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Glycolysis has long been considered as the major metabolic process for energy production and anabolic growth in 
cancer cells. Although such a view has been instrumental for the development of powerful imaging tools that are still 
used in the clinics, it is now clear that mitochondria play a key role in oncogenesis. Besides exerting central bioen-
ergetic functions, mitochondria provide indeed building blocks for tumor anabolism, control redox and calcium ho-
meostasis, participate in transcriptional regulation, and govern cell death. Thus, mitochondria constitute promising 
targets for the development of novel anticancer agents. However, tumors arise, progress, and respond to therapy in 
the context of an intimate crosstalk with the host immune system, and many immunological functions rely on intact 
mitochondrial metabolism. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which 
mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial 
metabolism for cancer therapy.
Keywords: autophagy; danger signaling; immunometabolism; oncometabolites; oxidative phosphorylation; mitophagy
Cell Research (2018) 28:265-280. doi:10.1038/cr.2017.155; published online 8 December 2017 

*These two authors contributed equally to this work.
Correspondence: Guido Kroemera, Lorenzo Galluzzib

aE-mail: kroemer@orange.fr
bE-mail: deadoc@vodafone.it
Abbreviations: 18F-FDG (2-[18F]fluoro-2-deoxy-d-glucose); 2-HG (2-hy-
droxyglutarate); α-KG (α-ketoglutarate); ∆ψm (mitochondrial transmem-
brane potential); CSC (cancer stem cell); CTL (cytotoxic T lymphocyte); 
DC (dendritic cell); EMT (epithelial-to-mesenchymal transition); ETC 
(electron transport chain); FA (Fanconi anemia); MOMP (mitochondrial 
outer membrane permeabilization); MPT (mitochondrial permeability tran-
sition); mtDNA (mitochondrial DNA); NK (natural killer); OXPHOS (oxi-
dative phosphorylation); PDAC (pancreatic duct adenocarcinoma); PET 
(positron emission tomography); PPP (pentose phosphate pathway); RCD 
(regulated cell death); ROS (reactive oxygen species); TAF (tumor-associ-
ated fibroblast); TCA (tricarboxylic acid)

Introduction

With the advent of the twenty-first century, two major 
misconceptions about cancer have eventually been erad-

icated: (1) the notion that cancer is a purely cell-intrinsic 
disorder that stems from epigenetic or genetic alterations 
[1, 2]; and (2) the view that malignant cells satisfy their 
bioenergetic and anabolic needs mostly (if not only) via 
aerobic glycolysis [3, 4]. Thus, it is now widely accepted 
that tumors form, develop and respond to therapy in the 
context of a complex, bidirectional interaction with the 
host immune system [5, 6]. Similarly, the fundamental 
influence of mitochondrial metabolism on all steps of 
oncogenesis, i.e., malignant transformation, tumor pro-
gression and response to treatment, has eventually been 
given proper recognition [7, 8]. 

Interestingly, the roots of these long-standing miscon-
ceptions reside in two notions that de facto revolution-
ized (in the positive sense of the term) modern medicine: 
(1) the “self/non-self” dichotomy, as originally theorized 
by the Australian virologist Sir Frank Macfarlane Burnet 
(1899-1985) in 1949, proposing that the immune system 
can only recognize foreign entities [9, 10]; and (2) the 
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so-called “Warburg effect”, referring to the elevated up-
take of glucose that characterizes a majority of cancers, 
first described by the German physiologist Otto Heinrich 
Warburg (1883-1970) in 1927 [11, 12]. The self/non-
self theory generated a robust theoretical framework that 
turned out to be essential for our current understanding 
of immune responses against invading pathogens [9], 
while the Warburg effect provided the rationale for the 
development of an imaging tool that has been (and still is) 
extensively used in the clinics for the detection and mon-
itoring of neoplasms, 2-[18F]fluoro-2-deoxy-d-glucose 
(18F-FDG) positron emission tomography (PET) [11]. 

Despite limited experimental support [12, 13], War-
burg himself suggested that the ability of malignant cells 
to maintain elevated glycolytic rates in spite of normal 
oxygen tension would derive from primary mitochon-
drial defects [14], an incorrect assumption that de facto 
relegated mitochondria to a role of mere bystanders of 
the oncogenic process for decades. Renovated interest in 
the role of mitochondria in cancer came in the mid-1990s 
with the demonstration that mitochondrial outer mem-
brane permeabilization (MOMP) constitutes a decisive 
step in the execution of regulated cell death (RCD) [15-
18]. This discovery drove an intense wave of investiga-
tion that — only a few years later — culminated with the 
recognition that most (if not all) cancer cells display an 
accrued resistance to RCD often owing to alterations in 
the mitochondrial control of the process [19]. As a conse-
quence, considerable efforts were focused on the devel-
opment of molecules that would target mitochondria as a 
strategy for chemo- or radio-sensitization [20], and some 
of these agents are nowadays used in the clinics (e.g., 
venetoclax, which is currently approved for use in pa-
tients with chronic lymphocytic leukemia) [21]. Along-
side, mitochondria attracted renovated attention from a 
metabolic perspective, in particular as it became clear 
that: (1) some mitochondrial metabolites are sufficient 
to drive oncogenesis [22], and (2) some mitochondrial 
circuitries can adapt to serve bioenergetic or anabolic 
functions, hence endowing malignant cells with consid-
erable metabolic plasticity [23, 24]. Thus, mitochondrial 
metabolism now stands out as a promising target for the 
development of novel antineoplastic agents, and several 
venues are currently being explored in this sense [25, 
26].

