵𝑇𝑇 𝜆𝜆𝐻𝐻 (𝑁𝑁𝑁𝑁2)⁄ .  With typical values, N =50, Z =0.75 pN, and 𝜆𝜆𝐻𝐻 =85 nN∙s∙m-1, we find 

𝜏𝜏∅ = 50 µs.  This value is one order of magnitude lower that the channel activation time 

estimated here to account for the characteristics of spontaneous oscillations (Fig. 5B).  This 

explains why experimental estimates of 𝜆𝜆𝐶𝐶 (Fig. 5C and Fig. S3B) are up to one order of 

magnitude larger than the friction coefficient 𝜆𝜆𝐻𝐻 associated to viscous drag. 

We note that our estimate τ ≈ 1 ms for the channel activation time (Fig. 5B and Fig. S3A) is 

significantly larger than an estimate that was published previously (11).  In this seminal work, 

the exponential activation kinetics of transduction currents evoked by step deflections of the 

hair bundles yielded time constants that varied from 100 µs to 500 µs at 4°C, with larger stimuli 

resulting in shorter activation times.  After correction for the dependence of channel kinetics on 

temperature, one would expect the channel activation time to be no longer than 125 µs at 23°C.  

If the transduction channels were this fast, gating friction would be about one order of 

magnitude smaller than estimated here and measured previously (9).  Thus, our results imply 

that the channels are slower in our experiments.  This difference may arise because channel 
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kinetics was previously measured from an average response over hundreds of hair cells that 

were stimulated simultaneously to produce a trans-epithelial current, whereas we studied single 

hair bundles.  In addition, we only worked with hair bundles that oscillated spontaneously. 

The oscillation frequency depends on the channel activation time 

Spontaneous oscillations of the hair bundle have a period 𝑓𝑓0−1 (~100 ms) that is two orders of 

magnitude larger than the activation time 𝜏𝜏 of the channels (~1 ms).  Yet, the channels are slow 

enough to affect the characteristic frequency of oscillation (Fig. 6).  Why does channel kinetics 

slow down the oscillations?  Our theoretical description of active hair-bundle motility (see 

Methods) provides a simple framework to discuss the physical parameters that control the 

oscillation frequency.  Spontaneous oscillations emerge from an interplay between negative 

hair-bundle stiffness, adaptation motors, and feedback by the calcium component of the 

transduction current (16, 17).  An oscillatory instability called a Hopf bifurcation occurs when 

this active dynamical system cancels both friction forces and elastic restoring forces (6, 30-32). 

Precisely at the Hopf bifurcation, the characteristic frequency of spontaneous oscillation 

depends on channel activation time as 𝑓𝑓𝐶𝐶(𝜏𝜏) = 𝑓𝑓𝐶𝐶(0) �1 + 𝜏𝜏 𝜏𝜏𝑅𝑅⁄⁄ , where 𝑓𝑓𝐶𝐶(0) is the 

oscillation frequency when the channels are fast and 𝜏𝜏𝑅𝑅 ≅ 𝜆𝜆𝐻𝐻 𝐾𝐾∞⁄  is the mechanical relaxation 

time of the hair bundle, given its hydrodynamic friction coefficient 𝜆𝜆𝐻𝐻 and its stiffness 𝐾𝐾∞ at 

large deflections (see Supporting Text).  Thus, at the Hopf bifurcation, the channel activation 

time 𝜏𝜏 must be compared to the bundle’s mechanical relaxation time 𝜏𝜏𝑅𝑅 to determine whether 

or not channel kinetics has a significant effect on the frequency of the oscillation.  With 

𝐾𝐾∞ = 0.9 mN·m-1 and 𝜆𝜆𝐻𝐻 =85 nN·s·m-1 (Table 1), we get 𝜏𝜏𝑅𝑅 ≅ 100 µs.  The mechanical 

relaxation time is thus one order of magnitude smaller than our estimate 𝜏𝜏 ≅ 1 ms of the channel 

activation time.  With 𝜏𝜏 𝜏𝜏𝑅𝑅⁄ ≅ 10, the frequency of spontaneous oscillation is expected to be 

only one third that predicted with fast channels (Fig. 6B; dashed line). 

