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Abstract

Generative Adversarial Networks (GANs) are a class of generative algo-
rithms that have been shown to produce state-of-the art samples, especially
in the domain of image creation. The fundamental principle of GANs is to
approximate the unknown distribution of a given data set by optimizing an
objective function through an adversarial game between a family of genera-
tors and a family of discriminators. In this paper, we offer a better theoretical
understanding of GANs by analyzing some of their mathematical and sta-
tistical properties. We study the deep connection between the adversarial
principle underlying GANs and the Jensen-Shannon divergence, together
with some optimality characteristics of the problem. An analysis of the role
of the discriminator family via approximation arguments is also provided.
In addition, taking a statistical point of view, we study the large sample
properties of the estimated distribution and prove in particular a central limit
theorem. Some of our results are illustrated with simulated examples.

1 Introduction

The fields of machine learning and artificial intelligence have seen spectacular advances in
recent years, one of the most promising being perhaps the success of Generative Adversarial
Networks (GANs), introduced by Goodfellow et al. (2014). GANs are a class of generative
algorithms implemented by a system of two neural networks contesting with each other in a
zero-sum game framework. This technique is now recognized as being capable of generating
photographs that look authentic to human observers (e.g., Salimans et al., 2016), and its
spectrum of applications is growing at a fast pace, with impressive results in the domains
of inpainting, speech, and 3D modeling, to name but a few. A survey of the most recent
advances is given by Goodfellow (2016).



The objective of GANs is to generate fake observations of a target distribution p? from
which only a true sample (e.g., real-life images represented using raw pixels) is available.
It should be pointed out at the outset that the data involved in the domain are usually so
complex that no exhaustive description of p? by a classical parametric model is appropriate,
nor its estimation by a traditional maximum likelihood approach. Similarly, the dimension
of the samples is often very large, and this effectively excludes a strategy based on non-
parametric density estimation techniques such as kernel or nearest neighbor smoothing, for
example. In order to generate according to p?, GANs proceed by an adversarial scheme
involving two components: a family of generators and a family of discriminators, which
are both implemented by neural networks. The generators admit low-dimensional random
observations with a known distribution (typically Gaussian or uniform) as input, and attempt
to transform them into fake data that can match the distribution p?; on the other hand, the
discriminators aim to accurately discriminate between the true observations from p? and
those produced by the generators. The generators and the discriminators are calibrated by
optimizing an objective function in such a way that the distribution of the generated sample
is as indistinguishable as possible from that of the original data. In pictorial terms, this
process is often compared to a game of cops and robbers, in which a team of counterfeiters
illegally produces banknotes and tries to make them undetectable in the eyes of a team of
police officers, whose objective is of course the opposite. The competition pushes both
teams to improve their methods until counterfeit money becomes indistinguishable (or not)
from genuine currency.

From a mathematical point of view, here is how the generative process of GANs can be
represented. All the densities that we consider in the article are supposed to be dominated
by a fixed, known, measure µ on E, where E is a Borel subset of Rd . This dominating
measure is typically the Lebesgue or the counting measure, but, depending on the practical
context, it can be a more complex measure. We assume to have at hand an i.i.d. sample
X1, . . . ,Xn, drawn according to some unknown density p? on E. These random variables
model the available data, such as images or video sequences; they typically take their values
in a high-dimensional space, so that the ambient dimension d must be thought of as large.
The generators as a whole have the form of a parametric family of functions from Rd′ to
E (d′� d), say G = {Gθ}θ∈Θ , Θ ⊂Rp. Each function Gθ is intended to be applied to a
d′-dimensional random variable Z (sometimes called the noise—in most cases Gaussian or
uniform), so that there is a natural family of densities associated with the generators, say
P = {pθ}θ∈Θ , where, by definition, Gθ (Z)

L
= pθ dµ . In this model, each density pθ is a

potential candidate to represent p?. On the other hand, the discriminators are described by
a family of Borel functions from E to [0,1], say D , where each D ∈ D must be thought
of as the probability that an observation comes from p? (the higher D(x), the higher the
probability that x is drawn from p?). At some point, but not always, we will assume that
D is in fact a parametric class, of the form {Dα}α∈Λ , Λ ⊂Rq, as is certainly always the
case in practice. In GANs algorithms, both parametric models {Gθ}θ∈Θ and {Dα}α∈Λ take
the form of neural networks, but this does not play a fundamental role in this paper. We
will simply remember that the dimensions p and q are potentially very large, which takes us
away from a classical parametric setting. We also insist on the fact that it is not assumed
that p? belongs to P .
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Let Z1, . . . ,Zn be an i.i.d. sample of random variables, all distributed as the noise Z. The
objective is to solve in θ the problem

inf
θ∈Θ

sup
D∈D

[ n

∏
i=1

D(Xi)×
n

∏
i=1

(1−D◦Gθ (Zi))
]
,

or, equivalently, to find θ̂ ∈Θ such that

sup
D∈D

L̂(θ̂ ,D)≤ sup
D∈D

L̂(θ ,D), ∀θ ∈Θ , (1)

where

L̂(θ ,D)
def
=

n

∑
i=1

lnD(Xi)+
n

∑
i=1

ln(1−D◦Gθ (Zi))

(ln is the natural logarithm). In this problem, D(x) represents the probability that an
observation x comes from p? rather than from pθ . Therefore, for each θ , the discrimina-
tors (the police team) try to distinguish the original sample X1, . . . ,Xn from the fake one
Gθ (Z1), . . . ,Gθ (Zn) produced by the generators (the counterfeiters’ team), by maximizing
D on the Xi and minimizing it on the Gθ (Zi). Of course, the generators have an exact
opposite objective, and adapt the fake data in such a way as to mislead the discriminators’
likelihood. All in all, we see that the criterion seeks to find the right balance between
the conflicting interests of the generators and the discriminators. The hope is that the θ̂

achieving equilibrium will make it possible to generate observations G
θ̂
(Z1), . . . ,Gθ̂

(Zn)
indistinguishable from reality, i.e., observations with a law close to the unknown p?.

The criterion L̂(θ ,D) involved in (1) is the criterion originally proposed in the adversarial
framework of Goodfellow et al. (2014). Since then, the success of GANs in applications has
led to a large volume of literature on variants, which all have many desirable properties but
are based on different optimization criteria—examples are MMD-GANs (Dziugaite et al.,
2015), f-GANs (Nowozin et al., 2016), Wasserstein-GANs (Arjovsky et al., 2017), and an
approach based on scattering transforms (Angles and Mallat, 2018). All these variations
and their innumerable algorithmic versions constitute the galaxy of GANs. That being said,
despite increasingly spectacular applications, little is known about the mathematical and
statistical forces behind these algorithms (e.g., Arjovsky and Bottou, 2017; Liu et al., 2017;
Zhang et al., 2018), and, in fact, nearly nothing about the primary adversarial problem (1).
As acknowledged by Liu et al. (2017), basic questions on how well GANs can approximate
the target distribution p? remain largely unanswered. In particular, the role and impact of
the discriminators on the quality of the approximation are still a mystery, and simple but
fundamental questions regarding statistical consistency and rates of convergence remain
open.

In the present article, we propose to take a small step towards a better theoretical under-
standing of GANs by analyzing some of the mathematical and statistical properties of the
original adversarial problem (1). In Section 2, we study the deep connection between the
population version of (1) and the Jensen-Shannon divergence, together with some optimality
characteristics of the problem, often referred to in the literature but in fact poorly understood.
Section 3 is devoted to a better comprehension of the role of the discriminator family via
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approximation arguments. Finally, taking a statistical point of view, we study in Section 4
the large sample properties of the distribution p

θ̂
and θ̂ , and prove in particular a central

limit theorem for this parameter. Some of our results are illustrated with simulated examples.
For clarity, most technical proofs are gathered in Section 5.

2 Optimality properties

We start by studying some important properties of the adversarial principle, emphasizing
the role played by the Jensen-Shannon divergence. We recall that if P and Q are probability
measures on E, and P is absolutely continuous with respect to Q, then the Kullback-Leibler
divergence from Q to P is defined as

DKL(P ‖ Q) =
∫

ln
dP
dQ

dP,

where dP
dQ is the Radon-Nikodym derivative of P with respect to Q. The Kullback-Leibler

divergence is always nonnegative, with DKL(P ‖ Q) zero if and only if P = Q. If p = dP
dµ

and q = dQ
dµ

exist (meaning that P and Q are absolutely continuous with respect to µ , with
densities p and q), then the Kullback-Leibler divergence is given as

DKL(P ‖ Q) =
∫

p ln
p
q

dµ,

and alternatively denoted by DKL(p ‖ q). We also recall that the Jensen-Shannon divergence
is a symmetrized version of the Kullback-Leibler divergence. It is defined for any probability
measures P and Q on E by

DJS(P,Q) =
1
2

DKL

(
P
∥∥∥ P+Q

2

)
+

1
2

DKL

(
Q
∥∥∥ P+Q

2

)
,

and satisfies 0≤ DJS(P,Q)≤ ln2. The square root of the Jensen-Shannon divergence is a
metric often referred to as Jensen-Shannon distance (Endres and Schindelin, 2003). When P
and Q have densities p and q with respect to µ , we use the notation DJS(p,q) in place of
DJS(P,Q).