One of the main problems with targeting mitochon-
dria as a strategy to kill malignant cells or sensitize them 
to treatment is that multiple immune effector cells, and 
in particular CD8+ cytotoxic T lymphocytes (CTLs, 
which are involved in the efficacy of many — if not all 
— therapies), display remarkable metabolic similarities 
to cancer cells [26, 27]. This calls for the development 

of refined therapeutic approaches whereby malignant 
cells are selectively targeted while immune cells are 
spared from (or rendered insensitive to) the detrimental 
effects of treatment. Here, we critically review the can-
cer cell-intrinsic and cell-extrinsic mechanisms whereby 
mitochondria influence malignant transformation, tumor 
progression and response to treatment, as we discuss the 
potential of targeting mitochondrial metabolism for can-
cer therapy.

Mitochondrial metabolism in malignant transfor-
mation

The term “malignant transformation” generally re-
fers to the conversion of a normal cell into a neoplastic 
precursor that — in the context of failing immunosur-
veillance — acquires additional alterations enabling 
unrestricted proliferative potential, dissemination, and 
formation of distant macrometastases (cumulatively 
referred to as “tumor progression”) [28]. Importantly, 
only carcinogen- and transgene-driven models of onco-
genesis can recapitulate (albeit with several limitations) 
malignant transformation. Conversely, widely employed 
transplantable models including transformed cells of 
human or rodent origin de facto recapitulate late tumor 
progression only (as they were derived from primary or 
metastatic lesions that evaded immunosurveillance) [29]. 
Mitochondria may contribute to malignant transforma-
tion by at least three major mechanisms: (1) mitochondri-
al reactive oxygen species (ROS) favor the accumulation 
of potentially oncogenic DNA defects and the activation 
of potentially oncogenic signaling pathways [30]; (2) the 
abnormal accumulation of specific mitochondrial metab-
olites, including fumarate, succinate, and 2-hydroxygluta-
rate (2-HG), has prominent transforming effects (at least 
in some models) [31]; (3) functional deficits in MOMP 
or mitochondrial permeability transition (MPT) are gen-
erally required for the survival of neo-formed malignant 
precursors, which would otherwise succumb to RCD [32, 
33]. 

ROS are established genotoxins [30], and their re-
quirement for malignant transformation is well exempli-
fied by the fact that Trp53−/− mice maintained in relative-
ly hypoxic conditions (10% O2) exhibit a considerable 
survival advantage secondary to markedly reduced level 
of tumorigenesis as compared to Trp53−/− mice main-
tained in standard atmospheric conditions (21% O2) [34]. 
Along similar lines, hypoxia inhibits spontaneous intes-
tinal carcinogenesis in ApcMin/+ mice as well as carcino-
gen-driven oncogenesis in wild-type BALB/c mice [34]. 
Moreover, mitochondrial DNA (mtDNA) mutations that 
mildly (but not severely) affect various components of 
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the electron transport chain (ETC) as they promote ROS 
generation have been documented in a variety of tumors 
[8, 35]. One of the major mechanisms that control mito-
chondrial fitness (and hence limit ROS production) is the 
autophagic removal of damaged mitochondria (commonly 
known as mitophagy) [36]. In line with this notion, the 
knockdown or knockout of genes that are essential for 
autophagy (such as Atg5 or Atg7) can promote onco-
genesis in specific contexts [37-39]. Moreover, Fanconi 
anemia (FA) genes — which are mutated or silenced in a 
large proportion of human tumors — have recently been 
shown to be involved in mitophagy [40], suggesting that 
(at least part of) the oncosuppressive activity of FA pro-
teins may stem from the proficient removal of damaged 
mitochondria overproducing ROS. Besides favoring 
mutagenesis, ROS trigger potentially oncogenic signal 
transduction cascades including mitogen-activated pro-
tein kinase (MAPK) [28] and epidermal growth factor 
receptor (EGFR) signaling [41].

Succinate dehydrogenase complex iron sulfur subunit 
B (SDHB), fumarate hydratase (FH), isocitrate dehy-
drogenase (NADP(+)) 1, cytosolic (IDH1) and isocitrate 
dehydrogenase (NADP(+)) 2, mitochondrial (IDH2) are 
affected by germline or somatic mutations in a variety of 
human tumors [31]. While SDHB and FH are generally 
hit by loss-of-function mutations, accompanied by the 
accumulation of fumarate and/or succinate, IDH1 and 
IDH2 frequently display gain-of-function mutations, 
leading to the synthesis of 2-HG [42]. Fumarate, suc-
cinate and 2-HG behave as bona fide oncometabolites, 
meaning that their accumulation is sufficient to drive 
malignant transformation (at least in some models) [42]. 
All these oncometabolites share the capacity to inhibit 
α-ketoglutarate (α-KG)-dependent enzymes that control 
gene expression at the epigenetic level, such as Jumonji 
domain (JMJ) histone lysine demethylases as well as 
ten-eleven translocation (TET) dioxygenases [43, 44], 
resulting in the expression of a potentially oncogenic 
transcriptional program associated with a block in termi-
nal differentiation [42, 45, 46]. Moreover, 2-HG alters 
the α-KG-dependent prolyl oxidase activity of egl-9 
family hypoxia inducible factor 1 (EGLN1, best known 
as PHD2) and EGLN2 (best known as PHD1), hence 
promoting transformation via a mechanism related to hy-
poxia inducible factor 1 alpha subunit (HIF1A) stabiliza-
tion or destabilization [44, 47]. Finally, fumarate can also 
induce a non-enzymatic post-translational protein modi-
fication known as “succination”, and succination of kelch 
like ECH-associated protein 1 (KEAP1) activates the 
oncogenic transcription factor nuclear factor, erythroid 
derived 2 (NFE2, best known as NRF2) [48]. Interesting-
ly, the accumulation of succinate and fumarate does not 