Away from the Hopf bifurcation, there is no analytic expression of the oscillation frequency.  

With parameter values that accord with the oscillations observed in our experiments, 

simulations nevertheless indicate that the effect of slow channel kinetics is less dramatic than 

at the Hopf bifurcation but nevertheless significant (Fig. 6B; solid line).  We observe that the 

simulated dependences of the oscillation frequency on endolymph viscosity and on the channel 

activation time have a similar shape (compare orange line in Fig. 4D and black solid line in 

Fig. 6B).  This similarity arises because in both cases the effective friction 𝜆𝜆 = 𝜆𝜆𝐻𝐻 + 𝜆𝜆𝐶𝐶 



19 
 

increases linearly along the abscissa.  Indeed, in one case 𝜆𝜆𝐻𝐻 varies in proportion to endolymph 

viscosity with 𝜆𝜆𝐶𝐶 constant (Fig. 4D), whereas in the other case 𝜆𝜆𝐶𝐶 varies in proportion to the 

channel activation time with 𝜆𝜆𝐻𝐻 constant (Fig. 6B).  The fact that this simple argument works 

confirms that the effect of channel kinetics on hair-bundle mechanics can be captured by 

introducing an effective friction coefficient. 

In conclusion, our work shows that the activation kinetics of the transduction channels and 

the friction forces produced by delayed channel gating play a key role in shaping spontaneous 

oscillations of mechanosensory hair bundles.  Spontaneous oscillations power frequency-

selective amplification of weak mechanical stimuli.  Thus, we demonstrate a direct role of the 

transduction channels’ gating properties in this active process.  In particular, the oscillation 

frequency is set in part by the channel activation time.  Mechanosensitivity of vertebrate hair 

bundles is mediated by a common architecture comprising transduction channels mechanically 

coupled to tip links.  As a result, hair bundles share a fundamental physical property: they are 

subjected to forces associated with gating of the transduction channels.  Gating compliance and 

gating friction are thus inherent mechanical features to hair bundles.  In the case of oscillatory 

hair bundles, varying the channel activation time (33, 34) provides a fundamental mechanism 

to mechanically tune the characteristic frequency of hair cells along the tonotopic axis of 

auditory organs. 

 

AUTHOR CONTRIBUTIONS 

J.B., F.J., and P.M. designed research, performed research, analyzed data, and wrote the paper. 

 

ACKNOWLEDGEMENTS 

We thank Benjamin Lindner, Kai Dierkes, and Volker Bormuth for stimulating discussions.  

This research was supported by the French National Agency for Research (ANR-11-BSV5 

0011) and in part by the National Science Foundation under Grant No. NSF PHY11-25915.  

J.B. was supported by a Human Frontier Science Program long-term postdoctoral fellowship 

(LT000132/2012) and by the Bettencourt Schueller Foundation. 

  



20 
 

 

Figure 1:  Spontaneous oscillation of the hair-cell bundle. 

(A) Time course of hair-bundle position over 15 cycles of oscillation. The bundle switched 

between two nearly stationary positions; the times of positive and negative switches are marked 

by magenta and blue disks, respectively.   (B) The position histogram is well described by the 

sum of two Gaussian distributions (red line).  The fractional area under the positive peak 

provides a functional estimate of the open probability of the transduction channels at steady 

state, here Po,S = 0.47.   (C) Power spectral density of hair-bundle movement.  Fitting this 

spectrum (see Eq. 3 in the Methods; red line) yielded the characteristic frequency f0 = 19.8 Hz, 

the root-mean-squared (RMS) magnitude XRMS = 12.6 nm, and the quality factor 𝑄𝑄 = 𝑓𝑓0 Δ𝑓𝑓⁄ =

