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Abstract.

This review surveys the different theoretical approaches, used to describe inelastic

and rearrangement processes in collisions involving atoms and ions. For a range of

energies from a few meV up to about 1 keV, the adiabatic representation is expected

to be valid and under these conditions, inelastic and rearrangement processes take

place via a network of avoided crossings of the potential energy curves of the collision

system. In general, such avoided crossings are finite in number. The non-adiabatic

coupling, due to the breakdown of the Born-Oppenheimer separation of the electronic

and nuclear variables, depends on the ratio of the electron mass to the nuclear mass

terms in the total Hamiltonian. By limiting terms in the total Hamiltonian correct to

first order in the electron to nuclear mass ratio, a system of reaction coordinates is

found which allows for a correct description of both inelastic channels. The connection

between the use of reaction coordinates in the quantum description and the electron

translation factors of the impact parameter approach is established. A major result

is that only when reaction coordinates are used, is it possible to introduce the notion

of a minimal basis set. Such a set must include all avoided crossings including both

radial coupling and long range Coriolis coupling. But, only when reactive coordinates

are used, can such a basis set be considered as complete. In particular when the

centre of nuclear mass is used as centre of coordinates, rather than the correct reaction

coordinates, it is shown that erroneous results are obtained. A few results to illustrate

this important point are presented: one concerning a simple two-state Landau-Zener

type avoided crossing, the other concerning a network of multiple crossings in a typical

electron capture process involving a highly charged ion with a neutral atom.



Djamal Rabli and Ronald McCarroll 2

1. Introduction

Ever since the early days of quantum mechanics, it has been known that an

adiabatic representation of the transition state complex formed in the collision of two

atomic systems provides an excellent framework for the description of inelastic and

rearrangement processes when the relative kinetic energy of the collision partners is

lower than a few keV/amu. In this picture, collision processes leading to an electronic

transition occur via the non-adiabatic coupling between those adiabatic states correlated

to the the entry and exit channels. Non-adiabatic couplings are important not only in

the vicinity of avoided crossings involving states of the same symmetry but also in

the asymptotic region where states of different symmetry become degenerate. As a

general rule only a few states are strongly coupled. This leads to a high degree of state

selection, which greatly reduces the number of adiabatic reaction channels required to

describe the collision process. For many systems, a two state adiabatic representation

often gives a satisfactory description of the dominant reaction channel. Indeed the

simple Landau-Stuckelberg-Zener model [1, 2, 3] based on a knowledge of the minimum

energy separation at the avoided crossing, proved to be successful in providing reasonable

estimates of electron capture cross sections in low energy ion-atom collisions. But more

generally, when a multi-state basis is required, the number of interacting states rarely

exceeds more than 5 or 6.

Unfortunately, in spite of the attractive features of the adiabatic representation

in a qualitative understanding of the collision mechanisms, quantitative applications

encounter severe problems. Non-adiabatic couplings depend on the choice of coordinates

used to separate the adiabatic variables. For example, in an adiabatic representation of

the 3-body problem consisting of 2 nuclei and an electron e, a common choice is to use as

independent variables, the vector R connecting the 2 nuclei and the vector r connecting

the centre of mass of the nuclei (CMN) with the electron. In this coordinate system, the

kinetic energy operator of the system contains cross-derivative terms with respect to r

and R, which leads to the intertwining of a large number of basis functions leading to

a slow convergence of the basis set and in some cases to the existence of non-vanishing

asymptotic matrix elements, which make it rigorously impossible to extract a scattering

matrix from the dynamical equations.

So it was not surprising that the first attempt by Bates et al. [4] to develop a

theoretical model using an adiabatic basis, inspired by the perturbed stationary state

(PSS) method proposed by Mott [5], ran into severe difficulties. In particular, the use of

Jacobi coordinates, used to describe the adiabatic state, made it impossible to satisfy the

correct asymptotic conditions necessary for the extraction of the scattering amplitudes

and the cross sections. However, it was realised that a considerable simplification could

be achieved in the case where the collision energy was much greater than the energy of

the bound electrons involved in the excitation or rearrangement process. Typically, at

the time, most experimental measurements concerned ions with energies greater than