always result from primary mitochondrial defects, but 
can also derive from signals dispatched from oncogenic 
proteins such as KRAS [49, 50]. Along similar lines, loss 
of oncosuppressor genes such as APC appears to favor 
malignant transformation also by altering mitochondrial 
functions [51].

Alterations in the susceptibility of mitochondria to un-
dergo MOMP or MPT accompany a vast majority of hu-
man tumors, and they are required for malignant precur-
sors to avoid oncogene-driven RCD [32, 33]. Perhaps the 
most striking example of such alterations derives from 
the overexpression of BCL2 apoptosis regulator (BCL2), 
a multifunctional cytoprotective protein that localizes 
to the mitochondrial outer membrane [32]. Malignant 
transformation (as well as tumor progression, see below) 
in the hematopoietic system is often associated with the 
overexpression of BCL2 or other members of the BCL2 
protein family, and this increases considerably the resis-
tance of malignant precursors (as well as established can-
cer cells) to RCD, at least in part owing to an improved 
bioenergetic metabolism [52, 53]. In a subset of follic-
ular lymphoma patients, a chromosomal rearrangement 
involving BCL2 (normally on chromosome 18) and the 
immunoglobulin heavy chain locus (normally on chro-
mosome 14) — the so-called t(14;18) translocation [54] 
— can be detected in a vast majority of blasts, suggest-
ing that it constitutes a very early event in oncogenesis. 
Many oncogenes beyond BCL2 (e.g., MYC, KRAS) drive 
malignant transformation as they increase the resistance 
of the mitochondrial pool to MOMP or MPT, in some 
cases via a mechanism that alters mitochondrial dynam-
ics [55-57]. Besides triggering RCD, oncogene activation 
can also promote a permanent proliferative arrest known 
as cellular senescence, generally as a result of increased 
oxidative stress [58]. Cancer cells can evade such a re-
sponse, as they activate pyruvate dehydrogenase kinase 1 
(PDK1) or inhibit pyruvate dehydrogenase phosphatase 
catalytic subunit 2 (PDP2), resulting in limited pyruvate 
utilization by mitochondria and reduced ROS production 
[59].

Altogether, these observations exemplify the critical 
influence of mitochondria on malignant transformation 
(Figure 1).

Mitochondrial metabolism in tumor progression 

Mitochondria are the key for virtually all facets of tu-
mor progression, not only as a major source of ATP, but 
also due to (1) their ability to provide building blocks for 
anabolism via anaplerosis, (2) their capacity to produce 
ROS, and (3) their central position in RCD signaling. In 
line with this notion, the ability of mtDNA-depleted (ρ0) 
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cells to form tumors upon inoculation in immunocompat-
ible hosts is compromised [60-62], but can be recovered 
(at least in some settings) upon horizontal transfer of 
whole mitochondria from the host [60, 63]. Along similar 
lines, severe defects in autophagy or mitophagy — re-
sulting in fully compromised mitochondrial functions — 
have been associated with decreased tumor progression 
in multiple models of oncogenesis [39, 64-66].

Proliferation
Although in vitro, under optimal growth conditions 

(which differ significantly from those encountered in the 
tumor microenvironment in vivo), cancer cells can obtain 
sufficient ATP from glycolysis, mitochondria are required 
for proliferation unless supraphysiological amounts of 
uridine and pyruvate are exogenously provided [67] to 
compensate for pyrimidine and aspartate biosynthesis [68, 
69]. Progressing tumors display indeed an extensive and 
highly plastic metabolic rewiring. This involves not only 
increased uptake of glucose, a fraction of which is redi-
rected to the pentose phosphate pathway (PPP) for nucle-
ic acid synthesis and glutathione reduction [70], but also 
the ability to process glutamine oxidatively (for energy 
production via the Krebs cycle and the ETC) or reduc-
tively (for fatty acid synthesis, cholesterol synthesis and 
the maintenance of oxidative homeostasis via NADPH 
production) [71-74], the ability to flexibly use various 
other carbon sources including (but perhaps not limited 
to) acetate, lactate, serine and glycine as needed [75-79], 
and the ability to interchangeably use glycolysis, oxida-
tive phosphorylation (OXPHOS) and fatty acid oxidation 
as the source of energy in response to fluctuating micro-

Figure 1 Mitochondrial metabolism in malignant transformation. Mitochondrial dysfunction can promote malignant transfor-
mation, i.e., the conversion of a healthy cell into a malignant precursor, as a consequence of (1) reactive oxygen species (ROS) 
overgeneration, which favors mutagenesis; (2) accumulation of succinate, fumarate or 2-hydroxyglutarate (all of which can 
operate as oncometabolites, at least in some settings); and/or (3) increased resistance to oncogene-driven mitochondrial out-
er membrane permeabilization (MOMP)- or mitochondrial permeability transition (MPT)-driven regulated cell death or cellular 
senescence. 

environmental conditions (such as local acidosis, which 
inhibits glycolysis) [80].