2.3, where Δ𝑓𝑓 is the width of the spectrum at half the maximal value.   (D) Top: negative (blue) 

and positive (magenta) position switches were aligned with respect to their switch times (disks 

in A) and averaged; the average switch (thick lines) is superimposed to the raw segments of 

oscillation (thin lines).  Bottom: the speed of the switches was calculated as the time derivative 

of the mean switches.   For clarity, we show here only 40 segments out of a total of ~600 that 

contributed to the average.  Note that positive and negative switches happened at the same 

speed. 
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Figure 2:  Distributions of oscillation characteristics and pair-wise relations. 

Histograms of the open probability 𝑃𝑃𝑜𝑜,𝑆𝑆 (A), characteristic frequency 𝑓𝑓0 (B), RMS magnitude 

𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 (C), quality factor 𝑄𝑄 (D), and switch velocity 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 (E) of hair-bundle oscillations 

(n = 196 cells).  Pair-wise relations between these characteristics are shown in the following 

plots.  (F) The frequency was inversely related to the RMS magnitude (Pearson correlation 

r = ‒0.53; p-value = 10-15).  A power-law fit to the data yields 𝑓𝑓0 ∝ 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅−0.89 (R2 = 0.28; [-1.09, -

0.69], 95% confidence bounds).  (G) Quality factor as a function of open probability.  The 

median value of 𝑄𝑄 for 0.4 < 𝑃𝑃𝑜𝑜,𝑆𝑆 < 0.6 was higher than for the rest of the data points (Mann-

Whitney U-test with p-value = 0.003).  (H) The RMS magnitude was positively related to the 

switch velocity (Pearson correlation r = 0.5; p-value = 10-13).  The red line corresponds to a 

linear fit 𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 = 7.7 + 0.58 × 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 (R2 = 0.25).  (I) The switch duration 𝜏𝜏𝑆𝑆 = 2𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀⁄  

was inversely related to the oscillation frequency 𝑓𝑓0 (Pearson correlation r = -0.82; p-

value = 10-48).  The red line corresponds to a power-law fit 𝜏𝜏𝑆𝑆 = 𝑓𝑓0−1.43 (R2 = 0.67; [-1.57, -

1.29], 95% confidence bounds).  (J) The frequency 𝑓𝑓0 was positively related to the switch 

velocity 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀  (Pearson correlation r = 0.26; p-value = 3×10-4).  A power-law fit to the data 

yields 𝑓𝑓0 ∝ 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀0.43 (R2 = 0.07; [0.20, 0.65] 95% confidence bounds). 
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Figure 3:  Correlation between the force difference ∆𝐹𝐹 between the local extrema that flank the 

negative-stiffness region of the bundle’s force-displacement relation 𝐹𝐹(𝑋𝑋) and the switch 

velocity 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 of a spontaneous hair-bundle oscillation. 

(A) An oscillation with slow switches (right; 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 = 3.2 µm/s) displayed a relatively shallow 

negative-stiffness region in its force-displacement relation (left; ∆𝐹𝐹 = 2.5 pN).   (B) Another 

hair bundle produced fast switches (right; 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 = 20.2 µm/s), corresponding to a deep 

negative-stiffness region (left; ∆𝐹𝐹 = 5.8 pN).  The red lines in (A) and (B) correspond to fits by 

Eq. 1 (see Methods).   (C) The force difference ∆𝐹𝐹 was positively correlated to the switch 

velocity 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 (Pearson correlation coefficient r = 0.39, p-value p = 0.02, n = 36).  The red line 

represents a linear fit to the data (slope = 430±80 nN∙s/m with 95% confidence bounds; 

R2 = 0.03).  The large black and white disks correspond to the hair bundles used for (A) and 

(B), respectively. 
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Figure 4:  Effects of increasing endolymph viscosity on spontaneous hair-bundle oscillations. 