100 eV for which the scattering angles were less than a few degrees (< 3◦). On the other
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hand, for ion energies up to a few keV, the collision velocity was sufficiently small to

utilize an adiabatic representation of the collision system. It was legitimate to assume a

classical rectilinear trajectory for the nuclear motion, thereby transforming the original

stationary state Schrödinger equation to a time-dependent problem for a given classical

impact parameter‡. (In this respect, it should be observed that the impact parameter

method is not strictly equivalent to a semi-classical method). But while the impact

parameter approach did indeed simplify some aspects of the collision process, it did not

solve the problem of representing rearrangement collisions (such as charge exchange),

in an adiabatic representation, since then, the results are not invariant with respect

to the time origin. To overcome this problem, it proved necessary to introduce the

notion of electron translation factors (ETF) [7]. However, apart from constraints on

their asymptotic form, there was no unique way to define such ETF in any rigorous

way and over the course of the following two decades, many variants of ETF were

investigated. As originally formulated, the inclusion of state dependent ETF proved

to be unworkable with no guarantee of success. The first breakthrough came by the

introduction of state independent factors depending on a switching function [8], chosen

to be such that the required asymptotic conditions were respected. The optimal form of

the switching function designated as a common translation factor (CTF), first introduced

by Errea et al. [9], proved to be the most efficient form of translation factor and has been

used extensively with success ever since in calculations based on the impact parameter

approach. However, the development of theoretical investigations of translation factors

is now mainly of historical interest and the reader is referred to a more detailed discussion

given in the book by Bransden and McDowell [10]. See also a more recent review by

Errea et al. [11].

In retrospect, it seems surprising that the problem associated with the impact

parameter method has taken so long to be resolved. Recently, Solovev [12] pointed

out that the solution of the time-dependent impact parameter equation involves

the superposition of nuclear motions of different channels with significantly different

momenta. In consequence, a unique time for all channels does not exist. For this reason

the notion of a single classical trajectory fails to describe correctly the collision process

without the empirical introduction of translation factors. It is also worth stressing the

principal characteristics of impact parameter methods. Their most notable property is

that the total cross section, which depends only on the amplitude of the probabilities

scales with the collision velocity. So if the velocity dependence of the cross sections

is known for one isotopic species, it can be deduced for all isotopes. For this reason,

impact parameter methods are efficient for the calculation of total cross sections. On

the other hand, the differential cross section depends also on the phase of the transition

probabilities and so depends on the isotopic mass. Therefore when differential cross

sections are required, it is more practical to use a quantum mechanical formulation [13].

Prior to the 1980s, most atomic collision experiments were primarily concerned with

‡ For an exhaustive to the impact parameter method see the review of Solovev [6]
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the processes of excitation, ionization and charge transfer occurring in the interaction

of ion beams with atoms in the energy range of a few hundred eV to a few keV. In this

energy range, both the impact parameter method and an adiabatic basis are appropriate.

So it was not very surprising that little attempt was made before the late 1970s to

develop a consistent quantum mechanical formulation of the collision process, which

would have avoided the necessity of introducing what appears as the notion of arbitrary

electron translation factors inherent to the impact parameter method. However, in the

late 1970s, new experimental techniques using ion-sources allowing for the production

of slow multiply charged ion on a variety of atomic and molecular targets, opened up

new fields relevant to the study of astrophysical and high temperature fusion plasmas.

A little later, the development of techniques using merged ion beams made it possible

to study very low energy collisions with a precision allowing for a sensitive test of the

theoretical models. So it became imperative to develop a purely quantum mechanical

approach.

The first successful formulation was given by Thorson and Delos [14]. See also the

exhaustive review of Delos [15]. This involved the introduction of reaction coordinates,

originally proposed by Mittleman [16], which are defined in such a way that these

new coordinates become the appropriate atomic frame coordinates in each asymptotic

channel, while in the strong interaction region provide a coordinate system locally

adapted to the molecular region. This approach is fully quantum-mechanical and no

reference to electron translation factors is required. In their work, Thorson and Delos

had in mind a typical isotopic system such as the charge exchange reaction H++D →
H + D+, a system which is electrically symmetric, for which the molecular electronic

states are parity eigen-functions, just like those of H+
2 , since the electronic Hamiltonian

is symmetric. The small isotopic difference in D and H binding energies can be assumed

to be negligible. But Thorson and Delos pointed out that when the centre of mass of the

nuclei is chosen as origin of coordinates, the mass asymmetry parameter of the reaction

would lead to a non-adiabatic coupling. This is clearly incorrect.