The reversibility of many reactions of the tricarbox-
ylic acid (TCA) cycle and the existence of multiple 
anaplerotic circuitries centered on mitochondria ensure 
such a metabolic adaptation [25, 81]. One key TCA in-
termediate in this respect is citrate, because it resides at a 
crucial intersection between catabolic and anabolic me-
tabolism, and hence operates as a major node of flexibil-
ity [82]. Besides fueling the oxidative mode of the TCA, 
citrate can also be converted into acetyl-CoA for export 
to the cytoplasm and nucleus [4, 81], where it can either 
be employed for fatty acid and cholesterol synthesis 
(to support the membrane need associated with intense 
proliferation) or used for acetylation reactions, which 
regulate transcription as well as cytoplasmic processes 
including autophagy [36, 83, 84]. In line with this notion, 
the enzyme that converts citrate into acetyl-CoA, i.e., 
ATP citrate lyase (ACLY), is required for cancer cells to 
proliferate at optimal rates [85], but not for normal cells 
to do so (owing to a glucose-to-acetate metabolic switch) 
[86]. Reductive glutamine metabolism is the major source 
of citrate in the presence of mitochondrial defects, as well 
as under hypoxic conditions (as a function of the α-KG/
citrate ratio) [23, 73, 87]. In this latter scenario, serine ca-
tabolism via serine hydroxymethyltransferase 2 (SHMT2) 
provides reducing equivalents to sustain NADPH produc-
tion (which is critical for lipid synthesis and the preserva-
tion of redox homeostasis) [79, 88]. Cytosolic malic en-
zyme 1 (ME1) mediates a similar function in pancreatic 
duct adenocarcinomas (PDACs) and highly proliferating 
breast cancers, ensuring the synthesis of NADPH from 
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glutamate [72, 89]. Interestingly, mitochondrial ME2 is 
deleted in a fraction of human PDACs, which renders 
them dependent on ME3-driven NADPH synthesis for 
survival and proliferation [90].

Acetyl-CoA-derived acetoacetate also supports cancer 
proliferation by boosting BRAF kinase activity and con-
sequently MAPK signaling [91, 92]. Along similar lines, 
slightly elevated levels of ROS stimulate proliferation 
by inactivating tumor suppressors such as phosphatase 
and tensin homolog (PTEN) or by stabilizing HIF1A [93, 
94]. Moreover, physiological ROS levels contribute to 
the regulation of mitochondrial dynamics [95], which is 
intimately involved not only in mitochondrial biogenesis, 
but also in the control of mitochondrial metabolism [96]. 
In line with this notion, multiple tumors overexpress 
ATPase inhibitory factor 1 (ATPIF1), which favors the 
dimerization of ETC complex V to limit ATP production 
and (as a side effect) increases ROS generation [97, 98]. 
Intriguingly, ROS-driven cellular senescence can para-
doxically support proliferation in a cell-extrinsic manner, 
as it sustains the secretion of mitogenic factors that act 
on neighboring cancer cells with intact proliferative ca-
pacities [99, 100]. These observations exemplify the fun-
damental role of mitochondrial products at the interface 
of metabolism and signaling.

Resistance to spontaneous RCD
Progressing neoplasms encounter harsh microenviron-

mental conditions (e.g., hypoxia, low nutrient availabil-
ity, growth factor withdrawal), which would normally 
drive mitochondrial RCD via MOMP or MPT [32, 33]. 
Malignant cells, however, acquire several alterations that 
increase the mitochondrial threshold for irreversible per-
meabilization, beyond the overexpression of BCL2 fami-
ly members (see above) [101]. Some (but not all) tumors 
are characterized by an elevated mitochondrial trans-
membrane potential (∆ψm) linked to high glycolytic rates 
and increased resistance to RCD [102]. In this scenario, 
restoring pyruvate generation with chemical PDK1 in-
hibitors appears to be sufficient to cause RCD and inhibit 
tumor growth in vivo [102]. Similarly, detaching hex-
okinase 1 (HXK1) or HXK2 – the enzymes that convert 
glucose into glucose-6-phosphate in the first step of gly-
colysis – from mitochondria has been proposed to cause 
MOMP in cancer cells of different origin [103]. More-
over, the increased abundance of reduced glutathione 
that originates from a proficient reductive metabolism 
prevents cytochrome c, somatic (CYCS) from oxidation, 
which limits its capacity to activate apoptotic RCD upon 
MOMP [104]. The maintenance of optimal antioxidant 
defenses is also fundamental for cancer cells to avoid 
ROS-driven MPT, and oncogene signaling, glycolysis, 