(A)-(C) Spontaneous oscillations (top) and corresponding power spectra (bottom) of a hair 

bundle that was bathed in endolymph of viscosity ×1 (A), ×5 (B), and ×20 (C) relative to that 

of standard endolymph.  Scale bars apply to all three panels.   Characteristic frequency (D), 

switch velocity (E), RMS magnitude (F), quality factor (G), and open probability (H) of 

spontaneous oscillation as a function of the normalized viscosity.  In (D)-(H) each of the five 

characteristics of a bundle’s oscillation has been normalized by the value measured with 

standard endolymph and is represented as mean ± standard error (n = 14 cells ).  The viscosity 

was increased by adding various amounts of Dextran 500 to normal endolymph, except for the 

white square and disk symbols in (D)-(H), where Ficoll 400 and Dextran 40 were used, 

respectively.  Blue lines: simulated behavior when the transduction channels are fast and 

viscous drag impeding hair-bundle movements is described by the friction coefficient 𝑥𝑥 × 𝜆𝜆𝐻𝐻, 

where 𝑥𝑥 is the viscosity relative to that under control conditions (the abscissa of the plot), and 

𝜆𝜆𝐻𝐻 = 85 nN∙s/m is the hydrodynamic drag coefficient of the hair bundle under control 

conditions.  Orange lines: same but with finite activation kinetics (channel activation time 

𝜏𝜏 =1.1 ms).  Magenta lines: simulated behavior when the transduction channels are fast and 

friction on the hair bundle is described by an effective friction coefficient 𝜆𝜆 = 𝑥𝑥 × 𝜆𝜆𝐻𝐻 + 𝜆𝜆𝐶𝐶 that 

is the sum of the viscous-drag coefficient 𝑥𝑥 × 𝜆𝜆𝐻𝐻 and of a constant friction coefficient 𝜆𝜆𝐶𝐶 =

4.5 × 𝜆𝜆𝐻𝐻 that accounts for an additional source friction.  Other parameters in Table 1.  
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Figure 5:  Comparing the characteristics of simulated and experimental hair-bundle oscillations. 

(A) Pair-wise relations between the distributions of oscillation properties for experimental 

(black) and simulated (blue, orange, and magenta) data.  Blue: simulations of 4,000 oscillatory 

hair bundles with fast channels (channel activation time 𝜏𝜏 = 0 ms) and friction coefficient 

λ = λH = 85 nN·s·m-1, corresponding to the measured value of viscous drag on the hair bundle 

in standard endolymph.  Other parameters:  λa = 9.1 ± 3.6 µN∙s∙m-1, KGS = 0.65 ± 0.09 mN∙m-

1, KSP = 0.19 ± 0.06 mN∙m-1, D = 50.9 ± 3.5 nm, Fmax = 57 ± 4 pN, S = 0.66 ± 0.11.  Orange: 

channels with finite activation kinetics (τ = 0.7 ms) and λ = λH = 85 nN∙s∙m-1.  At this value of 

τ,  the correlation between experimental and simulated distributions of hair-bundle oscillations 

is maximal (orange disk in (B)).  Other parameters:  λa = 8.8 ± 3.7 pN∙s/nm, 

KGS = 0.64 ± 0.09 pN/nm, KSP = 0.19 ± 0.06 pN/nm, D = 50.5 ± 3.5 nm, Fmax = 57 ± 4 pN, 

S = 0.60 ± 0.11.  Magenta: as in blue but with an increased friction coefficient λ = 550 nN∙s∙m-

1 ≅ 6 × 𝜆𝜆𝐻𝐻.  At this value of λ,  the correlation between the experimental and the simulated 

distributions of hair-bundle oscillations is maximal (magenta disk in (C)).   (B) Correlation 

coefficient between experimental and simulated distributions of oscillation properties as a 
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function of the channel activation time τ, assuming that the hair bundle is subjected to viscous 

drag only, i.e. λ = λH = 85 nN·s·m-1.  The relation peaks within a range τ = 0.5-1.3 ms (shaded 

area; width at 90% maximum).   (C) Correlation coefficient between experimental and 

simulated distributions of oscillation properties as a function of the friction coefficient λ, 

assuming that the transduction channels are fast, i.e. 𝜏𝜏 = 0 ms.  The relation peaks within a range 

λ = 350-800 nN∙s∙m-1 (shaded area; width at 90% maximum), corresponding to friction 

coefficients that are 4-9 fold larger than that provided by viscous drag (λH = 85 nN∙s∙m-1).  

