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The stress response of permanently crosslinked gelatin gels was recently observed to display glass-like
features, namely, a stretched-exponential behavior terminated by an exponential decay, the charac-
teristic time scales of which increase dramatically with decreasing temperature. This phenomenon is
studied here using a model of flexible polymer gel network where relaxation proceeds via elementary
monomer exchanges between helix and coil segments. The relaxation dynamics of a full network
simulation is found to be nearly identical to that of a model of independent strands, which shows that
for flexible polymer gels in the range of elastic moduli of interest, both strand contour length disorder
and elastic couplings are irrelevant. We thus focus on the independent strand model and find it not only
to explain the observed functional form of the stress relaxation curves but also to yield predictions
that match very satisfactorily the experimental measurements of final relaxation time and total stress
drop. The system under study thus constitutes a rare case where the origin of glass-like behavior can
be unambiguously identified, namely, as the signature of the enhancement of helix content fluctua-
tions when approaching from above the mean-field helix-coil transition of strands. Published by AIP
Publishing. https://doi.org/10.1063/1.5003212

I. INTRODUCTION

In a recent experimental study, Ronsin et al.1 found
the stress response of permanently crosslinked gelatin gels
to present a transient stretched exponential behavior termi-
nated by exponential decay. They showed this behavior to
originate from the strain-induced helix-coil transition2,3 on
single polymer network strands, yet measured time scales
(of order hours) that, when fitted by an Arrhenius law,
yield apparent activation energies that are incompatibly larger
than the barrier limiting the elementary helix-coil transition
process.

By and large, this phenomenology can be termed “glass-
like.” Indeed, stretched exponential relaxation (SER), possibly
terminated by exponential decay, accompanied by very large
time scales that cannot be rationalized as simple Arrhenius
behavior, are well-known hallmarks of relaxation in deeply
supercooled liquids.4,5 Although glass-like dynamics is com-
mon to various classes of disordered systems, its physical
origin remains, in most cases, quite poorly understood. It
is a largely open question to what extent its occurrence in
different systems is coincidental and depends on system-
specific features or originates from a few general (universal)
mechanisms.

A major issue in the case of glass-formers is that relax-
ation proceeds via rearrangements of disordered atomic clus-
ters with ill-defined boundaries which reshuffle the amor-
phous structure. As elementary relaxation events cannot be
clearly isolated and modeled, existing propositions for the ori-
gin of SER have had to resort to assumptions about, e.g., a

hierarchically constrained dynamics or the topology of traps
in phase space that cannot be easily validated.6–8

In this context, it is of interest to identify situations where
glass-like behavior can be attributed to simple mechanisms
and fully analyzed. Such is the case for the gel network
of Ref. 1, where relaxation has been shown to proceed via
well-defined elementary transformations (monomer exchange
between helix and coil segments) which, thanks to irreversible
covalent cross-linking, occur at a fixed network topology. This
gelatin gel, hence, lends itself to modeling under controlled
assumptions in view of analyzing the origin of its glass-like
dynamics.

In the context of structural glasses, an open issue is the
possible influence of long-range elastic couplings on relax-
ation. In the gel network of Ref. 1, this effect is present
since any exchange of a monomer between coil and helix
domains induces a variation of the tension on the implicated
strand and therefore causes the whole network to deform
in order to recover mechanical balance. These strains bias
later events, hence introducing long-range elastic couplings.
Such couplings are neglected by construction in the rubber-
like models of independent chains commonly used to study
the mechanical response of gels. To test their relevance in
our case, we construct a schematic model, where the gel is
represented by a full network of a fixed topology. Disorder
is introduced via a distribution of strand contour lengths.
Each strand presents one helical and one coil domain, the
respective equilibrium fractions of which depend on the
strand end-to-end distance.2 The elementary dynamical event
consists in the thermally activated exchange of a monomer
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between coil and helix domains followed by global mechanical
equilibration.

In order to probe the importance of elastic couplings, we
compare the relaxation dynamics for this model with that for a
model of independent, uncoupled, strands, following thermal
quenches from a hot (zero helix fraction) state. This compari-
son is performed at a high cross-link density corresponding to
a gel elastic modulus beyond the relevant experimental range,
i.e., in a situation where elastic effects are deliberately overes-
timated. We then find that even in the presence of significant
strand contour length disorder, both the network and uncou-
pled chain models yield nearly identical dynamical responses,
which entails that elastic coupling effects are negligible in
the whole experimental range. This result, as we will dis-
cuss, can be assigned to the nearly Gaussian elasticity of coil
segments.