as well as reductive glutamine carboxylation play a ma-
jor role in this sense [88, 105, 106]. Interestingly, such 
a defense mechanism — which is partially related to the 
Warburg effect — appears to be conserved in yeast [107]. 
That said, slightly elevated ROS levels may increase the 
resistance of cancer cells to RCD by (1) triggering an ad-
aptative hormetic response reminiscent of ischemic pre-
conditioning [108, 109], and/or (2) promoting autophagy 
activation [110]. Interestingly, the supramolecular entity 
responsible for MPT, the so-called “permeability tran-
sition pore complex” operates in the context of physical 
and functional interactions with ETC components (no-
tably, complex V) and other constituents of the molecu-
lar machinery for mitochondrial ATP synthesis [98]. In 
several cancer cells, proficient ATP production by mito-
chondria is associated with optimal Ca2+ homeostasis and 
limited MPT sensitivity [111]. Mitochondrial dynamics 
is also involved in the increased resistance of cancer cells 
to MOMP and MPT. Malignant cells cope with glucose 
deprivation by shifting to OXPHOS upon mitochondrial 
elongation secondary to dynamin 1-like (DNM1L) inhi-
bition [112], which is important to generate an efficient 
mitochondrial network upon the mitophagic removal of 
dysfunctional components [113]. Taken together, these 
observations suggest the existence of an intimate and 
bidirectional link between metabolism and mitochondrial 
RCD control.

Diversification and interaction with the stroma
Progressing malignancies acquire a high degree of 

phenotypic and metabolic plasticity as they establish 
functional interactions with non-transformed components 
of the tumor microenvironment [114-116]. Both these as-
pects of the biology of malignant cells have been largely 
overlooked by studies based on cultured cancer cell lines. 
Recent in vivo work revealed that not only the oncogenic 
driver, but also the tumor microenvironment (in partic-
ular tissue of origin) influence the metabolic profile of 
malignant cells [117-119]. 

One of the (hitherto debated) models of tumor evolu-
tion proposes the existence of a cancer stem cell (CSC) 
population endowed with self-renewing ability and re-
sponsible for both local progression and recurrence [120]. 
As compared to their more differentiated counterparts, 
CSCs from multiple malignancies including osteosar-
coma, glioblastoma, and breast cancer display a pre-
dominantly glycolytic metabolism [121-123]. However, 
CSCs from other tumors such as ovarian cancer appear 
to primarily rely on OXPHOS for ATP synthesis [124]. 
Interestingly, different subsets of CSCs from the same 
tumor have been reported to preferentially catabolize 
glucose in a disparate manner [125, 126], suggesting that 
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an additional layer of heterogeneity may exist within the 
CSC compartment to favor metabolic plasticity [127, 
128]. That said, the study of CSCs is complicated by the 
lack of widely accepted surface biomarkers for isolation, 
as well as by the tendency of these cells to rapidly evolve 
in culture. This implies that additional investigation is re-
quired to elucidate the precise metabolic profile of CSCs 
from different tumors and whether mitochondrial metab-
olism may offer targets for therapeutic interventions in 
this setting. 

Prostate cancer cells reprogram tumor-associated fi-
broblasts (TAFs) toward anaerobic glycolysis, resulting 
in lactate secretion in the microenvironment and lac-
tate-driven oxidative metabolism in malignant cells [129]. 
Along similar lines, PDAC cells drive TAFs into auto-
phagic responses that ultimately sustain tumor growth by 
increasing the local availability of alanine (employed by 
cancer cells as a carbon source) [130]. Extracellular pro-
teins can also be utilized by PDAC cells for carbon sup-
ply upon macropinocytosis [131], but thus far no mecha-
nisms whereby cancer cells stimulate protein secretion by 
non-transformed components of the tumor microenviron-
ment for nutritional purposes have been described. Along 
similar lines, prostate, ovarian, breast, and colorectal 
cancer cells have been shown to obtain fatty acids for 
oxidative metabolism from local adipocytes, providing a 
support to tumor progression [132-135]. These observa-
tions exemplify parasitism-like relationships established 
by malignant cells in the tumor microenvironment. In ad-
dition, cancer cells can engage in metabolic competition 
for nutrients at limited availability, such as glucose and 
tryptophan, with immune effector cells (which reflects 
the metabolic similarities between highly proliferating 
cells) [136-138]. Such a competition is expected to in-
fluence the likelihood of natural immunosurveillance 
to control tumor progression. Finally, cancer cells from 
different regions of the tumor have been proposed to 
engage in a metabolic symbiosis involving the transfer 
of glycolysis-derived lactate from hypoxic to normoxic 
areas, where it would be employed to fuel OXPHOS (as 
a strategy to avoid competition for glucose) [139, 140]. 
Additional investigation is required to elucidate the actu-
al pathophysiological relevance of this process in human 
malignancies.

Metastatic dissemination
The term metastatic dissemination (also known as met-

astatic cascade) generally refers to a multi-step process 
whereby cancer cells acquire the ability to colonize and 
form macroscopic lesions at distant sites [141]. Although 
macrometastases are generally considered as glycolytic 
entities (because they are often detectable by 18F-FDG 