In this review, a simplified presentation of the approach used by Thorson and

Delos [14] is given, based on a coordinate system of Eckart-type coordinates [17] which is

correct to first order of the ratio of the electron-nuclear mass ratio. The main advantage

of this procedure is that it preserves the use of an adiabatic basis set with a relatively

simple modification of the non-adiabatic coupling operators. However, In spite of the

concordance of the quantum mechanical formulation (with the appropriate reaction

coordinates) and the impact parameter method (using the corresponding translation

factors), there still remained the problem of the completeness of the basis set. It was

clear from the early calculations using either the impact parameter with inappropriate

translation factors or quantum calculations with the standard Born-Oppenheimer

conditions that the basis set was incomplete. But, a direct test of the convergence

of the basis set is not simple since an infinite number of bound and continuum adiabatic

states may be needed to represent the asymptotic conditions correctly. Comparison

with experiment is, of course helpful, but the precision of experimental cross section
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measurements is rarely sufficient to make a critical comparison of theory and experiment.

To test the convergence of the basis set, one way to proceed is via a standard unitary

transformation, of the kind introduced by Smith [20] to eliminate the cross diagonal

terms of the kinetic energy operator from the coupled equations. This procedure is often

referred to as an adiabatic/diabatic transformation. Although such a diabatic basis has

no very precise physical meaning, it does have the practical advantage of simpifying

the numerical solution of the differential equations. However, for such a basis set to

be meaningful, the non-adiabatic coupling to states outside the minimal basis must

be negligible. This procedure was adopted in the work of Rabli and McCarroll [19]

concerning the C4+/H system, where the main objective was to demonstrate that the

notion of a minimal basis set is valid when reaction coordinates are used. Their results

indicated that indeed all of the spurious asymptotic couplings which arise in the case of

a Jacobi coordinates are indeed removed, but only when the correct reaction coordinates

are used. And it was found that when the appropriate reaction coordinates were not

used, the basis set was not complete. This result explained why even for a simple

Landau-Zener avoided crossing, the choice of the appropriate reaction coordinates in a

quantum calculation (or the equivalent CTF in an impact parameter method) is essential

to obtain a meaningful result.

Prior to these considerations related to the necessity of ensuring a complete basis

set, there had been for some considerable time a general consensus on the precaution to

be taken in the calculation of crosss-sections of inelastic and rearrangement processes

in ion-atom collisions using an adiabatic basis: either a fully quantum mechanical

approach,using the reaction coordinates [14], involving a sum over all angular momenta,

or a semi-classical approach with common translation factors involving an integration

over all impact parameters. Two comprehensive reviews of the state-of-the art methods

at that time were published , one by McCarroll [21] on the quantum mechanical

methods, the other by Errea et al [11] on impact parameter methods, indicated that

both approaches were valid and in good agreement with experimental measurements.

But at the time, the notion of a minimal basis set had not been evoked. And it was

only in 2005 that a way of testing the adequacy of the basis set was achieved.

The aim of this review is primarily to highlight the necessity of using correct reaction

coordinates even for the simplest of collision processes involving non-adiabatic coupling

and to show that only under these conditions can the completeness of the basis set be

guaranteed. For that reason, it did not appear neccessary to include material which

had already been treated adequately either in earlier reviews [21] [11]or developed in

the book of Bransden & McDowell [10].

Atomic units will be used, except where otherwise stated.

2. Theory

The notion of reaction coordinates (and/or translation factors) arises from the need

to modify the adiabatic basis set in order to describe the kinematics of the reactants
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and the dissociation products correctly. The problem is of particular importance in

rearrangement processes involving the electron capture in ion-atom collisions with an

ion, but it is present even for inelastic processes when an adiabatic representation is

used to describe a many-body collision complex. First of all, we recall briefly how the

reaction coordinates used in this work have been constructed.