For a generator Gθ and an arbitrary discriminator D ∈ D , the criterion L̂(θ ,D) to be
optimized in (1) is but the empirical version of the probabilistic criterion

L(θ ,D)
def
=
∫

ln(D)p?dµ +
∫

ln(1−D)pθ dµ.

We assume for the moment that the discriminator class D is not restricted and equals D∞,
the set of all Borel functions from E to [0,1]. We note however that, for all θ ∈Θ ,

0≥ sup
D∈D∞

L(θ ,D)≥− ln2
(∫

p?dµ +
∫

pθ dµ

)
=− ln4,

so that infθ∈Θ supD∈D∞
L(θ ,D) ∈ [− ln4,0]. Thus,

inf
θ∈Θ

sup
D∈D∞

L(θ ,D) = inf
θ∈Θ

sup
D∈D∞:L(θ ,D)>−∞

L(θ ,D).
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This identity points out the importance of discriminators such that L(θ ,D)>−∞, which we
call θ -admissible. In the sequel, in order to avoid unnecessary problems of integrability, we
only consider such discriminators, keeping in mind that the others have no interest.

Of course, working with D∞ is somehow an idealized vision, since in practice the discrimina-
tors are always parameterized by some parameter α ∈Λ , Λ ⊂Rq. Nevertheless, this point
of view is informative and, in fact, is at the core of the connection between our generative
problem and the Jensen-Shannon divergence. Indeed, taking the supremum of L(θ ,D) over
D∞, we have

sup
D∈D∞

L(θ ,D) = sup
D∈D∞

∫ [
ln(D)p?+ ln(1−D)pθ

]
dµ

≤
∫

sup
D∈D∞

[
ln(D)p?+ ln(1−D)pθ

]
dµ

= L(θ ,D?
θ ),

where

D?
θ

def
=

p?

p?+ pθ

. (2)

By observing that L(θ ,D?
θ
) = 2DJS(p?, pθ )− ln4, we conclude that, for all θ ∈Θ ,

sup
D∈D∞

L(θ ,D) = L(θ ,D?
θ ) = 2DJS(p?, pθ )− ln4.

In particular, D?
θ

is θ -admissible. The fact that D?
θ

realizes the supremum of L(θ ,D) over
D∞ and that this supremum is connected to the Jensen-Shannon divergence between p? and
pθ appears in the original article by Goodfellow et al. (2014). This remark has given rise to
many developments that interpret the adversarial problem (1) as the empirical version of the
minimization problem infθ DJS(p?, pθ ) over Θ . Accordingly, many GANs algorithms try to
learn the optimal function D?

θ
, using for example stochastic gradient descent techniques and

mini-batch approaches. However, it has not been known until now whether D?
θ

is unique as
a maximizer of L(θ ,D) over all D. Our first result shows that this is indeed the case.

Theorem 2.1. Let θ ∈Θ be such that pθ > 0 µ-almost everywhere. Then the function D?
θ

is the unique discriminator that achieves the supremum of the functional D 7→ L(θ ,D) over
D∞, i.e.,

{D?
θ}=argmax

D∈D∞

L(θ ,D).

Proof. Let D∈D∞ be a discriminator such that L(θ ,D)= L(θ ,D?
θ
). In particular, L(θ ,D)>

−∞ and D is θ -admissible. We have to show that D = D?
θ

. Notice that∫
ln(D)p?dµ +

∫
ln(1−D)pθ dµ =

∫
ln(D?

θ )p?dµ +
∫

ln(1−D?
θ )pθ dµ. (3)

Thus,

−
∫

ln
(D?

θ

D

)
p?dµ =

∫
ln
(1−D?

θ

1−D

)
pθ dµ,
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i.e., by definition of D?
θ

,

−
∫

ln
( p?

D(p?+ pθ )

)
p?dµ =

∫
ln
( pθ

(1−D)(p?+ pθ )

)
pθ dµ. (4)

Let dP? = p?dµ , dPθ = pθ dµ ,

dκ =
D(p?+ pθ )∫
D(p?+ pθ )dµ

dµ, and dκ
′ =

(1−D)(p?+ pθ )∫
(1−D)(p?+ pθ )dµ

dµ.

With this notation, identity (4) becomes

−DKL(P? ‖ κ)+ ln
[∫

D(p?+ pθ )dµ

]
= DKL(Pθ ‖ κ

′)− ln
[∫

(1−D)(p?+ pθ )dµ

]
.

Upon noting that ∫
(1−D)(p?+ pθ )dµ = 2−

∫
D(p?+ pθ )dµ,

we obtain

DKL(P? ‖ κ)+DKL(Pθ ‖ κ
′) = ln

[∫
D(p?+ pθ )dµ

(
2−

∫
D(p?+ pθ )dµ

)]
.

Since
∫

D(p?+ pθ )dµ ∈ [0,2], we find that DKL(P? ‖ κ)+DKL(Pθ ‖ κ ′)≤ 0, which implies

DKL(P? ‖ κ) = 0 and DKL(Pθ ‖ κ
′) = 0.

Consequently,

p? =
D(p?+ pθ )∫
D(p?+ pθ )dµ

and pθ =
(1−D)(p?+ pθ )

2−
∫

D(p?+ pθ )dµ
,

that is,∫
D(p?+ pθ )dµ =

D(p?+ pθ )

p?
and 1−D =

pθ

p?+ pθ

(
2−

∫
D(p?+ pθ )dµ

)
.

We conclude that

1−D =
pθ

p?+ pθ

(
2− D(p?+ pθ )

p?

)
,

i.e., D = p?
p?+pθ

whenever p? 6= pθ .

To complete the proof, it remains to show that D = 1/2 µ-almost everywhere on the set
A def
= {pθ = p?}. Using the result above together with equality (3), we see that∫

A
ln(D)p?dµ +

∫
A

ln(1−D)pθ dµ =
∫

A
ln(1/2)p?dµ +

∫
A

ln(1/2)pθ dµ,

that is, ∫
A

[
ln(1/4)− ln(D(1−D))

]
pθ dµ = 0.

Observing that D(1−D) ≤ 1/4 since D takes values in [0,1], we deduce that [ln(1/4)−
ln(D(1−D))]pθ 1A = 0 µ-almost everywhere. Therefore, D = 1/2 on the set {pθ = p?},
since pθ > 0 µ-almost everywhere by assumption.
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By definition of the optimal discriminator D?
θ

, we have

L(θ ,D?
θ ) = sup

D∈D∞

L(θ ,D) = 2DJS(p?, pθ )− ln4, ∀θ ∈Θ .

Therefore, it makes sense to let the parameter θ ? ∈Θ be defined as

L(θ ?,D?
θ?)≤ L(θ ,D?

θ ), ∀θ ∈Θ ,

or, equivalently,
DJS(p?, pθ?)≤ DJS(p?, pθ ), ∀θ ∈Θ . (5)

The parameter θ ? may be interpreted as the best parameter in Θ for approaching the
unknown density p? in terms of Jensen-Shannon divergence, in a context where all possible
discriminators are available. In other words, the generator Gθ? is the ideal generator, and
the density pθ? is the one we would ideally like to use to generate fake samples. Of course,
whenever p? ∈P (i.e., the target density is in the model), then p? = pθ? , DJS(p?, pθ?) = 0,
and D?

θ? = 1/2. This is, however, a very special case, which is of no interest, since in the
applications covered by GANs, the data are usually so complex that the hypothesis p? ∈P
does not hold.

In the general case, our next theorem provides sufficient conditions for the existence and
unicity of θ ?. For P and Q probability measures on E, we let δ (P,Q) =

√
DJS(P,Q), and

recall that δ is a distance on the set of probability measures on E (Endres and Schindelin,
2003). We let dP? = p?dµ and, for all θ ∈Θ , dPθ = pθ dµ .

Theorem 2.2. Assume that the model {Pθ}θ∈Θ is identifiable, convex, and compact for the
metric δ . Assume, in addition, that there exist 0 < m≤M such that m≤ p? ≤M and, for
all θ ∈Θ , pθ ≤M. Then there exists a unique θ ? ∈Θ such that

{θ ?}=argmin
θ∈Θ

L(θ ,D?
θ ),

or, equivalently,
{θ ?}=argmin

θ∈Θ

DJS(p?, pθ ).

Proof. Observe that P = {pθ}θ∈Θ ⊂ L1(µ)∩ L2(µ) since 0 ≤ pθ ≤ M and
∫

pθ dµ =
1. Recall that L(θ ,D?

θ
) = supD∈D∞

L(θ ,D) = 2DJS(p?, pθ )− ln4. By identifiability of
{Pθ}θ∈Θ , it is enough to prove that there exists a unique density pθ? of P such that

{pθ?}=argmin
p∈P

DJS(p?, p).