PET), this is not always the case [142]. One of the first 
alterations of the metastatic cascade is the so-called epi-
thelial-to-mesenchymal transition (EMT), which endows 
malignant cells with increased invasive potential [143]. 
Several mitochondrial metabolites favor the EMT [144], 
in particular fumarate (owing to its ability to repress the 
transcription of the antimetastatic microRNAs upon in-
hibition of TET dioxygenases) [145]. Optimal mitochon-
drial biogenesis and OXPHOS seem also to be required 
for metastatic dissemination, as demonstrated upon 
silencing of the master regulator PPARG coactivator 1 
alpha (PPARGC1A, best known as PGC-1α) in models 
of breast cancer [146], and upon silencing of family with 
sequence similarity 210 member B (FAM210B) in mod-
els of ovarian cancer (resulting in PDK4 downregulation 
and consequent utilization of glycolytic pyruvate in the 
TCA cycle) [147]. Moreover, local invasion relies (at 
least in part) on oxidative mitochondrial metabolism at 
the cellular leading edge, resulting in cytoskeletal alter-
ations required for motility [148-150]. Mitophagic de-
fects also promote metastatic dissemination [151], most 
likely by favoring mild ROS overproduction [152-154]. 
ROS indeed activate several signal transduction cascades 
associated with metastatic dissemination, including SRC 
and protein tyrosine kinase 2 beta (PTK2B) signaling 
[153, 155]. In line with this notion, a genetic signature of 
mitochondrial dysfunction has been associated with met-
astatic dissemination and dismal prognosis in patients af-
fected by nine different tumors [156]. Of note, imbalanc-
es in mitochondrial dynamics have also been linked with 
mild ROS overproduction and consequent metastatic 
dissemination [157, 158]. Conversely, in the presence of 
severe oxidative stress, ROS de facto inhibit metastatic 
dissemination, most likely as a direct consequence of re-
duced fitness and RCD or cellular senescence [159-161]. 
In summary, although established macrometastases are 
generally characterized by elevated glucose uptake (pre-
sumably reflecting an intense glycolytic metabolism that 
boosts antioxidant defenses) [107], OXPHOS and conse-
quent ROS generation (provided that it remains below a 
cytotoxic threshold) are required for previous steps of the 
metastatic cascade. Most likely, there is a considerable 
heterogeneity in the extent to which metastatic lesions of 
different origin [117] or at different anatomical locations 
[162] actually rely on glycolytic versus respiratory me-
tabolism. Further investigation is required to shed light 
on all the factors that influence the metabolic profile of 
macrometastatic lesions.

Altogether, these considerations suggest that mito-
chondria reside at a preferential hub connecting metabo-
lism and signaling that is fundamental for tumor progres-
sion (Figure 2).
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Mitochondrial metabolism and therapeutic responses
 

The ultimate objective of conventional chemothera-
peutics, targeted anticancer agents, radiation therapy as 
well as immunotherapy is to elicit the death or permanent 
inactivation (via cellular senescence or terminal differ-
entiation) of malignant cells (directly and/or as a conse-
quence of immunological mechanisms) [6]. Mitochondria 
are critically involved in the control of RCD triggered by 
all these treatments, implying that alterations of the pro-
pensity of mitochondria to undergo MOMP or MPT un-
derlie a majority of cases of primary and acquired resis-
tance [163-166]. As mentioned above, this notion drove 
an intensive wave of research aimed at the identification 
of molecules that would kill transformed cells or sensi-
tize them to treatment by priming MOMP or MPT, such 
as the FDA-approved agent venetoclax [21]. Discussing 
the regulation of apoptotic and necrotic RCD by mito-
chondria in details goes beyond the scope of the present 
review [167, 168]. That said, however, it should be noted 
that (1) RCD regulation at mitochondria involves a ro-
bust metabolic (rather than purely structural) component; 
(2) several metabolic aspects of the mitochondrial biolo-
gy also influence therapeutic responses [101, 169] and (3) 
metabolic enzymes residing within mitochondria such as 
mutant IDH2 are being harnessed for the development of 
anticancer agents promoting terminal differentiation [45, 

170, 171].
BRAFV600E inhibition with the FDA-approved agent 

vemurafenib is associated with a switch from glycolysis 
to OXPHOS, which is required for melanoma cells to 
resist treatment [172]. In this model, the ETC inhibitor 
honokiol is sufficient to abrogate resistance and restore 
cancer cell killing by vemurafenib [172]. Oncogene 
ablation in KRASG12D-driven PDAC cells results in 
the selection of a subpopulation of cells predominant-
ly relying on OXPHOS for energy production [173]. 
A similar switch from glycolysis to OXPHOS has also 
been documented upon MYC/KRAS or MYC/ERBB2 
ablation in breast cancer cells [174], and in the context of 
acquired resistance to phosphoinositide-3-kinase (PI3K) 
inhibition in glioma cells [175]. Moreover, resistance to 
PI3K inhibition in breast cancer cells has been linked 
to a switch from glucose to lactate as a main source of 
carbon units [176]. The activity of various transporters of 
the ATP-binding cassette (ABC) family – which support 
chemoresistance as they export a wide spectrum of xeno-
biotics – depends on OXPHOS-derived ATP availability 
[177]. In some cases, the expression of ABC transport-
ers and the consequent acquisition of a chemoresistant 
phenotype stems from OXPHOS-driven inflammatory 
reactions culminating in the secretion of interleukin 6 
(IL6) and tumor necrosis factor (TNF) into the tumor 
microenvironment [178]. Thus, in cells with a predom-