It follows that the relaxation of our system is governed
by the evolution of the distribution of helix fractions for an
ensemble of independent chains. The model defines a “transi-
tion point” above (respectively, below) which the minimum of
the free-energy of a strand corresponds to a zero (respectively,
finite) helix segment length.2 We study in detail, at various
distances from the transition, the stress relaxation following a
mechanical quench and show that our model is able to match
the experimental data. On this basis, we conclude that the
experimental range lies near, but above, the transition point
and that the glass-like slowing down at decreasing tempera-
tures is caused by the broadening of the distribution of helix
segment lengths upon approaching the transition from above.
In this sense, the glass-dynamics of the gelatin gel of Ref. 1
can be fully interpreted as a pretransitional slowing down
effect.

II. PROBING THE RELEVANCE
OF ELASTIC COUPLINGS

In this section, we study a network model of gel so
as to explicitly take into account long-range elastic cou-
plings. As in Ref. 9, our model consists in a periodic 2D
network with a fixed triangular topology, where the nodes rep-
resent the permanent cross-links and the links the polymer
strands that rotate freely at the nodes. The system free-energy
F = F ch +FFl adds two terms, accounting for the free-energy
of individual strands in an ideal solvent and for excluded
volume effects. More precisely, the “chain free-energy” reads

F ch =
∑
{ij }

Fij, (1)

where the sum runs over all strands {ij}. Each strand ij, which
connects nodes i and j, contains N ij monomers. The structural
disorder characteristic of gel networks is introduced by consid-
ering that the strand contour lengths, i.e., N ij’s, are distributed.
Strands are represented as proposed by Kutter and Terentjev2

who discuss at length the relevance of their model to the case of
gelatin gels. Among the N ij monomers of each strand, nij form
a single rigid helix segment adjacent to one node, assumed to
be aligned with the end-to-end vector rij = rj − ri; the N ij

� nij remaining monomers form a single coil. This approxi-
mation neglects, in particular, the entropy associated with the

possibility to form multiple helix domains, which appears rea-
sonable in view of the smallness of strand lengths—which lie
typically in the range of a few ten nanometers. The free-energy
of strands is based on the Kutter and Terentjev expression,2

where we replace the Gaussian form of the coil free-energy by
the 2D freely jointed chain approximation derived in Ref. 9
that accounts for chain stiffening at high stretch levels. The
free-energy of strand ij reads

Fij = kT
a

(
Nij − nij

)
2`p

w

(
rij − γ a nij

a(Nij − nij)

)
+ ∆f nij (2)

with a and `p the monomer and persistence lengths, and γ a
factor accounting for the shortening of the effective polymer
length caused by the winding of the helix segment; ∆f is the
(temperature-dependent) free-energy difference per monomer
between the helix and coil configurations. The function w,
derived in Ref. 9, reads

w(x) =
1
2

(
x2 − log

(
1 − x2

))
. (3)

It reduces to the ideal chain expression in the small stretch,
x � 1 limit.

Finally, the “Flory free-energy” reads

FFl =
kBT

2
(1 − 2χ)a2

∑
{ijk }

c2
ijkAijk , (4)

where the sum runs over all triangles. Here, χ is the 2D Flory
parameter, Aijk is the area of triangle ijk, and

cijk =
1
2

Nij + Njk + Nik

Aijk
. (5)

The evolution of the system proceeds by a series of ther-
mally activated events during which a single monomer is
added to/removed from the helix segment of a strand. Here
we are concerned with a situation, akin to that of supercooled
liquids,10 where the relaxation time τ is considerably larger
than acoustic delays over reasonable sample sizes. Hence, we
consider that each event consists in a transition between two
mechanically equilibrated configurations.

The activation process, the cis-trans isomerization of
a peptide bond, is characterized by an Arrhenius time
τ0 = ν

−1
0 exp[E0/(kT )] of order 10 s at 25 ◦C.11,12 The barrier

passage time itself (controlled by hydrodynamic damping13)
lies in the nanosecond range and hence is much smaller than
the Rouse time (of order 10�5 s) of the polymer strand on which
it takes place. It follows that activation can be considered to
take place at the fixed cross-link positions set by mechani-
cal equilibrium conditions in the initial state. The total energy
change associated with the nij→ nij ± 1 isomerization process
hence reads

∆F±ij = Fij(nij ± 1; rij) − Fij(nij; rij). (6)

The corresponding barrier is estimated as

E±ij = E0 +
1
2
∆F±ij (7)

which yields an associated transition rate

R±ij = ν0 exp

−
E±ij
kT


= τ−1

0 exp

−
∆F±ij
2kT


. (8)
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The time evolution of the system is simulated using kinetic
Monte Carlo. Each simulation step is defined by the follow-
ing operations: the rates of all possible transitions are cal-
culated in an initial, mechanically equilibrated configuration;
the time of occurrence, location (strand ij), and nature (nij

→ nij ± 1) of the next isomerization event are then drawn
randomly from the distributions that realize the above-defined
rate process; then, mechanical balance is recovered by energy
minimization.