Existence. Since {Pθ}θ∈Θ is compact for δ , it is enough to show that the function

{Pθ}θ∈Θ → R+

P 7→ DJS(P?,P)

is continuous. But this is clear since, for all P1,P2 ∈ {Pθ}θ∈Θ , |δ (P?,P1)− δ (P?,P2)| ≤
δ (P1,P2) by the triangle inequality. Therefore, argminp∈PDJS(p?, p) 6= /0.
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Unicity. For a ∈ [m,M], we consider the function Fa defined by

Fa(x) = a ln
( 2a

a+ x

)
+ x ln

( 2x
a+ x

)
, x ∈ [0,M],

with the convention 0ln0 = 0. Clearly, F ′′a (x) =
a

x(a+x) ≥
m

2M2 , which shows that Fa is
β -strongly convex, with β > 0 independent of a. Thus, for all λ ∈ [0,1], all x1,x2 ∈ [0,M],
and a ∈ [m,M],

Fa(λx1 +(1−λ )x2)≤ λFa(x1)+(1−λ )Fa(x2)−
β

2
λ (1−λ )(x1− x2)

2.

Thus, for all p1, p2 ∈P with p1 6= p2, and for all λ ∈ (0,1),

DJS(p?,λ p1 +(1−λ )p2)

=
∫

Fp?(λ p1 +(1−λ )p2)dµ

≤ λDJS(p?, p1)+(1−λ )DJS(p?, p2)−
β

2
λ (1−λ )

∫
(p1− p2)

2dµ

< λDJS(p?, p1)+(1−λ )DJS(p?, p2).

In the last inequality, we used the fact that β

2 λ (1−λ )
∫
(p1− p2)

2dµ is positive and finite
since pθ ∈ L2(µ) for all θ . We conclude that the function L1(µ)⊃P 3 p 7→ DJS(p?, p) is
strictly convex. Therefore, its argmin is either the empty set or a singleton.

Remark 2.1. There are simple conditions for the model {Pθ}θ∈Θ to be compact for the
metric δ . It is for example enough to suppose that Θ is compact, {Pθ}θ∈Θ is convex, and

(i) For all x ∈ E, the function θ 7→ pθ (x) is continuous on Θ ;

(ii) One has sup(θ ,θ ′)∈Θ 2 |pθ ln pθ ′| ∈ L1(µ).

Let us quickly check that under these conditions, {Pθ}θ∈Θ is compact for the metric δ . Since
Θ is compact, by the sequential characterization of compact sets, it is enough to prove that
if Θ ⊃ (θn)n converges to θ ∈Θ , then DJS(pθ , pθn)→ 0. But,

DJS(pθ , pθn) =
∫ [

pθ ln
( 2pθ

pθ + pθn

)
+ pθn ln

( 2pθn

pθ + pθn

)]
dµ.

By the convexity of {Pθ}θ∈Θ , using (i) and (ii), the Lebesgue dominated convergence
theorem shows that DJS(pθ , pθn)→ 0, whence the result.

Interpreting the adversarial problem in connection with the optimization program
infθ∈Θ DJS(p?, pθ ) is a bit misleading, because this is based on the assumption that all
possible discriminators are available (and in particular the optimal discriminator D?

θ
). In

the end this means assuming that we know the distribution p?, which is eventually not
acceptable from a statistical perspective. In practice, the class of discriminators is always
restricted to be a parametric family D = {Dα}α∈Λ , Λ ⊂Rq, and it is with this class that we
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have to work. From our point of view, problem (1) is a likelihood-type problem involving
two parametric families G and D , which must be analyzed as such, just as we would do for
a classical maximum likelihood approach. In fact, it takes no more than a moment’s thought
to realize that the key lies in the approximation capabilities of the discriminator class D
with respect to the functions D?

θ
, θ ∈Θ . This is the issue that we discuss in the next section.

3 Approximation properties

In the remainder of the article, we assume that θ ? exists, keeping in mind that Theorem 2.2
provides us with precise conditions guaranteeing its existence and its unicity. As pointed
out earlier, in practice only a parametric class D = {Dα}α∈Λ , Λ ⊂Rq, is available, and it
is therefore logical to consider the parameter θ̄ ∈Θ defined by

sup
D∈D

L(θ̄ ,D)≤ sup
D∈D

L(θ ,D), ∀θ ∈Θ .

(We assume for now that θ̄ exists—sufficient conditions for this existence, relating to
compactness of Θ and regularity of the model P , will be given in the next section.)
The density p

θ̄
is thus the best candidate to imitate pθ? , given the parametric families of

generators G and discriminators D . The natural question is then: is it possible to quantify
the proximity between p

θ̄
and the ideal pθ? via the approximation properties of the class

D? In other words, if D is growing, is it true that p
θ̄

approaches pθ? , and in the affirmative,
in which sense and at which speed? Theorem 3.1 below provides a first answer to this
important question, in terms of the difference DJS(p?, p

θ̄
)−DJS(p?, pθ?). To state the result,

we will need some assumptions.

Assumption (H0) There exists a positive constant t ∈ (0,1/2] such that

min(D?
θ ,1−D?

θ )≥ t, ∀θ ∈Θ .

We note that this assumption implies that, for all θ ∈Θ ,

t
1− t

p? ≤ pθ ≤
1− t

t
p?.

It is a mild requirement, which implies in particular that for any θ , pθ and p? have the same
support, independent of θ .

Let ‖ · ‖∞ be the supremum norm of functions on E. Our next condition guarantees that the
parametric class D is rich enough to approach the discriminator D?

θ̄
.

Assumption (Hε) There exists ε ∈ (0, t) and D ∈ D , a θ̄ -admissible discriminator, such
that ‖D−D?

θ̄
‖∞ ≤ ε .

We are now equipped to state our approximation theorem. For ease of reading, its proof is
postponed to Section 5.
Theorem 3.1. Under Assumptions (H0) and (Hε), there exists a positive constant c (de-
pending only upon t) such that

0≤ DJS(p?, p
θ̄
)−DJS(p?, pθ?)≤ cε

2. (6)
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This theorem points out that if the class D is rich enough to approximate the discriminator
D?

θ̄
in such a way that ‖D−D?

θ̄
‖∞ ≤ ε for some small ε , then replacing DJS(p?, pθ?) by

DJS(p?, p
θ̄
) has an impact which is not larger than a O(ε2) factor. It shows in particular that

the Jensen-Shannon divergence is a suitable criterion for the problem we are examining.

4 Statistical analysis

The data-dependent parameter θ̂ achieves the infimum of the adversarial problem (1).
Practically speaking, it is this parameter that will be used in the end for producing fake
data, via the associated generator G

θ̂
. We first study in Subsection 4.1 the large sample

properties of the distribution p
θ̂

via the criterion DJS(p?, p
θ̂
), and then state in Subsection

4.2 the almost sure convergence and asymptotic normality of the parameter θ̂ as the sample
size n tends to infinity. Throughout, the parameter sets Θ and Λ are assumed to be compact
subsets of Rp and Rq, respectively. To simplify the analysis, we also assume that µ(E)< ∞.

4.1 Asymptotic properties of DJS(p?, p
θ̂
)

As for now, we assume that we have at hand a parametric family of generators G = {Gθ}θ∈Θ ,
Θ ⊂ Rp, and a parametric family of discriminators D = {Dα}α∈Λ , Λ ⊂ Rq. We recall
that the collection of probability densities associated with G is P = {pθ}θ∈Θ , where

Gθ (Z)
L
= pθ dµ and Z is some low-dimensional noise random variable. In order to avoid

any confusion, for a given discriminator D = Dα we use the notation L̂(θ ,α) (respectively,
L(θ ,α)) instead of L̂(θ ,D) (respectively, L(θ ,D)) when useful. So,

L̂(θ ,α) =
n

∑
i=1

lnDα(Xi)+
n

∑
i=1

ln(1−Dα ◦Gθ (Zi)),

and
L(θ ,α) =

∫
ln(Dα)p?dµ +

∫
ln(1−Dα)pθ dµ.

We will need the following regularity assumptions:

Assumptions (Hreg)

(HD) There exists κ ∈ (0,1/2) such that, for all α ∈Λ , κ ≤ Dα ≤ 1−κ . In addition, the
function (x,α) 7→ Dα(x) is of class C1, with a uniformly bounded differential.

(HG) For all z ∈Rd′ , the function θ 7→ Gθ (z) is of class C1, uniformly bounded, with a
uniformly bounded differential.

(Hp) For all x ∈ E, the function θ 7→ pθ (x) is of class C1, uniformly bounded, with a
uniformly bounded differential.

Note that under (HD), all discriminators in {Dα}α∈Λ are θ -admissible, whatever θ . All of
these requirements are classic regularity conditions for statistical models, which imply in
particular that the functions L̂(θ ,α) and L(θ ,α) are continuous. Therefore, the compactness
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of Θ guarantees that θ̂ and θ̄ exists. Conditions for the existence of θ ? are given in Theorem
2.2.

We have known since Theorem 3.1 that if the available class of discriminators D ap-
proaches the optimal discriminator D?

θ̄
by a distance not more than ε , then DJS(p?, p

θ̄
)−

DJS(p?, pθ?) = O(ε2). It is therefore reasonable to expect that, asymptotically, the dif-
ference DJS(p?, p

θ̂
)−DJS(p?, pθ?) will not be larger than a term proportional to ε2, in

some probabilistic sense. This is precisely the result of Theorem 4.1 below. In fact, most
articles to date have focused on the development and analysis of optimization procedures
(typically, stochastic-gradient-type algorithms) to compute θ̂ , without really questioning its
convergence properties as the data set grows. Although our statistical results are theoretical
in nature, we believe that they are complementary to the optimization literature, insofar as
they offer guarantees on the validity of the algorithms.