Figure 2 Mitochondrial metabolism in tumor progression. Mitochondria influence multiple processes that underpin tumor 
progression, including the proliferation of transformed cells, their resistance to adverse microenvironmental conditions, their 
diversification, their interaction with the tumor stroma and their dissemination toward distant anatomical sites. In particular, (1) 
mitochondria are major sources of ATP and building blocks for the proliferation of malignant cells; (2) progressing cancer cells 
display an increased threshold for mitochondrial outer membrane permeabilization (MOMP) and mitochondrial permeability 
transition (MPT), which renders them less sensitive to harsh microenvironmental conditions; (3) slightly supraphysiological 
levels of mitochondrial reactive oxygen species (ROS) foster tumor diversification (herein represented with assorted plasma 
membrane colors) by favoring mutagenesis; (4) different subsets of malignant cells exhibit differential metabolic profiles, 
which are important for their survival and function; (5) the metastatic cascade relies on optimal mitochondrial biogenesis and 
oxidative phosphorylation (OXPHOS), at least at the initial dissemination step. However, imbalanced ROS overproduction 
consequent to severe mitochondrial dysfunction is generally incompatible with tumor progression, resulting in MOMP- or 
MPT-driven regulated cell death or cellular senescence.
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inantly glycolytic metabolism, OXPHOS can promote 
resistance to treatment via both cancer cell-intrinsic and 
cell-extrinsic pathways. Conversely, malignant cells that 
predominantly utilize OXPHOS for energy production, 
including pancreatic CSCs, can become resistant to ETC 
inhibition as they acquire a partially glycolytic metab-
olism depending on MYC expression [179]. Likewise, 
chemoresistant ovarian cancer cells display a switch from 
OXPHOS to glycolysis accompanied by a PPP-depen-
dent surge in antioxidant defenses [180]. Taken together, 
these observations suggest that the ability of most (if not 
all) cancer cells to flexibly rewire their mitochondrial 
metabolism underlies multiple instances of chemoresis-
tance. This holds true for antineoplastic agents other than 
conventional chemotherapy, including radiation therapy 
[181], antiangiogenic drugs [182-184], and natural killer 
(NK)-based immunotherapy [185]. In this latter case, 
OXPHOS supports the resistance of cancer cells to NK 
cell-mediated lysis as it promotes the expression of MHC 
class I molecules (potentially resulting in restored sensi-
tivity to CTL-mediated lysis) [185].

Thus, different forms of treatment establish compensa-
tory metabolic networks that support cancer cell survival. 
Importantly, such metabolic perturbations may provide 
targets for the development of novel agents that sensitize 
cancer cells to treatment. Preclinical evidence in support 
of this notion is accumulating [186]. In summary, besides 
controlling multiple forms of RCD, mitochondria impact 
the response of cancer cells to treatment via metabolic 
rewiring (Figure 3).

Mitochondrial metabolism in immunosurveillance

Mitochondria influence immunosurveillance via both 
cancer cell-intrinsic and cancer cell-extrinsic mecha-
nisms. On the one hand, mitochondria are the source 
of many danger signals released by cancer cells as they 
die, and these signals are crucial for the activation of 
dendritic cells (DCs) to optimally prime tumor-targeting 
immune responses [187]. On the other hand, mitochon-
drial metabolism is involved in many functions linked 
to anticancer immunity, including (but not limited to) 
inflammasome activation, the establishment of protective 
immunological memory as well as the differentiation and 
tumoricidal activity of specific macrophage subsets [188, 
189]. 

The best characterized mitochondrial product that par-
ticipates in the elicitation of immune responses to dying 
cancer cells is ATP [190]. Extracellular ATP — which dy-
ing cancer cells can release in considerable amounts only 
if they can mount autophagic responses before death [191, 
192] — mediates indeed prominent immunostimulatory 
and chemotactic functions upon binding to purinergic 
receptor P2X 7 (P2RX7) and purinergic receptor P2Y2 
(P2RY2), respectively, on the surface of DCs or their 
precursors [193-195]. In line with this notion, autopha-
gy-deficient malignant cells lose the ability of driving an-
ticancer immunity as they succumb to chemotherapy or 
radiation therapy in vivo, a detrimental effect that can be 
partially corrected by inhibiting extracellular ATP degra-
dation by ectonucleoside triphosphate diphosphohydro-

Figure 3 Mitochondrial metabolism in response to treatment. All forms of treatment, including chemotherapy, radiation ther-
apy and immunotherapy, aim at triggering the demise — via regulated cell death (RCD) — or permanent inactivation — via 
cellular senescence — of malignant cells (directly, or as a consequence of immunological mechanisms). Thus, mitochondria 
control therapy-driven RCD in cancer cells, implying that alterations in the molecular mechanism underpinning mitochondrial 
outer membrane permeabilization (MOMP) and mitochondrial permeability transition (MPT) are a major source of resistance. 
Moreover, mitochondrial ATP fuels several pumps of the ATP-binding cassette family, hence fostering chemoresistance upon 
the extrusion of xenobiotics from malignant cells. Finally, the ability of malignant cells to flexibly switch between glycolysis 
and oxidative phosphorylation appears to play a major role in multiple instances of resistance to oncogene inhibition.
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lase 1 (ENTPD1; best known as CD39) [191, 196, 197]. 
Moreover, autophagy activation with caloric restriction 
or molecules that mimic the biochemical effects of star-
vation boosts the therapeutic efficacy of immunogenic 
treatment modalities (including anthracycline-based 
chemotherapy) in rodent tumor models, an effect that is 
abolished by the depletion of ATG5 or ATG7 as well as 
by the overexpression of CD39 [196, 198, 199]. Mito-
chondria contain many other molecules that can operate 
as extracellular danger signals, including (but not limited 
to) N-formylated peptides and mtDNA [187]. However, 
while the relevance of some of these molecules in other 
disease settings (e.g., systemic inflammatory response 
syndrome) is well-established [200], their role in antican-
cer immunity remains to be fully elucidated. Indeed, the 
receptor for N-formylated peptides (which is expressed 
by DCs) appears to be required for dying cancer cells 
to elicit a tumor-targeting immune response, but it does 
so by binding to another danger signal, i.e., annexin A1 
(ANXA1) [201]. That said, the release of mtDNA upon 
MOMP promotes the secretion of type I interferon by 
malignant cells, and this is required for the activation 
of optimal anticancer immune responses upon chemo-
therapy and radiation therapy [202-205]. Thus, mtDNA 
also operates as an intracellular danger signal to connect 
intracellular stress responses to the preservation of extra-
cellular homeostasis [206].