We use γ = 0.4,2 1� 2χ ' 2× 10�2,14 and `p = 7a,15 values
that are appropriate to gelatin. The mesh size of the triangu-
lar network is taken to be ξ = 30a, and the average number
of monomers per strand as N = 100. As announced in the
Introduction, these values correspond to gels much stiffer than
in experiments and are chosen to artificially amplify elastic
coupling effects. We examine two cases:

• “homogeneous networks,” where all strands have the
same monomer number N ;

• “disordered networks,” where the monomer numbers
of strands are uncorrelated and set randomly to either
of the two equiprobable values N ij = N ± ∆, with
∆ = 50.

In our model, temperature dependence is entirely encoded
in the dimensionless parameter:

α ≡ ∆f /kT . (9)

The experiments of Ref. 1 are performed at temperatures
slightly above the helix-coil transition of the free polymer
chains, where ∆f = 0. In this narrow range, α ' β(T � T0)
rises roughly linearly with temperature.

To characterize relaxation towards thermal equilibrium
in our model, we study, for different values of α, the evolu-
tion of the space-averaged helix fraction φh starting from the
φh = 0 (helix-free, very high-temperature) configuration. Data
are obtained using a network of 480 nodes. Our α values are
chosen so that the equilibrium helix fraction remains notice-
ably smaller than 1, since this is expected to be the case in
experiments, as deduced by Ronsin et al.1 on the basis of their
data.

Strikingly, the relaxation dynamics of both “homoge-
neous” and “disordered” networks, displayed in Fig. 1, are
nearly identical. This weak effect of disorder on the dynam-
ics is very surprising a priori, given that we have investi-
gated a case where contour length fluctuations are large (∆/N
= 50%). This we think can be understood by recalling that
as we analyzed in Ref. 9, mechanical balance mitigates the
effect of disorder by systematically reducing the fluctuations of
stretch ratios as compared with those of contour lengths. Now,
the thermodynamic force driving the formation of helices,
∂Fij/∂nij, is only a function of the stretch ratio of coil seg-
ments, xij = (rij � γanij)/a(N ij � nij), and hence is not directly
sensitive to the fluctuations of N ij itself. Of course, we expect
that the fluctuations of xij’s increase with their helix content,
hence that disorder effects become more significant at a high
average helix fraction. This is indeed the trend observed on the
top curves of Fig. 1.

At all temperatures, φh is seen to converge towards equi-
librium values that, as expected, increase with decreasing

FIG. 1. The helix fraction φh vs t/τ0 after a quench from the high-T zero-
helix state for: our homogeneous (black) and disordered (green) networks,
and our model of independent 2D chains (blue).

α, i.e., decreasing T. Noticeably, the reduced time of con-
vergence towards the equilibrium plateau (a rough estimate
of the relaxation time) grows very rapidly, from hundreds
to several thousands, with decreasing temperatures. Since
times are reported in units of τ0, this entails that relax-
ation slows down considerably faster than the elementary
activation process—a central feature of the experimental
behavior.

The question now is to identify the physical origin of this
slowing down and in particular to test the possible role of elas-
tic couplings. In view of the weakness of disorder effects on
the regime of our interest, we concentrate from now on the
“homogeneous” problem and compare its relaxation dynam-
ics with that of a model of independent chains which all have
the monomer number N = 100 and a common end-to-end
distance equal to the network mesh size ξ = 30a. The latter
problem can be formulated in terms of the master equation
for the distribution Pn of the helix monomer number n on
a chain,

∂Pn

∂t
= R+

n−1 Pn−1 + R−n+1 Pn+1 −
(
R+

n + R−n
)

Pn, (10)

where in accordance with Eqs. (6) and (8), the rates are given
by

R±n = τ
−1
0 exp

[
−
∆F±n
2kT

]
,

∆F±n = F(n ± 1; ξ) − F(n; ξ).

(11)

Equation (10) is valid for n = 0 with the boundary condition
R−0 = 0, P

�1 = 0. The accessible range of n’s is formally lim-
ited upward by the conditions n ≤ N and |x| < 1, either of
which may prescribe the maximum value nmax, depending on
model parameters; at this point, the boundary condition reads
R+

nmax
= 0, Pnmax+1 = 0.

As seen in Fig. 1, the predictions of this independent
chain approximation for the growth of the average helix frac-
tion starting from the zero-helix initial state (blue lines) fit
remarkably to those of the full network simulation. We thus
conclude that in our system, elastic couplings are completely
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irrelevant. This suggests that the mechanical equilibration fol-
lowing a helix-coil transition affects only very weakly the rates
of subsequent events.