Accordingly, the hair bundle is effectively subjected to an additional source of friction 𝜆𝜆𝐶𝐶 =

𝜆𝜆 − 𝜆𝜆𝐻𝐻 = 265-715 nN∙s∙m-1, which is 3-8 fold larger than 𝜆𝜆𝐻𝐻. 
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Figure 6:  Simulated hair-bundle oscillations as a function of the channels’ activation time. 

A. Simulations of hair-bundle oscillations with a channel activation time of 0.1, 1 and 10 ms, 

from top to bottom, respectively.  B. Normalized oscillation frequency as a function of 

channel’s activation time τ  (solid line) with parameter values N = 50, KGS = 0.6 pN/nm, 

KSP = 0.3 pN/nm, D = 60 nm, λH = 85 nN·s·m-1, λa = 10 µN·s·m-1, S = 0.7, and Fmax = 53 pN.  

The three disks correspond to data shown in (A).  The dotted line corresponds to the expected 

variation 1 �1 + 𝜏𝜏 𝜏𝜏𝑅𝑅⁄⁄  when the hair bundle operates precisely the Hopf bifurcation, where 

𝜏𝜏𝑅𝑅 ≅ 𝜆𝜆𝐻𝐻 𝐾𝐾∞⁄  is the mechanical relaxation time of the hair bundle. 
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Figure S1:  Using simulations to compare an estimate of the transduction channels’ open 

probability at steady state (noted Po,S in the main text) to its actual value.  

(A) For each simulated oscillation, we fitted the bimodal distribution of positions by the sum 

of two Gaussian functions.  The estimate of the transduction channels’ open probability at 

steady state, which is noted Po,S in the main text, is defined as the fractional area under the 

Gaussian that was centered at a positive position with respect to the mean bundle position.  

We used our 50 libraries of simulated oscillations (see Methods) to compare this estimate to 

the actual value of the steady-state open probability over a wide range of parameter values.  

We plot here a two-dimensional histogram of the data using a bin size of 0.01 for both the 

abscissa and the ordinate.  The red dashed line has a slope of unity.  Note that no open 

probabilities are found below Po = 0.2 or above Po = 0.8 because this criterion was used for 

defining an oscillatory hair bundle (see Methods).   (B) Using the data shown in (A), for each 

value of the actual Po, we then calculated the mean value of the Po estimate and the full width 

at half the maximal height of the histogram; they are plotted here as a function of the actual Po 

(red and blue lines, respectively). 
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Figure S2:  Increasing endolymph viscosity by adding a polymer of sucrose. 

The relation between polymer concentration ((A): Dextran 500; (B): Ficoll PM 400; (C): 

Dextran 40) and viscosity was calibrated by measuring the friction coefficient 𝜆𝜆 of a flexible 

fiber (black) or of micro-beads of diameter 0.97 μm (blue) or 2.32 μm (yellow) immersed in 

the solution.  The friction coefficient of a flexible fiber or of a bead maintained in an optical 

trap was evaluated by measuring their Brownian fluctuations.  The power spectrum of 

spontaneous movement was adjusted by a Lorentzian function 𝑆𝑆(𝜔𝜔) = 2𝑘𝑘𝐵𝐵𝑇𝑇𝜆𝜆𝐹𝐹
𝑘𝑘𝐹𝐹2+(𝜔𝜔𝜆𝜆𝐹𝐹)2 from which 