In addition to the regularity hypotheses and Assumption (H0), we will need the following
requirement, which is a stronger version of (Hε):

Assumption (H ′ε) There exists ε ∈ (0, t) such that: for all θ ∈Θ , there exists D ∈ D , a
θ -admissible discriminator, such that ‖D−D?

θ
‖∞ ≤ ε .

We are ready to state our first statistical theorem.

Theorem 4.1. Under Assumptions (H0), (Hreg), and (H ′ε), one has

EDJS(p?, p
θ̂
)−DJS(p?, pθ?) = O

(
ε

2 +
1√
n

)
.

Proof. Fix ε ∈ (0, t) as in Assumption (H ′ε), and choose D̂ ∈D , a θ̂ -admissible discrimi-
nator, such that ‖D̂−D?

θ̂
‖∞ ≤ ε . By repeating the arguments of the proof of Theorem 3.1

(with θ̂ instead of θ̄ ), we conclude that there exists a constant c1 > 0 such that

2DJS(p?, p
θ̂
)≤ c1ε

2 +L(θ̂ , D̂)+ ln4≤ c1ε
2 + sup

α∈Λ

L(θ̂ ,α)+ ln4.

Therefore,

2DJS(p?, p
θ̂
)≤ c1ε

2 + sup
θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)|+ sup
α∈Λ

L̂(θ̂ ,α)+ ln4

= c1ε
2 + sup

θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)|+ inf
θ∈Θ

sup
α∈Λ

L̂(θ ,α)+ ln4

(by definition of θ̂ )

≤ c1ε
2 +2 sup

θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)|+ inf
θ∈Θ

sup
α∈Λ

L(θ ,α)+ ln4.
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So,

2DJS(p?, p
θ̂
)≤ c1ε

2 +2 sup
θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)|+ inf
θ∈Θ

sup
D∈D∞

L(θ ,D)+ ln4

= c1ε
2 +2 sup

θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)|+L(θ ?,D?
θ?)+ ln4

(by definition of θ ?)

= c1ε
2 +2DJS(p?, pθ?)+2 sup

θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)|.

Thus, letting c2 = c1/2, we have

DJS(p?, p
θ̂
)−DJS(p?, pθ?)≤ c2ε

2 + sup
θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)|. (7)

Clearly, under Assumptions (HD), (HG), and (Hp), the process (L̂(θ ,α)−L(θ ,α))θ∈Θ ,α∈Λ

is subgaussian (e.g., van Handel, 2016, Chapter 5) for the distance d = ‖ · ‖/
√

n, where ‖ · ‖
is the standard Euclidean norm on Rp×Rq. Let N(Θ ×Λ ,‖ · ‖,u) denote the u-covering
number of Θ ×Λ for the distance ‖ · ‖. Then, by Dudley’s inequality (van Handel, 2016,
Corollary 5.25),

E sup
θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)| ≤ 12√
n

∫
∞

0

√
ln(N(Θ ×Λ ,‖ · ‖,u))du. (8)

Since Θ and Λ are bounded, there exists r > 0 such that N(Θ ×Λ ,‖ ·‖,u) = 1 for u≥ r and

N(Θ ×Λ ,‖ · ‖,u) = O
((1

u

)p+q)
for u < r.

Combining this inequality with (7) and (8), we obtain

EDJS(p?, p
θ̂
)−DJS(p?, pθ?)≤ c3

(
ε

2 +
1√
n

)
,

for some positive constant c3. The conclusion follows by observing that, by (5),

DJS(p?, pθ?)≤ DJS(p?, p
θ̂
).

Theorem 4.1 is illustrated in Figure 1, which shows the approximate values of EDJS(p?, p
θ̂
).

We took p?(x) = e−x/s

s(1+e−x/s)2 (centered logistic density with scale parameter s = 0.33), and
let G and D be two fully connected neural networks parameterized by weights and offsets.
The noise random variable Z follows a uniform distribution on [0,1], and the parameters of
G and D are chosen in a sufficiently large compact set. In order to illustrate the impact of
ε in Theorem 4.1, we fixed the sample size to a large n = 100000 and varied the number
of layers of the discriminators from 2 to 5, keeping in mind that a larger number of layers
results in a smaller ε . To diversify the setting, we also varied the number of layers of the
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Figure 1: Bar plots of the Jensen-Shannon divergence DJS(p?, p
θ̂
) with respect to the

number of layers (depth) of both the discriminators and generators. The height of each
rectangle estimates EDJS(p?, p

θ̂
).

generators from 2 to 3. The expectation EDJS(p?, p
θ̂
) was estimated by averaging over 30

repetitions (the number of runs has been reduced for time complexity limitations). Note
that we do not pay attention to the exact value of the constant term DJS(p?, pθ?), which is
intractable in our setting.

Figure 1 highlights that EDJS(p?, p
θ̂
) approaches the constant value DJS(p?, pθ?) as ε ↓ 0,

i.e., as the discriminator depth increases, given that the contribution of 1/
√

n is certainly
negligible for n = 100000. Figure 2 shows the target density p? vs. the histograms and
kernel estimates of 100000 data sampled from G

θ̂
(Z), in the two cases: (discriminator depth

= 2, generator depth = 3) and (discriminator depth = 5, generator depth = 3). In accordance
with the decrease of EDJS(p?, p

θ̂
), the estimation of the true distribution p? improves when

ε becomes small.

(a) Discriminator depth = 2, generator depth = 3. (b) Discriminator depth = 5, generator depth = 3.

Figure 2: True density p?, histograms, and kernel estimates (continuous line) of 100000
data sampled from G

θ̂
(Z). Also shown is the final discriminator Dα̂ .
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Some comments on the optimization scheme. Numerical optimization is quite a tough
point for GANs, partly due to nonconvex-concavity of the saddle point problem described
in equation (1) and the nondifferentiability of the objective function. This motivates a
very active line of research (e.g., Goodfellow et al., 2014; Nowozin et al., 2016; Arjovsky
et al., 2017; Arjovsky and Bottou, 2017), which aims at transforming the objective into a
more convenient function and devising efficient algorithms. In the present paper, since we
are interested in original GANs, the algorithmic approach described by Goodfellow et al.
(2014) is adopted, and numerical optimization is performed thanks to the machine learning
framework TensorFlow, working with gradient descent based on automatic differentiation.
As proposed by Goodfellow et al. (2014), the objective function θ 7→ supα∈Λ L̂(θ ,α) is not
directly minimized. We used instead an alternated procedure, which consists in iterating (a
few hundred times in our examples) the following two steps:

(i) For a fixed value of θ and from a given value of α , perform 10 ascent steps on L̂(θ , ·);

(ii) For a fixed value of α and from a given value of θ , perform 1 descent step on
θ 7→ −∑

n
i=1 ln(Dα ◦Gθ (Zi)) (instead of θ 7→ ∑

n
i=1 ln(1−Dα ◦Gθ (Zi))).

This alternated procedure is motivated by two reasons. First, for a given θ , approximating
supα∈Λ L̂(θ ,α) is computationally prohibitive and may result in overfitting the finite training
sample (Goodfellow et al., 2014). This can be explained by the shape of the function
θ 7→ supα∈Λ L̂(θ ,α), which may be almost piecewise constant, resulting in a zero gradient
almost everywhere (or at best very low; see Arjovsky et al., 2017). Next, empirically,
− ln(Dα ◦Gθ (Zi)) provides bigger gradients than ln(1−Dα ◦Gθ (Zi)), resulting in a more
powerful algorithm than the original version, while leading to the same minimizers.

In all our experiments, the learning rates needed in gradient steps were fixed and tuned by
hand, in order to prevent divergence. In addition, since our main objective is to focus on
illustrating the statistical properties of GANs rather than delving into optimization issues,
we decided to perform mini-batch gradient updates instead of stochastic ones (that is, new
observations of X and Z are not sampled at each step of the procedure). This is different of
what is done in the original algorithm of Goodfellow et al. (2014).

We realize that our numerical approach—although widely adopted by the machine learning
community—may fail to locate the desired estimator θ̂ (i.e., the exact minimizer in θ of
supα∈Λ L̂(θ ,α)) in more complex contexts than those presented in the present paper. It is
nevertheless sufficient for our objective, which is limited to illustrating the theoretical results
with a few simple examples.

4.2 Asymptotic properties of θ̂

Theorem 4.1 states a result relative to the criterion DJS(p?, p
θ̂
). We now examine the

convergence properties of the parameter θ̂ itself as the sample size n grows. We would
typically like to find reasonable conditions ensuring that θ̂ → θ̄ almost surely as n→ ∞. To
reach this goal, we first need to strengthen a bit the Assumptions (Hreg), as follows:

Assumptions (H ′reg)
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(H ′D) There exists κ ∈ (0,1/2) such that, for all α ∈Λ , κ ≤ Dα ≤ 1−κ . In addition, the
function (x,α) 7→ Dα(x) is of class C2, with differentials of order 1 and 2 uniformly
bounded.

(H ′G) For all z ∈ Rd′ , the function θ 7→ Gθ (z) is of class C2, uniformly bounded, with
differentials of order 1 and 2 uniformly bounded.