To understand why this holds, let us consider an arbi-
trary event, e.g., nij → nij + 1. Immediately after the bar-
rier crossing, the strand tension tij = ∂Fij/∂rij varies by
δtij = (∂tij/∂nij) × 1 = ∂2Fij/∂rij∂nij. To recover mechani-
cal balance, the network deforms, and the associated strain
field decreases (as 1/r2 in 2D) with distance from the event.
The biases induced by these strains are maximal on the impli-
cated strand itself, which stretches by δrij ' δtij/keff

ij , with

keff
ij an effective stiffness; they hence cause at most a rela-

tive variation of transition rates: δR±nij
/R±nij

= −δ(∆F±ij )/2kT
' (∂∆F±ij /∂rij)×δrij/2kT . Finally, using∆F±ij ' ±∂Fij/∂nij, it
comes to

δR±nij

R±nij

'
1

2kT
1

keff
ij

*
,

∂2Fij

∂rij∂nij

+
-

2

. (12)

At the small helix fractions of interest, the order of magnitude
for this quantity can be estimated at small stretch ratios so
that w(x) ' x2 [see Eqs. (2) and (3)] and in the limit where
all nij’s vanish. Under these conditions, keff

ij is the value in
an elastic network with identical bonds; for a 2D triangular
network, it reads16 keff

ij = (2/3) ∂2Fij/∂r2
ij. Finally, we obtain

for the maximum relative variation of transition rates induced
by elastic strains

η ≡
δR±nij

R±nij

∼
a
`pN

(
ξ

Na
− γ

)2

. (13)

For our choice of parameters, η ' 10�5, which explains the
weakness of elastic coupling effects. In the gels studied in
Ref. 1, where ξ ' 30a and N a few hundreds, the quantity
( ξNa − γ)2 . 10−1, which yields an upper bound of at most
10�4 for η. This leads us to conclude that elastic couplings are
irrelevant to the helix-coil dynamics.

III. SINGLE CHAIN DYNAMICS AT SMALL
HELIX FRACTIONS

This conclusion suggests that the experimentally observed
relaxation dynamics is governed solely by the dynamics of
helix-coil transitions for an ensemble on independent and iden-
tical chains. We thus focus from now on the model defined in
Eqs. (10) and (11). But, anticipating on the coming compari-
son with experiments, we extend this model to 3D, in which
case w ′ is the inverse of the Langevin function, and w can be
approximated as17

w(x) =
1
2

x2 − log
(
1 − x2

)
. (14)

We choose parameters that correspond to gels with gelatin con-
centration cgel = 5 wt. % and a shear modulus G = 1400 Pa.
For our chemically crosslinked networks, the functionality (the
number of strands connected at a node) f = 4 and the number
densities of cross-links (ν) and strands (νstr) are related by νstr

= 2ν. We estimate ν using the phantom network expression18

for the shear modulus, G = ( f � 2)/f × νkT = νkT /2. The num-
ber of monomers per strand N = νmon/νstr, with the monomer
number density νmon = cgelρw/mmon, where ρw and mmon are,

respectively, the water mass density and the monomer mass.
Taking the average molar mass of residues on gelatin to be 80
Da,19 we find N ' 285.

To estimate the end-to-end distance ξ of a strand, we recall
that at small stretch ratios the shear modulus of an elastically
isotropic network is very well approximated by G ' �Pchain,9

with Pchain the pressure carried by the network, which can
be estimated as Pchain = − 1

3V

∑
i<j rij∂Fij/∂rij ' −(νstr/3)

× 〈rij∂Fij/∂rij〉rij=ξ = −νkT ξ2/(Na`p). On this basis, we
fix

ξ =

√
Na`p

2
(15)

which is of order 31a for N = 285 and `p = 7a.

A. Relaxation of the helix fraction after a quench

The evolution of the helix fraction as a function of time,
after a quench from the high-T, zero-helix, state is reported in
Fig. 2(a) for the 3D version of our model and various values of
α, corresponding to equilibrium helix fractions ranging from
3% to 18%. The φh vs t/τ0 curves show the same qualitative
behavior as found earlier in 2D: both the equilibrium helix
fraction and the relaxation time scale grow with decreasing α.
The plot in Fig. 2(b) of the departures δφh = φ

eq
h −φh from the

thermodynamic equilibrium values φeq
h shows that relaxation

slows down considerably with decreasingα (i.e., temperature).
Moreover, our data feature the same qualitative behavior as
observed in stress relaxation experiments, namely,

• as illustrated in Fig. 2(c) for α = 0.07, all δφh curves
exhibit a final exponential decay [δφh ∼ exp(�t/τf )]
preceded by a stretched exponential behavior [δφh

∼ exp(−(t/τK ) β)] with Kohlrausch exponents<1 (here,
β = 0.63 ± 0.02);

• the characteristic times τf and τK grow much more
rapidly with decreasing α than the basic time scale τ0

which sets the clock for the activated dynamics [see
Fig. 2(d)].

It is striking, moreover, that, since τ0 ∼ 10-20 s12 in the tem-
perature domain studied in Ref. 1, the relaxation times τf and
τK turn out to lie in ranges that compare quite well with exper-
imental data for G = 1400 Pa. Altogether, our model hence
captures all the main features identified from the experimental
stress relaxation dynamics.