the friction (𝜆𝜆𝐹𝐹) and stiffness (𝑘𝑘𝐹𝐹) coefficients were extracted.  For viscous drag, the relative 

increase in friction is equal to the relative increase in viscosity: 𝜇𝜇 𝜇𝜇0⁄ = 𝜆𝜆 𝜆𝜆0⁄ = 𝑥𝑥, where 𝜇𝜇 is 

the viscosity of endolymph in which the friction coefficient of the object is 𝜆𝜆 and the 

superscript ‘0’ denotes the endolymph of reference with no-added polymer.  The relation 

between the normalized viscosity 𝑥𝑥 and the sugar concentration was fitted by an exponential 

function (red lines). 
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Figure S3:  Deviation between experiments and simulations when studying the effects of 

endolymph viscosity on hair-bundle oscillations. 

(A)  The channels are slow (𝜏𝜏 > 0) and the bundle’s friction coefficient is given by 𝜆𝜆 = 𝑥𝑥 ×

 𝜆𝜆𝐻𝐻, where 1< x <30 is the normalized viscosity of endolymph and 𝜆𝜆𝐻𝐻 corresponds to viscous 

drag in standard endolymph, i.e. for x = 1.  For each of the five oscillation properties (Po,S, f0, 

XRMS, Q, VMAX), we computed the root-mean-squared error between experimental and 

simulated relations between the oscillation property and the normalized endolymph viscosity 

1< x <30.  The deviation between experiments and simulations was defined as the 

geometrical mean of the 5 error coefficients and is here plotted as a function of the channel 

activation time 𝜏𝜏.  The orange disk marks the value of 𝜏𝜏 for which the deviation is minimal, 

corresponding to the orange lines in Fig. 4 of the main text.   (B)  The channels are fast (𝜏𝜏 =

0) and the hair bundle is subjected to an effective friction coefficient 𝜆𝜆 = 𝜆𝜆𝐻𝐻 + 𝜆𝜆𝐶𝐶.  The blue 

and magenta disks mark, respectively, the value of 𝜆𝜆 for which there is no channel friction 

(𝜆𝜆 = 𝜆𝜆𝐻𝐻; 𝜆𝜆𝐶𝐶 = 0) and the value of 𝜆𝜆 that minimizes the deviation between simulations and 

experimental data.  They correspond to the blue and magenta lines in Fig. 4, respectively.  

The deviation was computed as in (A). 
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SUPPORTING TEXT 

Stability analysis of the hair-bundle model: oscillation frequency at the Hopf 

bifurcation. 

We consider the model of active hair-bundle motility given by equations 4-8 of the main text 

(Methods section).  We omit noise terms on the right-hand side of equations 4-6 and assume 

an open probability 𝑃𝑃𝑜𝑜,𝑆𝑆 = 1 2⁄  at steady state, which approximates the median value 

observed in experiments (Fig. 2C).  By performing a linear-stability analysis of this system of 

coupled differential equations, we aim at determining an analytical expression for the 

frequency of spontaneous oscillation at a Hopf bifurcation.  Taking small deviations 𝑋𝑋 = 𝑋𝑋� −

𝑋𝑋�𝑆𝑆, 𝑋𝑋𝑎𝑎 = 𝑋𝑋�𝑎𝑎 −  𝑋𝑋�𝑎𝑎,𝑆𝑆, and 𝛿𝛿𝑃𝑃𝑜𝑜 = 𝑃𝑃𝑜𝑜 − 𝑃𝑃𝑜𝑜,𝑆𝑆, respectively, of the position 𝑋𝑋� of the hair bundle, 

of the position 𝑋𝑋�𝑎𝑎 of the adaptation motors, and of the open probability 𝑃𝑃𝑜𝑜 of the transduction 

channels with respect to their values at steady state, we can linearize the system and write: 