(H ′p) For all x ∈ E, the function θ 7→ pθ (x) is of class C2, uniformly bounded, with
differentials of order 1 and 2 uniformly bounded.

It is easy to verify that under these assumptions the partial functions θ 7→ L̂(θ ,α) (re-
spectively, θ 7→ L(θ ,α)) and α 7→ L̂(θ ,α) (respectively, α 7→ L(θ ,α)) are of class C2.
Throughout, we let θ = (θ1, . . . ,θp), α = (α1, . . . ,αq), and denote by ∂

∂θi
and ∂

∂α j
the partial

derivative operations with respect to θi and α j. The next lemma will be of constant utility.
In order not to burden the text, its proof is given in Section 5.

Lemma 4.1. Under Assumptions (H ′reg), ∀(a,b,c,d) ∈ {0,1,2}4 such that a+ b ≤ 2 and
c+d ≤ 2, one has

sup
θ∈Θ ,α∈Λ

∣∣∣∣ ∂ a+b+c+d

∂θ a
i ∂θ b

j ∂αc
`∂αd

m
L̂(θ ,α)− ∂ a+b+c+d

∂θ a
i ∂θ b

j ∂αc
`∂αd

m
L(θ ,α)

∣∣∣∣→ 0 almost surely,

for all (i, j) ∈ {1, . . . , p}2 and (`,m) ∈ {1, . . . ,q}2.

We recall that θ̄ ∈Θ is such that

sup
α∈Λ

L(θ̄ ,α)≤ sup
α∈Λ

L(θ ,α), ∀θ ∈Θ ,

and insist that θ̄ exists under (H ′reg) by continuity of the function θ 7→ supα∈Λ L(θ ,α).
Similarly, there exists ᾱ ∈Λ such that

L(θ̄ , ᾱ)≥ L(θ̄ ,α), ∀α ∈Λ .

The following assumption ensures that θ̄ and ᾱ are uniquely defined, which is of course a
key hypothesis for our estimation objective. Throughout, the notation S◦ (respectively, ∂S)
stands for the interior (respectively, the boundary) of the set S.

Assumption (H1) The pair (θ̄ , ᾱ) is unique and belongs to Θ ◦×Λ ◦.

Finally, in addition to θ̂ , we let α̂ ∈Λ be such that

L̂(θ̂ , α̂)≥ L̂(θ̂ ,α), ∀α ∈Λ .

Theorem 4.2. Under Assumptions (H ′reg) and (H1), one has

θ̂ → θ̄ almost surely and α̂ → ᾱ almost surely.
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Proof. We write

| sup
α∈Λ

L(θ̂ ,α)− sup
α∈Λ

L(θ̄ ,α)|

≤ | sup
α∈Λ

L(θ̂ ,α)− sup
α∈Λ

L̂(θ̂ ,α)|+ | inf
θ∈Θ

sup
α∈Λ

L̂(θ ,α)− inf
θ∈Θ

sup
α∈Λ

L(θ ,α)|

≤ 2 sup
θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)|.

Thus, by Lemma 4.1, supα∈Λ L(θ̂ ,α)→ supα∈Λ L(θ̄ ,α) almost surely. In the lines that
follow, we make more transparent the dependence of θ̂ in the sample size n and set θ̂n

def
= θ̂ .

Since θ̂n ∈Θ and Θ is compact, we can extract from any subsequence of (θ̂n)n a subsequence
(θ̂nk)k such that θ̂nk→ z∈Θ (with nk = nk(ω), i.e., it is almost surely defined). By continuity
of the function θ 7→ supα∈Λ L(θ ,α), we deduce that supα∈Λ L(θ̂nk ,α)→ supα∈Λ L(z,α),
and so supα∈Λ L(z,α) = supα∈Λ L(θ̄ ,α). Since θ̄ is unique by (H1), we have z = θ̄ . In
conclusion, we can extract from each subsequence of (θ̂n)n a subsequence that converges
towards θ̄ : this shows that θ̂n→ θ̄ almost surely.

Finally, we have

|L(θ̄ , α̂)−L(θ̄ , ᾱ)|
≤ |L(θ̄ , α̂)−L(θ̂ , α̂)|+ |L(θ̂ , α̂)− L̂(θ̂ , α̂)|+ |L̂(θ̂ , α̂)−L(θ̄ , ᾱ)|
= |L(θ̄ , α̂)−L(θ̂ , α̂)|+ |L(θ̂ , α̂)− L̂(θ̂ , α̂)|+ | inf

θ∈Θ
sup
α∈Λ

L̂(θ ,α)− inf
θ∈Θ

sup
α∈Λ

L(θ ,α)|

≤ sup
α∈Λ

|L(θ̄ ,α)−L(θ̂ ,α)|+2 sup
θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)|.

Using Assumptions (H ′D) and (H ′p), and the fact that θ̂ → θ̄ almost surely, we see that the
first term above tends to zero. The second one vanishes asymptotically by Lemma 4.1, and
we conclude that L(θ̄ , α̂)→ L(θ̄ , ᾱ) almost surely. Since α̂ ∈Λ and Λ is compact, we may
argue as in the first part of the proof and deduce from the unicity of ᾱ that α̂ → ᾱ almost
surely.

To illustrate the result of Theorem 4.2, we undertook a series of small numerical experiments
with three choices for the triplet (true p? + generator model P = {pθ}θ∈Θ + discriminator
family D = {Dα}α∈Λ ), which we respectively call the Laplace-Gaussian, Claw-Gaussian,
and Exponential-Uniform model. They are summarized in Table 1. We are aware that
more elaborate models (involving, for example, neural networks) can be designed and
implemented. However, once again, our objective is not to conduct a series of extensive
simulations, but simply to illustrate our theoretical results with a few graphs to get some
better intuition.

Figure 3 shows the densities p?. We recall that the claw density on [0,∞) takes the form

pclaw =
1
2

ϕ(0,1)+
1
10
(
ϕ(−1,0.1)+ϕ(−0.5,0.1)+ϕ(0,0.1)+ϕ(0.5,0.1)+ϕ(1,0.1)

)
,

where ϕ(µ,σ) is a Gaussian density with mean µ and standard deviation σ (this density is
borrowed from Devroye, 1997).
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Model p? P = {pθ}θ∈Θ D = {Dα}α∈Λ

Laplace-Gaussian 1
2be−

|x|
b 1√

2πθ
e−

x2

2θ2 1

1+α1
α0

e
x2
2 (α−2

1 −α
−2
0 )

b = 1.5 Θ = [10−1,103] Λ =Θ ×Θ

Claw-Gaussian pclaw(x) 1√
2πθ

e−
x2

2θ2 1

1+α1
α0

e
x2
2 (α−2

1 −α
−2
0 )

Θ = [10−1,103] Λ =Θ ×Θ

Exponential-Uniform λe−λx 1
θ

1[0,θ ](x) 1

1+α1
α0

e
x2
2 (α−2

1 −α
−2
0 )

λ = 1 Θ = [10−3,103] Λ =Θ ×Θ

Table 1: Triplets used in the numerical experiments.

Figure 3: Probability density functions p? used in the numerical experiments.

In the Laplace-Gaussian and Claw-Gaussian examples, the densities pθ are centered
Gaussian, parameterized by their standard deviation parameter θ . The random variable
Z is uniform [0,1] and the natural family of generators associated with the model P =
{pθ}θ∈Θ is G = {Gθ}θ∈Θ , where each Gθ is the generalized inverse of the cumulative

distribution function of pθ (because Gθ (Z)
L
= pθ dµ). The rationale behind our choice for

the discriminators is based on the form of the optimal discriminator D?
θ

described in (2):
starting from

D?
θ =

p?

p?+ pθ

, θ ∈Θ ,

we logically consider the following ratio

Dα =
pα1

pα1 + pα0

, α = (α0,α1) ∈Λ =Θ ×Θ .
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Figure 4 (Laplace-Gaussian), Figure 5 (Claw-Gaussian), and Figure 6 (Exponential-
Uniform) show the boxplots of the differences θ̂ − θ̄ over 200 repetitions, for a sample size
n varying from 10 to 10000. In these experiments, the parameter θ̄ is obtained by averaging
the θ̂ for the largest sample size n. In accordance with Theorem 4.2, the size of the boxplots
shrinks around 0 when n increases, thus showing that the estimated parameter θ̂ is getting
closer and closer to θ̄ . Before analyzing at which rate this convergence occurs, we may
have a look at Figure 7, which plots the estimated density p

θ̂
(for n = 10000) vs. the true

density p?. It also shows the discriminator Dα̂ , together with the initial density pθ init and
the initial discriminator Dα init fed into the optimization algorithm. We note that in the three
models, Dα̂ is almost identically 1/2, meaning that it is impossible to discriminate between
the original observations and those generated by p

θ̂
.

Figure 4: Boxplots of θ̂ − θ̄ for different sample sizes (Laplace-Gaussian model, 200
repetitions).

Figure 5: Boxplots of θ̂ − θ̄ for different sample sizes (Claw-Gaussian model, 200 repeti-
tions).
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Figure 6: Boxplots of θ̂ − θ̄ for different sample sizes (Exponential-Uniform model, 200
repetitions).