B. Slowing down mechanism

The question now is to understand more specifically
the nature of the mechanism responsible for the rapid slow-
ing down that occurs when cooling over an α range where
equilibrium helix fractions remain quite small.

The reduced strand free-energy F/kT at fixed end-to-end
distance ξ [given by Eq. (15)] is plotted in the inset of Fig. 3 for
all ourα’s. In all cases, F/kT grows monotonously with n hence
its minimum value corresponds to the zero helix state: our
parameter range lies above (in terms of α and T ) the helix-coil
mean-field transition point, where the slope F ′(0) = ∂F/∂n|n=0

vanishes, and its minimum shifts to finite n’s. As the transition
point is approached from above, F ′(0) noticeably decreases,
thus causing a broadening of the equilibrium distribution Peq,
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FIG. 2. Relaxation towards equilib-
rium in our 3D model of independent
chains. (a) The helix fraction φh vs t/τ0
for α = 0.015, 0.03, 0.05, 0.07, 0.09,
0.12, as labeled. (b) The correspond-
ing departures from asymptotic values
δφh = φ

eq
h −φh vs t/τ0. (c) δφh vs t/τ0

for α = 0.07 (solid orange line) fitted,
at large times, by an exponential (solid
line: ∼exp(�t/τf ) with τf ' 590τ0) and,
in the early regime, by a stretched expo-
nential (dashed line ∼ exp(−(t/τK )β )
with τK ' 190τ0 and β = 0.63); the
crossover occurs around τco ' 1500τ0.
(d) Normalized final relaxation times
τf /τ0 (full circles) and stretched expo-
nential times τK /τ0 (empty squares) vs
α (dashed-dotted lines are guides to the
eye).

which is plotted (left axis, dashed lines) in the main frame
of Fig. 3 for our two extremal values of α: 0.12 (black) and
0.015 (red). Slowing down is concomittant with a significant
broadening of the equilibrium distribution, i.e., with the growth
of pre-transitional fluctuations.

In order to illustrate the sensitivity of the relaxation
timescale to the initial slope F ′(0), we solve analytically in
the Appendix the independent chain model within the linear
approximation F = F(0) + kTλ n, where

λ =
F ′(0)

kT
= α − αc (16)

FIG. 3. Inset: F/kT vs n for the same α’s as in Fig. 2(a). Main panel: For
our two extremal α values (0.015 and 0.12), the equilibrium distribution Peq

(dashed lines, left axis) and F/kT (solid lines, right axis) vs n.

with

αc ≡
a

2`p

[
w(x0) − (x0 − γ) w ′(x0)

]
(17)

and x0 = ξ/(aN).
We find that the relaxation of the mean helix fraction

φh =

∞∑
n=0

n
N

Pn(t) (18)

towards its equilibrium value is given by

δφh ≡ φ
eq
h − φh(t)

=
1

2πN

∫ s+

s−

dη
e−ηt

η2

√
(η − s−)(s+ − η). (19)

That is, the spectrum of relaxation times extends over the finite
interval between τmin = s−1

+ and τmax = s−1
− , with

s± = 2τ−1
0

[
cosh

(
λ

2

)
± 1

]
. (20)

It immediately follows that at times �τmax, the asymp-
totic behavior is exponential, with the characteristic time τmax.
Since the latter identifies with our final time, τf therefore
reads

τf =
τ0

2
(
cosh

(
λ
2

)
− 1

) . (21)

In the small λ limit, τmin saturates to τ0/4 while the final time
τf diverges as

τf ∼
4τ0

λ2
=

4τ0

(α − αc)2
. (22)
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That is, as α (or temperature) decreases towards the helix-coil
transition point of a strand, the broadening of the equilibrium
distribution with decreasing F ′(0) results in the slowing down
of relaxation.

In this linear approximation, however, fluctuations are
grossly overestimated upon approaching the transition point
α = αc: in reality, each strand contains a finite number of
monomers, hence the width of the distribution of n cannot
grow indefinitely. As is well-known, neither fluctuations nor
relaxation time diverge at the nominal transition point in finite
size systems.

IV. STRESS RELAXATION

The previous discussion gives us solid grounds for study-
ing stress relaxation using the independent strand model. As
before, strands have the same number of monomers N = 285
and the length ξ ' 30a fixed by Eq. (15) that corresponds
to a cgel = 5 wt. % gel with shear modulus G = 1400 Pa.
We monitor the evolution of the macroscopic shear stress
after a step strain of amplitude ε is applied, in the xz plane,
to an initially unloaded state. The initial orientation vectors
r0/ξ = (cos ϕ sin θ, sin ϕ sin θ, cos θ) are supposed to be
uniformly distributed on the sphere since the unloaded gel
is isotropic. In the strained state, strand end-to-end vectors
are

r ≡ *.
,

x
y
z

+/
-
= ξ

*.
,

cos ϕ sin θ + ε cos θ
sin ϕ sin θ
cos θ

+/
-

. (23)

The time-dependent shear stress reads

σ ≡ σxz = νstr

〈
∂F
∂r

xz
r

〉
(24)

with νstr as the number of strands per unit volume. Since F/kT
is fully set by the parameter α, the model yields σ/(νstrkT )
values, from which stress is obtained using νstrkT = 4G, with
G = 1400 Pa.