�
𝑋̇𝑋
𝑋̇𝑋𝑎𝑎
𝛿𝛿𝑃̇𝑃𝑜𝑜

� = 𝑱𝑱 �
𝑋𝑋
𝑋𝑋𝑎𝑎
𝛿𝛿𝑃𝑃𝑜𝑜

�,  (S1) 

where the Jacobian matrix 𝑱𝑱 is given by: 

𝑱𝑱 = �

− (𝐾𝐾𝐺𝐺𝐺𝐺 + 𝐾𝐾𝑆𝑆𝑆𝑆) 𝜆𝜆𝐻𝐻⁄ 𝐾𝐾𝐺𝐺𝐺𝐺 𝜆𝜆𝐻𝐻⁄ 𝐾𝐾𝐺𝐺𝐺𝐺𝐷𝐷 𝜆𝜆𝐻𝐻⁄

𝐾𝐾𝐺𝐺𝐺𝐺 𝜆𝜆𝑎𝑎⁄ −𝐾𝐾𝐺𝐺𝐺𝐺 𝜆𝜆𝑎𝑎⁄ −𝐾𝐾𝐺𝐺𝐺𝐺𝐷𝐷 �1 − 𝑆𝑆𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐺𝐺𝐺𝐺𝐷𝐷

� 𝜆𝜆𝑎𝑎�

𝑃𝑃∞′ 𝜏𝜏⁄ −𝑃𝑃∞′ 𝜏𝜏⁄ 1 𝜏𝜏⁄
� , (S2) 

The parameters are defined in the Methods section and in Table 1 of the main text. Dots and 

primes in superscript denote time and spatial derivatives, respectively.  Note that with 𝑃𝑃𝑜𝑜,𝑆𝑆 =

1 2⁄ , the channel activation time 𝜏𝜏𝐶𝐶(𝑋𝑋) ≅ 𝜏𝜏 does not depend on the bundle position X at the 

linear order.  The eigenvalues 𝑠𝑠 of the Jacobian obey: 

det|𝑱𝑱 − 𝑠𝑠𝟏𝟏| = 0,  (S3) 

in which 𝟏𝟏 denotes the identity matrix.  We must then find the roots of a third-order 

polynomial: 

𝑠𝑠3 + 𝑠𝑠2 �1
𝜏𝜏

+ 𝐾𝐾𝐺𝐺𝐺𝐺
𝜆𝜆𝑎𝑎

+ 𝐾𝐾∞
𝜆𝜆𝐻𝐻
� + 𝑠𝑠 �𝐾𝐾

�𝐺𝐺𝐺𝐺
𝜆𝜆𝑎𝑎𝜏𝜏

+ 𝐾𝐾𝐻𝐻𝐻𝐻
𝜆𝜆𝐻𝐻 𝜏𝜏

+ 𝐾𝐾𝑆𝑆𝑆𝑆𝐾𝐾𝐺𝐺𝐺𝐺
𝜆𝜆𝑎𝑎 𝜆𝜆𝐻𝐻

� + 𝐾𝐾𝑆𝑆𝑆𝑆𝐾𝐾�𝐺𝐺𝐺𝐺
𝜆𝜆𝑎𝑎 𝜆𝜆𝐻𝐻 𝜏𝜏

= 0 ,  (S4) 
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in which we have introduced the combined stiffness 𝐾𝐾∞ = 𝐾𝐾𝐺𝐺𝐺𝐺 + 𝐾𝐾𝑆𝑆𝑆𝑆 of the stereociliary 

pivots and of the gating springs, the stiffness 𝐾𝐾�𝐺𝐺𝐺𝐺 = 𝐾𝐾𝐺𝐺𝐺𝐺 �1 − 𝐷𝐷 �1 − 𝑆𝑆𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐺𝐺𝐺𝐺𝐷𝐷

�  𝑃𝑃∞′ � of the 

effective gating spring that exerts an elastic restoring force on the adaptation motors, and the 

stiffness 𝐾𝐾𝐻𝐻𝐻𝐻 = 𝐾𝐾𝐺𝐺𝐺𝐺(1 − 𝐷𝐷 𝑃𝑃∞′ ) + 𝐾𝐾𝑆𝑆𝑆𝑆 of the hair bundle with gating compliance.  Note that 

the stiffness 𝐾𝐾�𝐺𝐺𝐺𝐺 depends both on gating compliance and on calcium feedback. 