Let us consider a system of two ionic cores A and B of masses ma and mb and

an electron of mass me (=1 in atomic units). After separation of the center of mass

motion, the kinetic energy operator takes its simplest form in one of the three Jacobi

coordinates, (r,R), (ra,Ra), (rb,Rb) where ra, rb, r are respectively the position vectors

of the electron relative to A, B and CMN (the center of mass of nuclear cores A and B)

while R,Ra,Rb are respectively the position vectors of B relative to A, of A relative

to the center of mass of (B+e) and of B relative to the center of mass of (A+e). No

single Jacobi system can adequately describe collision processes involving the transfer

of an electron in a state bound initially to A to a state bound finally to B. The initial

state is described by coordinate system (ra,Ra) while the final state is described by the

coordinate system (rb,Rb).

On the other hand, the adiabatic states are defined by a clamped nuclei

approximation (with R fixed), the most natural choice of Jacobi coordinates is (r,R),

which was the choice in the original Born-Oppenheimer separation of the rotation,

vibrational and electronic motion in stable molecules. The total Hamiltonian for the

system can then be written in the form

H = − 1

2M
∆R −

1

2mab,e

∆r + Vint(r,R), (1)

where the operator Vint(r,R) contains all interactions between particles and

M =
mamb

ma +mb

, (2a)

mab,e =
ma +mb

ma +mb + 1
' 1. (2b)

The adiabatic basis set is generated by the Hamiltonian in the clamped nuclei limit,

that is to say, by the electronic Hamiltonian He (with no nuclear kinetic terms)

He = − 1

2mab,e

∆r + Vint(r,R), (3)

whose eigen functions | χj(r, R)〉 and eigenvalues εj(R) are defined by

He | χj(r, R)〉 = εj(R) | χj(r, R)〉. (4)

We may observe that by convention the Oz axis of the reference frame is taken to be in

the direction of R.

The standard treatment of the problem is to expand the total wave-function of the

system Ψ(r,R) by an expansion in the form:

Ψ(r,R) =
∑
n

Fn(R)χn(r, R). (5)
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However, such an expansion, while satisfactory for a description of the system in

the strong interaction region, does not allow for a correct description of either the entry

or exit channel. The defects of the expansion (5) have been discussed at length in many

previous studies [10, 21, 22, 23] and will not be elaborated upon here. But rather than

abandon the notion of an adiabatic basis, a compromise solution is to replace the Jacobi

coordinates (r,R) by some appropriate reaction coordinates (r′,R′) which do allow for

a correct description of both the entry and exit channels. Of course, there is no unique

coordinate system and in this work, we adopt Eckart-type coordinates [17, 18], which

are convenient when, as is the case here, one of the three particles is much lighter than

the other two. Based on Eckart-type coordinates, and which has been used successfully

in many subsequent applications [22, 21].

R′ = Rcosφ+
1√
M

rsinφ, (6a)

r′ = rcosφ+
√
MRsinφ, (6b)

where φ denotes the angle characterizing the 2 × 2 rotation matrix which diagonalizes

the Gram matrix:(
MR2

√
MR.r√

MR.r r2

)
(7)

is given by

tan2φ =
2
√
Mr.R

MR2 − r2
. (8)

Except for very small R, sinφ and cosφ may, to a good approximation, be written

as:

sinφ ' r.R√
MR2

, (9a)

cosφ ' 1− 1

2M
(
r.R

R2
)2. (9b)

Then we have

R′ = R +
1

M
s, (10a)

r′ = r− r.R

R2
R, (10b)

where

s =
r.R

R2
r− 1

2
(
r.R

R2
)2R. (11)

It is easily verified that these coordinates allow for a correct description of the

asymptotic states. The coordinates defined by the relations (2-11) are identical to those

proposed by Thorson and Delos [14].

While the introduction of the (r′,R′) coordinates involves in principle a modification

of the original adiabatic basis, there is no need to explicitly define the modified basis

functions since, as pointed out in [14], they only differ from the original adiabatic basis
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functions by variations of the order of 1/M. For this reason it is sufficient to treat R′ as

the adiabatic coordinate, and replace the expansion (5) by

Ψ(r,R) =
∑
n

Fn(R′)χn(r′, R′). (12)

This form of expansion has the required flexibility to represent correctly the

asymptotic conditions of both the entry and exit channels of the collision complex.