A. Sensitivity of stress response to the initial
helix content

Using this model, we study stress relaxation following
two different protocols:

(A) The system, initially unloaded and in the zero-helix
state, is simultaneously quenched to the target temper-
ature T and loaded at strain ε.

(B) The unloaded system is initially in equilibrium at the
target temperature and then loaded instantaneously at
strain ε.

In both cases, loading is applied at t = 0, with the same strain
amplitude ε = 0.2 as in the experiments of Ref. 1.

We report in Fig. 4(a) the subsequent evolutions of σ for
a temperature corresponding to α = 0.07. The final stress is
naturally the same in both cases since the same equilibrium
under strain is reached. The initial stress levels, however, dif-
fer conspicuously, which reveals that the initial, zero-helix,
state of protocol (A) has a much higher instantaneous elastic
modulus than the unloaded equilibrated stated at the target α
value, which contains a finite fraction φeq

h = 5.3% of helices.
This is in keeping with the analysis of Ref. 9, which shows that
the shear modulus of the isotropic system is very well approx-
imated by G ' �Pchain, where �Pchain = (νstr/3) × 〈r∂F/∂r〉 is
the pressure due to chain tension: indeed, so long as γNa > r
—which is the case for gelatin gels in the range of moduli
of interest—the chain tension ∂F/∂r, and hence the shear
modulus decreases with helix content. Accordingly, while in
protocol (B) stress relaxation is only caused by the adapta-
tion of strand helix contents to their strain-induced changes of
elongations, the much larger stress drop seen in protocol (A)
results predominantly from the strong increase in helix content
upon thermal quenching.

We plot in Fig. 4(b) the departure ∆σ = σ � σ∞ of
the stress from its asymptotic value. Both curves present
a final exponential decay, with a common relaxation time
τf ' 596τ0 which, as it should, is for all purposes identical
with the value identified from the relaxation dynamics of the
unstrained system (see the caption of Fig. 2). In both protocols,
the early decay departs from a simple exponential. In proto-
col (A)—as in experiments—it clearly matches a stretched
exponential regime (with τK /τ0 ' 690 and β ' 0.62). In pro-
tocol (B), however, the amplitude of this departure is very
small, and the stretched exponential fit (with τK /τ0 ' 1090 and
β ' 0.93) is much less meaningful. The sharp difference in the
measured exponents reflects that the distribution of weights of
the various modes of the broad relaxation spectrum depends
sensitively on the initial state.

FIG. 4. Stress relaxation curves in
response to a step strain ε = 0.2 for
protocols (A) and (B), at a tempera-
ture corresponding to α = 0.07. (a): σ
vs t/τ0. (b): ∆σ = σ � σ∞ vs t/τ0
(thick orange lines). The thin solid black
lines are exponential fits in the termi-
nal regime. The dashed blue lines are
stretched exponential fits of the early
response.
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TABLE I. For each temperature: measured total stress drop and final relax-
ation time, and estimated corresponding model parameters (see main text).

Experimental data Estimated values

T (◦C) ∆σ (Pa) τf (s) τ0 (s) α

30 12.1 10 500 7 0.034
32.5 4.8 4 027 5.4 0.061
35 2.35 1 533 4.3 0.097
40 1.85 677 2.6 0.117
45 1.71 320 1.7 0.136

B. Comparison with experiments

The experiments reported in Ref. 1 used the follow-
ing protocol: starting from 70 ◦C, the unloaded sample was
quenched to the target temperature T (between 30 and
45 ◦C). The strain step was applied at the end of the thermal
transient.

The total duration of the quench and following thermal
transient is typically 200 s. On the one hand, this is smaller than
all the reported final relaxation times. Hence, in all cases, the
initial state was not equilibrium at the target temperature. On
the other hand, except at the lowest temperature, this duration
is non-negligible compared with the reported relaxation time
scales so that protocol (A) (zero helix content when loading is
applied) is not experimentally realizable.

In view of the high sensitivity of stress relaxation to
initial conditions identified above, a meaningful test of our
model can be based only on experimental data obtained from
a well-defined initial unloaded state. For this purpose, we have
performed a new set of experiments, conducted as described in
Ref. 1, except for one difference: we let the system approach
as much as possible equilibration at the working temperature
before loading. In view of the limits imposed by solvent evap-
oration and enzymatic degradation1 to the full duration of an
experimental run, a manageable choice consists in waiting a
time 2τf after the end of the thermal quench before loading.
The data thus obtained for τf and the total stress drop ∆σ are
reported in columns 2 and 3 of Table I.