At a Hopf bifurcation, there is a pair of complex-conjugate eigenvalues that are purely 

imaginary.  We can thus write 𝑠𝑠 = ±𝑖𝑖𝜔𝜔𝑐𝑐, where 𝑖𝑖2 = −1 and 𝜔𝜔𝑐𝑐 = 2𝜋𝜋 𝑓𝑓𝐶𝐶 represents the 

angular frequency of spontaneous oscillation.  Injecting this Ansatz into Eq. S4 and taking the 

real part of the resulting equation, we find: 

𝜔𝜔𝑐𝑐 = 𝜔𝜔𝑐𝑐(𝜏𝜏 = 0) �1 + 𝜏𝜏 𝜏𝜏𝑅𝑅⁄⁄  ,   (S5) 

There, the angular frequency 

𝜔𝜔𝑐𝑐(𝜏𝜏 = 0) = �𝐾𝐾𝑆𝑆𝑆𝑆
𝜆𝜆𝐻𝐻

× 𝐾𝐾�𝐺𝐺𝐺𝐺
𝜆𝜆𝑎𝑎

= 1 �𝜏𝜏𝑆𝑆𝑆𝑆 × 𝜏𝜏𝑎𝑎⁄     (S6) 

represents the oscillation frequency when the channels are infinitely fast (𝜏𝜏 = 0).  In this 

equation, we recognize the passive relaxation times 𝜏𝜏𝑆𝑆𝑆𝑆 = 𝜆𝜆𝐻𝐻 𝐾𝐾𝑆𝑆𝑆𝑆⁄  of the hair-bundle position 

to small force steps when the bundle’s stiffness is reduced to the contribution 𝐾𝐾𝑆𝑆𝑆𝑆 of the 

stereociliary pivots and the timescale 𝜏𝜏𝑎𝑎 = 𝜆𝜆𝑎𝑎 𝐾𝐾�𝐺𝐺𝐺𝐺⁄  of adaptation in response to small step 

displacements of the hair bundle (1).  Channel kinetics affects the oscillation frequency when 

the channel activation time 𝜏𝜏 becomes large enough to be comparable to or larger than a 

characteristic timescale 𝜏𝜏𝑅𝑅 with 

𝜏𝜏𝑅𝑅 = 1 �𝐾𝐾𝐺𝐺𝐺𝐺
𝜆𝜆𝑎𝑎

+ 𝐾𝐾∞
𝜆𝜆𝐻𝐻
��   (S7) 

With typical parameter values (Table 1), 𝜆𝜆𝑎𝑎 𝐾𝐾𝐺𝐺𝐺𝐺⁄ ≅ 100 × 𝜆𝜆𝐻𝐻 𝐾𝐾∞⁄ .  Thus, 𝜏𝜏𝑅𝑅 ≅ 𝜆𝜆𝐻𝐻 𝐾𝐾∞⁄ .  This 

is the passive relaxation time of the hair bundle in response to small force steps at timescales 

short enough that the channels have no time to gate and produce gating compliance. 

 

  



7 
 

SUPPORTING REFERENCES 

 

1. Tinevez, J. Y., F. Jülicher, and P. Martin. 2007. Unifying the various incarnations of 
active hair-bundle motility by the vertebrate hair cell. Biophys. J. 93:4053-4067. 

 

 


	Barral_et_al_BiophysJ_Published_Manuscript_PERSOwithFigs
	Barral_et_al_BiophysJ_Published_ SupportingMaterial_Final