The coupled differential equations for the functions Fn(R′), can be obtained in the

usual way by calculating the action of the total Hamiltonian operator (1) on the total

wave function (12). Of course care must then be taken in calculating ∇RF (R′) and

∇rF (R′). Retaining only the leading term in a 1/M expansion, it is easily established

that:

∇RF (R′) ' ∇RF (R), (13a)

∇Rχ(r,R′) ' ∇Rχ(r,R), (13b)

∇rF (R′) =
1

M
∇RF (R).∇rs, (14a)

∇2
rF (R′) =

1

M
∇RF (R).∇2

rs, (14b)

and

∇rχ(r′,R′) = (15)

(∇r +
1

M
∇R.∇rs)χ(r,R)∇2

rχ(r′,R′) =

[∇2
r +

2

M
A.∇R +

1

M
(∇R.A)]χ(r,R),

where

A = (∇r.s).∇r +
1

2
(∇2

rs). (16)

It should be remarked that the expansion (12) constitutes the essential difference

from the standard adiabatic basis. It leads to the existence of several additional non-

adiabatic coupling terms, which correct for the basic defects the standard adiabatic

separation using Jacobi coordinates. Using (2) and (2), we then have:

− 1

2M
∇2

RFn(R)χn(r, R) =
1

2M
[∇2

RFn(R) + 2∇RFn(R).∇R + Fn(R)∇2
R]χn(r, R). (17)

− 1

2M
∇2

rFn(R′)χn(r, R′) = (18)

−1

2
Fn(R)[∇2

r +
1

M
∇R.A]χn(r, R)− 1

M
[∇RFn(R)]Aχn(r, R).

Combining (16) and (17), and using the fact that | χn〉 is an eigen function of He

with eigen value εn(R), we obtain:

[∇2
R + 2M{E − εn(R)}]Fn(R) + 2

∑
m

[Pnm + Anm]∇RFm(R) +
∑
m

BnmFm(R) = 0,(19)
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where E is the total energy and the matrix elements Pnm, Anm and Bnm are defined as

Pnm = 〈χn | ∇R | χm〉, (20)

Anm = 〈χn | A | χm〉 = (εn − εm)〈χn | s | χm〉, (21)

Bnm = 〈χn | ∇2
R + A.∇R +∇R.A | χm〉 = 〈χn | (∇R + A)2 | χm〉 − 〈χn | A2 | χm〉.(22)

In (22), the term involving Bnm is often neglected because of the mass factor. But it

is known to give a small contribution to some resonance phenomena in photo dissociation

cross sections [24],since it can attain an appreciable size in the vicinity of an avoided

curve crossing. It has therefore been retained in the present work. On the other hand,

the term involving A2 in (22) can be neglected, since it only represents corrections to

the binding energy of the bound electron due to isotopic effects. The equation 19 may

be expressed in matrix form as:

{∇2
R + 2M [E + ε(R)]}F (R) + 2(P + A).∇RF (R) +BF (R) = 0. (23)

In the case of multiply coupled channels, where the adiabatic functions are defined

in the body-fixed frame with Oz in the direction of the internuclear axis R, care must

be taken in computing the gradient and Laplacian operators ∇R and ∇R
2. However, in

the case of a two-state basis; where the states are of the same molecular symmetry Λ,

the Coriolis type coupling arising from the electron angular momentum coupling terms

vanishes and only the radial coupling component of Pnm + Anm contributes to the non

adiabatic coupling. Then, decomposing the functions Fn(R) on a basis set of symmetric

top functions DK
Λ,M(Θ,Φ) according to:

Fn(R) =
∑
K,M

(−)K
√

2K + 1

4π
DK

Λ,M(Θ,Φ)
1

R
f (K)
n (R), (24)

where Θ and Φ are the polar angles of the internuclear axis, we obtain a set of coupled

differential equations for the radial functions f
(K)
n (R) of the form:

[
d2

dR2
+ 2M{E − εn(R)}]f (K)

n (R) + (25)

2
∑
m

〈χm | U | χn〉
d

dR
f (K)
n (R) +

∑
m

〈χm | U2 | χn〉f (K)
n (R) = 0,

where

U =
∂

∂R
+
z

R

∂

∂z
. (26)

3. Adiabatic-Diabatic transformation

The matrix element of U which controls the charge transfer process is highly peaked at

the avoided crossing and a direct numerical solution of the coupled differential equations

(25) is not a recommended procedure. It is preferable to make a unitary transformation
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of the adiabatic basis functions to a new basis, usually called a diabatic basis in which

the off diagonal non-adiabatic matrix elements are smoothly varying or zero. But the

notion of smoothness is rather arbitrary and precludes a precise physical significance of

a diabatic state. However, the notion of a diabatic matrix does provide an interesting

connection with the Landau-Zener model and the 2-state adiabatic representation.