The main difficulty we face when proceeding to a test of
our predictions against these data is that temperature does not
enter the model explicitly but indirectly via the two parameters
τ0 and α. The former is the Arrhenius time for the controlling

FIG. 6. Comparison of stress drop experimental data (red open squares) with
model predictions (full symbols) for initial conditions corresponding to proto-
col B (equilibrium at working temperature, black circles) and to the partially
relaxed state reached at 2τf starting from the zero helix state (blue triangles).

cis-trans peptide bond isomerization. We will evaluate τ0(T )
considering that it is '12 s at 25 ◦C and that the corresponding
activation energy barrier '80 kJ/mol.11,12 The second param-
eter, α, defined in Eq. (9), is a measure of the free-energy
difference between the helix and coil states, which vanishes at
the helix-coil transition temperature T0 of the (infinitely long)
polymer chain. About its temperature dependence, we only
know that its growth with T is quasi-linear near T0, the value
of which is unknown. Hence a mapping between α and T has
to be inferred from our own data.

This is performed as follows: for a given temperature,
using the experimental τf and our estimate of τ0(T ), we com-
pute τf /τ0(T ); we then interpolate the numerical τf /τ0 vs α
curve, shown in Fig. 5(a), to infer the α value that corresponds
to the chosen temperature (see Table I, last column). Using
the curve in Fig. 5(b), we then obtain a predicted value for the
stress drop ∆σ at that temperature.

Note that in principle we could as well have used the ∆σ
curve to infer the α values and then compare the predicted and
measured τf /τ0(T ) data. The reason for our choice is that the
τf value is independent of the initial state, which as discussed
above, is difficult to fully control experimentally.

As seen in Fig. 6, the model-predicted ∆σ values com-
pare very favorably with experimental data. Indeed, not only
does the model capture the overall shape of ∆σ(T ) but, more
importantly, the predicted values of the stress drop lie in the

FIG. 5. Model predictions for the
reduced final relaxation time τf /τ0
(a) and for the stress drop ∆σ (b).
Black circles denote numerical data
points, and solid lines show their cubic
interpolation. (a): Red squares are the
points where the τf /τ0 curve achieves
the values estimated from experimental
data (see main text). The corresponding
α values are reported in the inset as a
function of T.
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correct range. The predicted values, however, are systemati-
cally smaller than experimental ones, a discrepancy that might
originate, at least in part, from the lack of full equilibration in
the experimental initial state. In order to evaluate the impor-
tance of this effect, we performed, with the model, stress
relaxation tests in which, for each α, loading was applied
after letting the unloaded system relax from the zero helix
state during a time 2τf , like in experiments. The resulting ∆σ
values, reported as triangles in Fig. 6, show that, indeed, at
the lower temperatures, the departure from full equilibration
induces an increase of ∆σ, which turns out to be a sizeable
fraction of its value for protocol B. Since the helix content
in the partially relaxed states turns out to differ by at most
.6% from its equilibrium value, this observation emphasizes
the high sensitivity of stress drop measurements to initial
conditions.

V. CONCLUSION

In summary, we have here shown that because gelatin is a
rather flexible polymer, both collective elastic effects and the
disorder in strand contour lengths have a negligible influence
on the rates of helix-coil exchange processes. This led us to
analyze in detail the effect of helix-coil transition dynamics
on stress relaxation in a model of independent strands, which
was found to explain the experimentally observed functional
form of the relaxation, namely, a stretched exponential fol-
lowed by a terminal exponential. Moreover, the model predic-
tions concerning both the final relaxation time and total stress
drop can be very satisfactorily matched with experimental
results.

This supports that despite its schematic character, the
model captures the main mechanism that leads to the slow
stress relaxation dynamics observed in chemically crosslinked
gelatin gels. On this basis, we conclude that the temper-
ature range where glass-like relaxation is experimentally
observed lies near but above the helix-coil transition tempera-
ture of individual strands and that, in this regime, slowing-
down is a signature of the enhancement of helix content
fluctuations upon approaching the helix-coil transition of
strands.

In a broader perspective, it must be emphasized that
the stress relaxation studied here presents empirically the
very same behavior as the dielectric response following ther-
mal jumps evidenced by Hecksher et al.5 in a set of five
organic glasses close below the glass transition temperature.
Namely, in both cases, relaxation presents an initial stretched-
exponential regime which crosses over to a final exponen-
tial decay. In both cases, the transient stretched-exponential
decay is a non-linear response effect, which vanishes with the
amplitude of jumps, and depends on the distribution of the
weights of various relaxation modes in the initial state before
quench.