Figure 7: True density p?, estimated density p
θ̂

, and discriminator Dα̂ for n = 10000 (from
left to right: Laplace-Gaussian, Claw-Gaussian, and Exponential-Uniform model). Also
shown are the initial density pθ init and the initial discriminator Dα init fed into the optimization
algorithm.

In line with the above, our next step is to state a central limit theorem for θ̂ . Although
simple to understand, this result requires additional assumptions and some technical pre-
requisites. One first needs to ensure that the function (θ ,α) 7→ L(θ ,α) is regular enough
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in a neighborhood of (θ̄ , ᾱ). This is captured by the following set of assumptions, which
require in particular the unicity of the maximizer of the function α 7→ L(θ ,α) for a θ around
θ̄ . For a function F : Θ →R (respectively, G : Θ ×Λ →R), we let HF(θ) (respectively,
H1G(θ ,α) and H2G(θ ,α)) be the Hessian matrix of the function θ 7→ F(θ) (respectively,
θ 7→ G(θ ,α) and α 7→ G(θ ,α)) computed at θ (respectively, at θ and α).

Assumptions (Hloc)

(HU) There exists a neighborhood U of θ̄ and a function α : U →Λ such that

argmax
α∈Λ

L(θ ,α) = {α(θ)}, ∀θ ∈U.

(HV ) The Hessian matrix HV (θ̄) is invertible, where V (θ)
def
= L(θ ,α(θ)).

(HH) The Hessian matrix H2L(θ̄ , ᾱ) is invertible.

We stress that under Assumption (HU), there is for each θ ∈U a unique α(θ) ∈ Λ such
that L(θ ,α(θ)) = supα∈Λ L(θ ,α). We also note that α(θ̄) = ᾱ under (H1). We still need
some notation before we state the central limit theorem. For a function f (θ ,α), ∇1 f (θ ,α)
(respectively, ∇2 f (θ ,α)) means the gradient of the function θ 7→ f (θ ,α) (respectively, the
function α 7→ f (θ ,α)) computed at θ (respectively, at α). For a function g(t), J(g)t is the
Jacobian matrix of g computed at t. Observe that by the envelope theorem,

HV (θ̄) = H1L(θ̄ , ᾱ)+ J(∇1L(θ̄ , ·))ᾱJ(α)
θ̄
,

where, by the chain rule,

J(α)
θ̄
=−H2L(θ̄ , ᾱ)−1J(∇2L(·, ᾱ))

θ̄
.

Therefore, in Assumption(HV ), the Hessian matrix HV (θ̄) can be computed with the sole
knowledge of L. Finally, we let

`1(θ ,α) = lnDα(X1)+ ln(1−Dα ◦Gθ (Z1)),

and denote by L→ the convergence in distribution.
Theorem 4.3. Under Assumptions (H ′reg), (H1), and (Hloc), one has

√
n(θ̂ − θ̄)

L→ Z,

where Z is a Gaussian random variable with mean 0 and variance

V = Var
[
−HV (θ̄)−1

∇1`1(θ̄ , ᾱ)+HV (θ̄)−1J(∇1L(θ̄ , ·))ᾱH2L(θ̄ , ᾱ)−1
∇2`1(θ̄ , ᾱ)

]
.

We note that the expression of the variance is relatively complex and, unfortunately, that it
cannot be simplified, even for a dimension of the parameter equal to 1. Nevertheless, the
take-home message is that the estimator θ̂ is asymptotically normal, with a convergence rate
of
√

n. This is illustrated in Figures 8, 9, and 10, which respectively show the histograms
and kernel estimates of the distribution of

√
n(θ̂ − θ̄) for the Laplace-Gaussian, the Claw-

Gaussian, and the Exponential-Uniform model in function of the sample size n (200
repetitions).
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Figure 8: Histograms and kernel estimates (continuous line) of the distribution of
√

n(θ̂− θ̄)
for different sample sizes n (Laplace-Gaussian model, 200 repetitions).

Proof. By technical Lemma 5.1, we can find under Assumptions (H ′reg) and (H1) an open
set V ⊂U ⊂Θ ◦ containing θ̄ such that, for all θ ∈V , α(θ) ∈Λ ◦. In the sequel, to lighten
the notation, we assume without loss of generality that V = U . Thus, for all θ ∈U , we
have α(θ) ∈Λ ◦ and L(θ ,α(θ)) = supα∈Λ L(θ ,α) (with α(θ̄) = ᾱ by (H1)). Accordingly,
∇2L(θ ,α(θ)) = 0, ∀θ ∈ U . Also, since H2L(θ̄ , ᾱ) is invertible by (HH) and since the
function (θ ,α) 7→ H2L(θ ,α) is continuous, there exists an open set U ′ ⊂ U such that
H2L(θ ,α) is invertible as soon as (θ ,α) ∈ (U ′,α(U ′)). Without loss of generality, we
assume that U ′ =U . Thus, by the chain rule, the function α is of class C2 in a neighborhood
U ′ ⊂U of θ̄ , say U ′ =U , with Jacobian matrix given by

J(α)θ =−H2L(θ ,α(θ))−1J
(
∇2L(·,α(θ))

)
θ
, ∀θ ∈U.

We note that H2L(θ ,α(θ))−1 is of format q×q and J(∇2L(·,α(θ)))θ of format q× p.
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Figure 9: Histograms and kernel estimates (continuous line) of the distribution of
√

n(θ̂− θ̄)
for different sample sizes n (Claw-Gaussian model, 200 repetitions).

Now, for each θ ∈U , we let α̂(θ) be such that L̂(θ , α̂(θ)) = supα∈Λ L̂(θ ,α). Clearly,

|L(θ , α̂(θ))−L(θ ,α(θ))| ≤ |L(θ , α̂(θ))− L̂(θ , α̂(θ))|+ |L̂(θ , α̂(θ))−L(θ ,α(θ))|
≤ sup

α∈Λ

|L(θ ,α)− L̂(θ ,α)|+ | sup
α∈Λ

L̂(θ ,α)− sup
α∈Λ

L(θ ,α)|

≤ 2 sup
α∈Λ

|L̂(θ ,α)−L(θ ,α)|.

Therefore, by Lemma 4.1, supθ∈U |L(θ , α̂(θ))−L(θ ,α(θ))| → 0 almost surely. The event
on which this convergence holds does not depend upon θ ∈U , and, arguing as in the proof of
Theorem 4.2, we deduce that under (H1), P(α̂(θ)→ α(θ)∀θ ∈U) = 1. Since α(θ) ∈Λ ◦

for all θ ∈U , we also have P(α̂(θ) ∈ Λ ◦∀θ ∈U)→ 1 as n→ ∞. Thus, in the sequel, it
will be assumed without loss of generality that, for all θ ∈U , α̂(θ) ∈Λ ◦.

Still by Lemma 4.1, supθ∈Θ ,α∈Λ ‖H2L̂(θ ,α)−H2L(θ ,α)‖ → 0 almost surely. Since
H2L(θ ,α) is invertible on U×α(U), we have

P
(
H2L̂(θ ,α) invertible ∀(θ ,α) ∈U×α(U)

)
→ 1.

Thus, we may and will assume that H2L̂(θ ,α) is invertible for all (θ ,α) ∈U×α(U).

22



Figure 10: Histograms and kernel estimates (continuous line) of the distribution of
√

n(θ̂ −
θ̄) for different sample sizes n (Exponential-Uniform model, 200 repetitions).

Next, since α̂(θ) ∈Λ ◦ for all θ ∈U , one has ∇2L̂(θ , α̂(θ)) = 0. Therefore, by the chain
rule, α̂ is of class C2 on U , with Jacobian matrix

J(α̂)θ =−H2L̂(θ , α̂(θ))−1J
(
∇2L̂(·, α̂(θ))

)
θ
, ∀θ ∈U.

Let V̂ (θ)
def
= L̂(θ , α̂(θ)) = supα∈Λ L̂(θ ,α). By the envelope theorem, V̂ is of class C2,

∇V̂ (θ) = ∇1L̂(θ , α̂(θ)), and HV̂ (θ) = H1L̂(θ , α̂(θ)) + J(∇1L̂(θ , ·))α̂(θ)J(α̂)θ . Recall
that θ̂ → θ̄ almost surely by Theorem 4.2, so that we may assume that θ̂ ∈Θ ◦ by (H1).
Moreover, we can also assume that θ̂ + t(θ̂ − θ̄) ∈U , ∀t ∈ [0,1]. Thus, by a Taylor series
expansion with integral remainder, we have

0 = ∇V̂ (θ̂) = ∇V̂ (θ̄)+
∫ 1

0
HV̂ (θ̂ + t(θ̂ − θ̄))dt(θ̂ − θ̄). (9)

Since α̂(θ̄) ∈Λ ◦ and L̂(θ̄ , α̂(θ̄)) = supα∈Λ L̂(θ̄ ,α), one has ∇2L̂(θ̄ , α̂(θ̄)) = 0. Thus,

0 = ∇2L̂(θ̄ , α̂(θ̄))

= ∇2L̂(θ̄ ,α(θ̄))+
∫ 1

0
H2L̂

(
θ̄ ,α(θ̄)+ t(α̂(θ̄)−α(θ̄))

)
dt(α̂(θ̄)−α(θ̄)).
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By Lemma 4.1, since α̂(θ̄)→ α(θ̄) almost surely, we have

Î1
def
=
∫ 1

0
H2L̂

(
θ̄ ,α(θ̄)+ t(α̂(θ̄)−α(θ̄))

)
dt→ H2L(θ̄ , ᾱ) almost surely.