CTLs and helper T cells responding to antigenic stim-
ulation engage in a proliferative response that — similar 
to cancer cell proliferation — extensively relies on gly-
colysis and is supported by mitochondrial fragmentation 

[207-209]. In addition, mitochondrial ROS are required 
not only for proximal TCR signaling, but also for the 
activation of multiple transcription factors necessary 
for optimal T-cell functions, such as NF-κB and nuclear 
factor of activated T-cells 1 (NFATC1; best known as 
NFAT) [210, 211]. At odds with their effector counter-
parts, memory T cells predominantly rely on fatty acid 
oxidation and OXPHOS to support their metabolic needs, 
a result of a metabolic reprogramming that involves not 
only mitochondrial elongation but also mechanistic target 
of rapamycin complex 1 (MTORC1) inhibition coupled 
to autophagy activation [208, 212, 213]. Intriguingly, a 
similar metabolic profile is also displayed by immuno-
suppressive cell types including CD4+CD25+FOXP3+ 
regulatory T cells and myeloid-derived suppressor cells 
[214, 215], which presumably renders them less sensitive 
to metabolic competition for glucose within the tumor 
microenvironment.

Macrophage polarization and activity are also influ-
enced by mitochondrial metabolism. On the one hand, 
inhibition of the ETC appears to promote the differen-
tiation of macrophages toward a pro-inflammatory and 
tumoricidal state (generally referred to as M1), which 
display a predominantly glycolytic metabolism second-
ary to the autophagic removal of mitochondria [216-218]. 
Conversely, M2-polarized macrophages, which generally 
exert tumor-supporting functions, preferentially employ 
OXPHOS as a source of ATP, especially in hypoxic 
conditions [219, 220]. However, the oxidative burst that 
underlies the phagocytic activity of M1 macrophages 
depends on ROS of direct or indirect (via NADPH) mi-

Figure 4 Mitochondrial metabolism in immunosurveillance. Mitochondria are fundamental for the recognition of cancer cells 
by the immune system, as well as for the consequent activation of a tumor-targeting immune response. On the one hand, 
mitochondrial products including ATP, reactive oxygen species (ROS) and mitochondrial DNA (mtDNA) operate as danger 
signals, either extracellularly (like ATP) or intracellularly (like ROS and mtDNA). On the other hand, mitochondrial ROS are 
required for T-cell activation in response to TCR engagement, and oxidative phosphorylation (OXPHOS) is required for the 
establishment of immunological memory as well as for the tumoricidal and pro-inflammatory activity of M1 macrophages (MΦ). 
However, OXPHOS also supports the differentiation of immunosuppressive cells including M2 macrophages, CD4+CD25+FOXP3+ 
regulatory T (TREG) cells and myeloid-derived suppressor cells (MDSCs). CTL, cytotoxic T lymphocyte.
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tochondrial derivation [221]. A similar consideration 
applies to the pro-inflammatory activity of M1 macro-
phages, which relies on ROS-dependent NF-κB tran-
scriptional responses as well as on the activation of the 
so-called inflammasome, a supramolecular platform that 
produces IL1β and IL18 in a ROS- and mtDNA-depen-
dent manner [222, 223].

Taken together, these observations exemplify the in-
tricate involvement of mitochondrial metabolism in anti-
cancer immunosurveillance (Figure 4).

Concluding remarks and perspectives

Mitochondria have attracted considerable attention as 
targets for the development of novel anticancer agents, 
not only because they have a central role in the resis-
tance of malignant cells to RCD induction by treatment, 
but also because they underlie their phenotypic and 
metabolic plasticity (Figure 5). The case of venetoclax, 
a molecule that triggers RCD by mimicking the activity 
of pro-apoptotic members of the BCL2 protein family, 

well exemplifies the high potential of agents targeting 
mitochondria for the treatment of specific malignancies 
[21]. However, non-specifically targeting mitochondrial 
functions within the tumor microenvironment may have 
major unwarranted effects including the inhibition of 
anticancer immune responses, a situation that reminisces 
the use of pharmacological inhibitors of autophagy [224]. 
Thus, refined strategies that allow for specifically mod-
ulating mitochondrial functions in selected cell popula-
tions will have to be devised for the therapeutic potential 
of mitochondria-targeting agents to be fully harnessed in 
the clinics. A large body of preclinical and clinical work 
is still required for this ambitious objective to become a 
clinical reality.
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