However, the respective physical mechanisms underly-
ing these two situations have hardly anything in common. In
our gels, we showed that neither structural disorder (contour
lengths) nor long-range couplings are involved in defining the
dynamics, which is entirely controlled by processes occurring
on well-defined, finite-sized, independent sub-units, which

are polymer strands. By contrast, in glasses, while structural
disorder is essential, it has never been possible, up to now,
to justify a separation into independent sub-units, and it is
not known whether terminal exponential relaxation is a gen-
eral or a specific feature. The comparison between these two
situations hence, we think, points to the difficulty of draw-
ing from the empirical similarity of glass-like dynamical
responses any direct conclusion about a possible universality
of underlying mechanisms.
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APPENDIX: RELAXATION OF HELIX FRACTION
IN THE LINEAR POTENTIAL APPROXIMATION

In this appendix, we compute the explicit expression for
the evolution of the helix fraction in the model defined by
linearizing the strand free-energy in n as defined in Eqs. (16)
and (17). The rates [Eq. (11)] which then reduce to

R±n = τ
−1
0 e∓λ/2 (A1)

are now n-independent. Introducing

R+ = τ−1
0 e−λ/2 and R− = τ−1

0 eλ/2, (A2)

the reduced problem reads

∂P0

∂t
= −R+ P0 + R− P1,

∂Pn

∂t
= R+ (Pn−1 − Pn) + R− (Pn+1 − Pn) for n ≥ 1.

(A3)

Its equilibrium distribution can be written as

Peq
n =

(
1 −

R+

R−

) (
R+

R−

)n

(A4)

and the equilibrium helix fraction is

φ
eq
h =

1
N

R+

R− − R+
. (A5)

To study relaxation following a thermal quench, we solve
these equations with the initial condition,

Pn(t = 0) = δn0 (A6)

with δ the Kronecker symbol. The generating function,

Φ(ϕ, t) =
∑
n≥0

einϕ Pn(t), (A7)

verifies the initial condition Φ(ϕ, t = 0) = 1 and obeys

∂Φ

∂t
= f (ϕ)Φ(ϕ, t) + g(ϕ) P0(t) (A8)

with

P0(t) =
1

2 π

∫ 2π

0
dϕΦ(ϕ, t) (A9)

and

f (ϕ) = R+ (eiϕ − 1) + R− (e−iϕ − 1),

g(ϕ) = R− (1 − e−iϕ). (A10)
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The Laplace transform Φ̃(ϕ, s) = ∫
∞

0 dt e−st Φ(ϕ, t) verifies

s Φ̃(ϕ, s) − Φ(ϕ, t = 0) = s Φ̃(ϕ, s) − 1
= Φ̃(ϕ, s) + P̃0(s) g(ϕ),

(A11)

where

P̃0(s) =
1

2 π

∫ 2π

0
dϕΦ̃(ϕ, s). (A12)

Equation (A11) solves as

Φ̃(ϕ, s) =
1

s − f (ϕ)

[
1 + g(ϕ)P̃0(s)

]
(A13)

which fully determines Φ̃ after computing P̃0(s) self-
consistently by integration over ϕ,

P̃0(s) =
I

1 − J
(A14)

with

I =
1

2π

∫ 2π

0
dϕ

1
s − f (ϕ)

,

J =
1

2π

∫ 2π

0
dϕ

g(ϕ)
s − f (ϕ)

.
(A15)

Introducing the notations

s± = R+ + R− ± 2τ−1
0 = 2τ−1

0

[
cosh

(
λ

2

)
± 1

]
(A16)

and
∆(s) = (s + s+)(s + s−), (A17)

we find

I =
1
√
∆

J =
1

2
√
∆

[√
∆ − s +

√
s+s−

]
,

(A18)

where
√
∆ is defined to be positive for s real positive.

The mean helix fraction,

φh =

∞∑
n=0

n
N

Pn(t), (A19)

has the Laplace transform,

φ̃h(s) = −
i
N

∂Φ̃

∂ϕ
(ϕ, s)

������ϕ=0

=

√
∆ − s −

√
s+s−

2s2
. (A20)

The singularities of φ̃h(s) in the complex s-plane are

• a simple pole at s = 0 with residue φeq
h [Eq. (A5)],

• a branch cut on the negative real interval [�s+, �s
�

].

Integrating over the Bromwich contour yields for the inverse
Laplace transform,

φh(t) = φeq
h −

1
2πN

∫ s+

s−

dη
e−ηt

η2

√
(η − s−)(s+ − η). (A21)

The long-time asymptotic behavior is obtained by intro-
ducing t̃ = ts− and performing the change of variable z = η/s

�

� 1,

δφh(t) = φeq
h − φh(t)

=
e−t̃

2πN

∫ s+
s−
−1

0
dz e−zt̃

√
z
(

s+
s−
− 1 − z

)
(1 + z)2

. (A22)

In the t̃ � 1 limit, the leading contribution to the integral
comes from the immediate vicinity of the z = 0 lower bound
so that

δφh(t) '
1

4
√
πN

√
s+

s−
− 1

e−t̃

t̃3/2
. (A23)

More precisely, we find the asymptotic behavior

δφh(t) '
1

2
√
πN

√
τf

τ0

( τf

t

)3/2
e−t/τf . (A24)
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