Because H2L(θ̄ , ᾱ) is invertible, P(Î1 invertible)→ 1 as n→∞. Therefore, we may assume,
without loss of generality, that Î1 is invertible. Hence,

α̂(θ̄)−α(θ̄) =−Î−1
1 ∇2L̂(θ̄ ,α(θ̄)). (10)

Furthermore,

∇V̂ (θ̄) = ∇1L̂(θ̄ , α̂(θ̄)) = ∇1L̂(θ̄ ,α(θ̄))+ Î2(α̂(θ̄)−α(θ̄)),

where

Î2
def
=
∫ 1

0
J(∇1L̂(θ̄ , ·))

α(θ̄)+t(α̂(θ̄)−α(θ̄))dt.

By Lemma 4.1, Î2→ J(∇1L(θ̄ , ·))
α(θ̄) almost surely. Combining (9) and (10), we obtain

0 = ∇1L̂(θ̄ ,α(θ̄))− Î2Î−1
1 ∇2L̂(θ̄ ,α(θ̄))+ Î3(θ̂ − θ̄),

where

Î3
def
=
∫ 1

0
HV̂ (θ̂ + t(θ̂ − θ̄))dt.

By technical Lemma 5.2, we have Î3 → HV (θ̄) almost surely. So, by (HV ), it can be
assumed that Î3 is invertible. Consequently,

θ̂ − θ̄ =−Î−1
3 ∇1L̂(θ̄ ,α(θ̄))+ Î−1

3 Î2Î−1
1 ∇2L̂(θ̄ ,α(θ̄)),

or, equivalently, since α(θ̄) = ᾱ ,

θ̂ − θ̄ =−Î−1
3 ∇1L̂(θ̄ , ᾱ)+ Î−1

3 Î2Î−1
1 ∇2L̂(θ̄ , ᾱ).

Using Lemma 4.1, we conclude that
√

n(θ̂ − θ̄) has the same limit distribution as

Sn
def
=−
√

nHV (θ̄)−1
∇1L̂(θ̄ , ᾱ)+

√
nHV (θ̄)−1J(∇1L(θ̄ , ·))ᾱH2L(θ̄ , ᾱ)−1

∇2L̂(θ̄ , ᾱ).

Let
`i(θ ,α) = lnDα(Xi)+ ln(1−Dα ◦Gθ (Zi)), 1≤ i≤ n.

With this notation, we have

Sn =
1√
n

n

∑
i=1

(
−HV (θ̄)−1

∇1`i(θ̄ , ᾱ)+HV (θ̄)−1J(∇1L(θ̄ , ·))ᾱH2L(θ̄ , ᾱ)−1
∇2`i(θ̄ , ᾱ)

)
.

One has ∇V (θ̄) = 0, since V (θ̄) = infθ∈Θ V (θ) and θ̄ ∈ Θ ◦. Therefore, under (H ′reg),
E∇1`i(θ̄ , ᾱ) = ∇1E`i(θ̄ , ᾱ) = ∇1L(θ̄ , ᾱ) = ∇V (θ̄) = 0. Similarly, E∇2`i(θ̄ , ᾱ) =
∇2E`i(θ̄ , ᾱ) = ∇2L(θ̄ , ᾱ) = 0, since L(θ̄ , ᾱ) = supα∈Λ L(θ̄ ,α) and ᾱ ∈ Λ ◦. Using the
central limit theorem, we conclude that

√
n(θ̂ − θ̄)

L→ Z,

where Z is a Gaussian random variable with mean 0 and variance

V = Var
[
−HV (θ̄)−1

∇1`1(θ̄ , ᾱ)+HV (θ̄)−1J(∇1L(θ̄ , ·))ᾱH2L(θ̄ , ᾱ)−1
∇2`1(θ̄ , ᾱ)

]
.
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5 Technical results

5.1 Proof of Theorem 3.1

Choose ε ∈ (0, t) and D ∈ D , a θ̄ -admissible discriminator, such that ‖D−D?
θ̄
‖∞ ≤ ε .

Observe that

L(θ̄ ,D) =
∫

ln(D)p?dµ +
∫

ln(1−D)p
θ̄

dµ

=
∫

ln
( D

D?
θ̄

)
p?dµ + ln

( 1−D
1−D?

θ̄

)
p

θ̄
dµ +2DJS(p?, p

θ̄
)− ln4. (11)

Clearly, ∫
ln
( D

D?
θ̄

)
p?dµ =

∫
ln
(

1+
[ D

D?
θ̄

−1
])

p?dµ

=
∫

ln
(

1+
γ

θ̄

D?
θ̄

)
p?dµ,

where γ
θ̄
= D−D?

θ̄
. By a Taylor series expansion with remainder, we may write

ln
(

1+
γ

θ̄

D?
θ̄

)
=

γ
θ̄

D?
θ̄

− 1
2

(
γ

θ̄

D?
θ̄

)2
+

1
3

∫
γ

θ̄
/D?

θ̄

0

1
(1+u)3

(
γ

θ̄

D?
θ̄

−u
)2

du.

Whenever γ
θ̄
≤ 0 (worst case), we have∫

γ
θ̄
/D?

θ̄

0

1
(1+u)3

(
γ

θ̄

D?
θ̄

−u
)2

du =−
∫ 0

γ
θ̄
/D?

θ̄

1
(1+u)3

(
γ

θ̄

D?
θ̄

−u
)2

du.

Observe that, for γ
θ̄
/D?

θ̄
≤ u≤ 0, since ‖γ

θ̄
‖∞ ≤ ε by assumption and D?

θ̄
≥ t by (H0),

1+u≥ 1+
γ

θ̄

D?
θ̄

≥ 1− ε

D?
θ̄

≥ 1− ε

t
> 0.

Thus, ∫
ln
( D

D?
θ̄

)
p?dµ ≥

∫ (
γ

θ̄

D?
θ̄

− 1
2

(
γ

θ̄

D?
θ̄

)2
− 1

9

( |γ
θ̄
|

D?
θ̄

)3 1
(1− ε/t)3

)
p?dµ. (12)

Similarly, we have∫
ln
( 1−D

1−D?
θ̄

)
p

θ̄
dµ =

∫
ln
(

1+
[ 1−D

1−D?
θ̄

−1
])

p
θ̄

dµ

=
∫

ln
(

1−
γ

θ̄

1−D?
θ̄

)
p

θ̄
dµ.

By a Taylor series with remainder,

ln
(

1−
γ

θ̄

1−D?
θ̄

)
=−

γ
θ̄

1−D?
θ̄

− 1
2

(
γ

θ̄

1−D?
θ̄

)2
+

1
3

∫ −γ
θ̄
/(1−D?

θ̄
)

0

1
(1+u)3

(
γ

θ̄

1−D?
θ̄

+u
)2

du.
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Whenever γ
θ̄
≥ 0 (worst case), we have

∫ −γ
θ̄
/(1−D?

θ̄
)

0

1
(1+u)3

(
γ

θ̄

1−D?
θ̄

+u
)2

du =−
∫ 0

−γ
θ̄
/(1−D?

θ̄
)

1
(1+u)3

(
γ

θ̄

1−D?
θ̄

+u
)2

du.

But, for − γ
θ̄

1−D?
θ̄

≤ u≤ 0,

1+u≥ 1−
γ

θ̄

1−D?
θ̄

≥ 1− ε

1−D?
θ̄

≥ 1− ε

t
> 0.

Thus, we obtain

∫
ln
( 1−D

1−D?
θ̄

)
p

θ̄
dµ ≥

∫ (
−

γ
θ̄

1−D?
θ̄

− 1
2

(
γ

θ̄

1−D?
θ̄

)2
− 1

9

( |γ
θ̄
|

1−D?
θ̄

)3 1
(1− ε/t)3

)
p

θ̄
dµ.

(13)
Letting

τ =
1

(1− ε/t)3 ,

and combining (11), (12), and (13), we are led to

L(θ̄ ,D)≥
∫ (

γ
θ̄

D?
θ̄

− 1
2

(
γ

θ̄

D?
θ̄

)2
− 1

9

( |γ
θ̄
|

D?
θ̄

)3 1
τ

)
p?dµ

+
∫ (
−

γ
θ̄

1−D?
θ̄

− 1
2

(
γ

θ̄

1−D?
θ̄

)2
− 1

9

( |γ
θ̄
|

1−D?
θ̄

)3 1
τ

)
p

θ̄
dµ

+2DJS(p?, p
θ̄
)− ln4

≥−ε2

2

∫ p?

D?2
θ̄

dµ− ε2

2

∫ p
θ̄

(1−D?
θ̄
)2 dµ− ε3

9τ

∫ ( p?

D?3
θ̄

+
p

θ̄

(1−D?
θ̄
)3

)
dµ

+2DJS(p?, p
θ̄
)− ln4

=−ε2

2

(∫ (p?+ p
θ̄
)2

p?
dµ +

∫
(p?+ p

θ̄
)2

p
θ̄

dµ

)
− ε3

9τ

∫ ((p?+ p
θ̄
)3

p?2 +
(p?+ p

θ̄
)3

p2
θ̄

)
dµ +2DJS(p?, p

θ̄
)− ln4.

Using (H0), we conclude that there exists a constant c > 0 (depending only upon t) such that

L(θ̄ ,D)≥−cε
2− c

τ
ε

3 +2DJS(p?, p
θ̄
)− ln4,

i.e.,

2DJS(p?, p
θ̄
)≤ cε

2 +
c
τ

ε
3 +L(θ̄ ,D)+ ln4.
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But

L(θ̄ ,D)≤ sup
D∈D

L(θ̄ ,D)

≤ sup
D∈D

L(θ ?,D)

(by definition of θ̄ )
≤ sup

D∈D∞

L(θ ?,D)

= L(θ ?,D?
θ?) = 2DJS(p?, pθ?)− ln4.

Thus,

2DJS(p?, p
θ̄
)≤ cε

2 +
c
τ

ε
3 +2DJS(p?, pθ?).

This shows the right-hand side of inequality (6). To prove the left-hand side, just note that
by inequality (5),

DJS(p?, pθ?)≤ DJS(p?, p
θ̄
).

5.2 Proof of Lemma 4.1

To simplify the notation, we set

∆ =
∂ a+b+c+d

∂θ a
i ∂θ b

j ∂αc
`∂αd

m
.

Using McDiarmid’s inequality (McDiarmid, 1989), we see that there exists a constant c > 0
such that, for all ε > 0,

P
(∣∣∣ sup

θ∈Θ ,α∈Λ

|∆ L̂(θ ,α)−∆L(θ ,α)|−E sup
θ∈Θ ,α∈Λ

|∆ L̂(θ ,α)−∆L(θ ,α)|
∣∣∣≥ ε

)
≤ 2e−cnε2

.

Therefore, by the Borel-Cantelli lemma,

sup
θ∈Θ ,α∈Λ

|∆ L̂(θ ,α)−∆L(θ ,α)|−E sup
θ∈Θ ,α∈Λ

|∆ L̂(θ ,α)−∆L(θ ,α)| → 0 almost surely.

(14)
It is also easy to verify that under Assumptions (H ′reg), the process (∆ L̂(θ ,α) −
∆L(θ ,α))θ∈Θ ,α∈Λ is subgaussian. Thus, as in the proof of Theorem 4.1, we obtain via
Dudley’s inequality that

E sup
θ∈Θ ,α∈Λ

|∆ L̂(θ ,α)−∆L(θ ,α)|= O
( 1√

n

)
, (15)

since E∆ L̂(θ ,α) = ∆L(θ ,α). The result follows by combining (14) and (15).
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5.3 Some technical lemmas

Lemma 5.1. Under Assumptions (H ′reg) and (H1), there exists an open set V ⊂Θ ◦ contain-
ing θ̄ such that, for all θ ∈V , argmaxα∈Λ L(θ ,α)∩Λ ◦ 6= /0.

Proof. Assume that the statement is not true. Then there exists a sequence (θk)k ⊂Θ such
that θk → θ̄ and, for all k, αk ∈ ∂Λ , where αk ∈ argmaxα∈Λ L(θk,α). Thus, since Λ is
compact, even if this means extracting a subsequence, one has αk→ z ∈ ∂Λ as k→ ∞. By
the continuity of L, L(θ̄ ,αk)→ L(θ̄ ,z). But

|L(θ̄ ,αk)−L(θ̄ , ᾱ)| ≤ |L(θ̄ ,αk)−L(θk,αk)|+ |L(θk,αk)−L(θ̄ , ᾱ)|
≤ sup

α∈Λ

|L(θ̄ ,α)−L(θk,α)|+ | sup
α∈Λ

L(θk,α)− sup
α∈Λ

L(θ̄ ,α)|

≤ 2 sup
α∈Λ

|L(θ̄ ,α)−L(θk,α)|,

which tends to zero as k→ ∞ by (H ′D) and (H ′p). Therefore, L(θ̄ ,z) = L(θ̄ , ᾱ) and, in turn,
z = ᾱ by (H1). Since z ∈ ∂∆ and ᾱ ∈ ∆ ◦, this is a contradiction.

Lemma 5.2. Under Assumptions (H ′reg), (H1), and (Hloc), one has Î3 → HV (θ̄) almost
surely.

Proof. We have

Î3 =
∫ 1

0
HV̂ (θ̂ + t(θ̂ − θ̄))dt =

∫ 1

0

(
H1L̂(θ̂t , α̂(θ̂t))+ J(∇1L̂(θ̂t , ·))α̂(θ̂t)

J(α̂)
θ̂t

)
dt,

where we set θ̂t = θ̂ + t(θ̂ − θ̄). Note that θ̂t ∈U for all t ∈ [0,1]. By Lemma 4.1,

sup
t∈[0,1]

‖H1L̂(θ̂t , α̂(θ̂t))−H1L(θ̂t , α̂(θ̂t))‖

≤ sup
θ∈Θ ,α∈Λ

‖H1L̂(θ ,α)−H1L(θ ,α)‖→ 0 almost surely.

Also, by Theorem 4.2, for all t ∈ [0,1], θ̂t → θ̄ almost surely. Besides,

|L(θ̄ , α̂(θ̂t))−L(θ̄ ,α(θ̄))| ≤ |L(θ̄ , α̂(θ̂t))−L(θ̂t , α̂(θ̂t))|+ |L(θ̂t , α̂(θ̂t))−L(θ̄ ,α(θ̄))|
≤ sup

α∈Λ

|L(θ̄ ,α)−L(θ̂t ,α)|+2 sup
θ∈Θ ,α∈Λ

|L̂(θ ,α)−L(θ ,α)|.

Thus, via (H ′reg), (H1), and Lemma 4.1, we conclude that almost surely, for all t ∈ [0,1],
α̂(θ̂t) → α(θ̄) = ᾱ . Accordingly, almost surely, for all t ∈ [0,1], H1L(θ̂t , α̂(θ̂t)) →
H1L(θ̄ , ᾱ). Since H1L(θ ,α) is bounded under (H ′D) and (H ′p), the Lebesgue dominated
convergence theorem leads to∫ 1

0
H1L̂(θ̂t , α̂(θ̂t))dt→ H1L(θ̄ , ᾱ) almost surely. (16)
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Furthermore,

J(α̂)θ =−H2L̂(θ , α̂(θ))−1J
(
∇2L̂(·, α̂(θ))

)
θ
, ∀(θ ,α) ∈U×α(U),

where U is the open set defined in the proof of Theorem 4.3. By the cofactor method,
H2L̂(θ ,α)−1 takes the form

H2L̂(θ ,α)−1 =
ĉ(θ ,α)

det(H2L̂(θ ,α))
,

where ĉ(θ ,α) is the matrix of cofactors associated with H2L̂(θ ,α). Thus, each component
of −H2L̂(θ ,α)−1J(∇2L̂(·,α))θ is a quotient of a multilinear form of the partial derivatives
of L̂ evaluated at (θ ,α) divided by det(H2L̂(θ ,α)), which is itself a multilinear form in the

∂ 2L̂
∂αi∂α j

(θ ,α). Hence, by Lemma 4.1, we have

sup
θ∈U,α∈α(U)

‖H2L̂(θ ,α)−1J(∇2L̂(·,α))θ−H2L(θ ,α)−1J(∇2L(·,α))θ‖→ 0 almost surely.

So, for all n large enough,

sup
t∈[0,1]

‖J(α̂)
θ̂t
+H2L(θ̂t , α̂(θ̂t))

−1J
(
∇2L(·, α̂(θ̂t))

)
θ̂t
‖

≤ sup
θ∈U,α∈α(U)

‖H2L̂(θ ,α)−1J(∇2L̂(·,α))θ −H2L(θ ,α)−1J(∇2L(·,α))θ‖

→ 0 almost surely.

We know that almost surely, for all t ∈ [0,1], α̂(θ̂t)→ ᾱ . Thus, since the function U ×
α(U) 3 (θ ,α) 7→ H2L(θ ,α)−1J(∇2L(·,α))θ is continuous, we have almost surely, for all
t ∈ [0,1],

H2L̂(θ̂t , α̂(θ̂t))
−1J
(
∇2L̂(·, α̂(θ̂t))

)
θ̂t
→ H2L(θ̄ , ᾱ)−1J(∇2L(·, ᾱ))

θ̄
.

Therefore, almost surely, for all t ∈ [0,1], J(α̂)
θ̂t
→ J(α)

θ̄
. Similarly, almost surely, for

all t ∈ [0,1], J(∇1L̂(θ̂t , ·))α̂(θ̂t)
→ J(∇1L(θ̄ , ·))ᾱ . All involved quantities are uniformly

bounded in t, and so, by the Lebesgue dominated convergence theorem, we conclude that∫ 1

0
J(∇1L̂(θ̂t , ·))α̂(θ̂t)

J(α̂)
θ̂t

dt→ J(∇1L(θ̄ , ·))ᾱJ(α)
θ̄

almost surely. (17)

Consequently, by combining (16) and (17),

Î3→ H1L(θ̄ , ᾱ)+ J(∇1L(θ̄ , ·))ᾱJ(α)
θ̄
= HV (θ̄) almost surely,

as desired.
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