The diabatic basis is defined by a unitary transformation of the adiabatic basis. If

C(R) denotes the transformation matrix, we then have

χd
j (r,R) =

∑
k

χk(r,R)Ck,j(R). (27)

In this diabatic basis | χd〉, the matrix U is transformed according to the relation

Ud = C−1UC + C−1
d

dR
C. (28)

To specify the transformation matrix C, it is necessary to impose some constraint

on the matrix elements of Ud, The simplest constraint, first proposed by Smith [20], is

that the matrix elements of Ud should vanish. This condition is achieved if C satisfies

the equation:

UC +
dC

dR
= 0, (29)

with the boundary condition that C(R) → 1 as R→ ∞. This definition avoids the

necessity of introducing the concept of smoothness. And as a general rule, it is found in

practice that it does indeed result in a transformed Hamiltonian matrix which is smooth

in the crossing region.

Let us now consider how the matrix B transforms under a diabatic transformation.

The matrix elements of the transformed matrix Bd may be written in the form

Bd = C−1BC + 2C−1U
d

dR
C + C−1

d2

dR2
C (30)

Taking equation (29) and its derivative, we obtain:

dC

dR
= −UC (31)

d2C

dR2
= −UdC

dR
− dU

dR
C, (32)

from which we may deduce that:

Bd = C−1BC + C−1U
d

dR
C−C−1dU

dR
C = C−1(B−U2 − dU

dR
)C. (33)

Taking the derivative of U with respect to R, it follows that

dUij

dR
= 〈∂χi

∂R
| U | χj〉+ 〈χi |

dU

dR
| χj〉+ 〈χi | U |

∂χj

∂R
〉. (34)

Writing the sum of the last two terms that appear in previous equation in the form:

〈χi |
dU

dR
| χj〉+ 〈χi | U |

∂χj

∂R
〉 = 〈χi |

∂

∂R
U | χj〉 = (35)

〈χi | U2 | χj〉 − 〈χi |
z

R

∂

∂z
U | χj〉,
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it is easy to show that

dUij

dR
= 〈∂χi

∂R
| ∂
∂R

+
z

R

∂

∂z
| χj〉 − 〈χi |

∂

∂R
+
z

R

∂

∂z
| χj〉 = (36)

Bij + 〈χi |
∂

∂R
+
z

R

∂

∂z
| ∂
∂R

+
z

R

∂

∂z
χj〉 = Bij +Dij,

where

Dij = 〈Uχi | Uχj〉. (37)

Equation (36) might be expressed in matrix form as :

dU

dR
= B + D. (38)

If the basis set is complete, we have∑
n

| χn〉〈χn |= 1, (39)

The expression (37) can then be expressed as:

Dij = 〈Uχi | Uχj〉 =
∑
n

〈Uχi | χn〉〈χn | Uχj〉 = − 〈χi | U2 | χj〉 = −U2
ij (40)

and

Bd = C−1(B−U2 − dU

dR
)C = 0. (41)

It therefore follows that the matrix elements of B vanish in a diabatic representation

if the basis set is complete. This result suggests a relatively simple way to test the

adequacy of our basis set. The matrix element Dij can be calculated directly by a simple

extension of the method used to calculate the radial coupling elements 〈Uχi | Uχj〉. So

the closure relation (39) can be directly used to test the adequacy of any finite basis set

with using reaction coordinates.

4. Test of the adiabatic basis set

It is clear from section 3, the use of reaction coordinates ensures that all non-adiabatic

matrix elements, arising either from the radial coupling between two states of the same

symmetry with ∆Λ = 0, or from the rotational (Coriolis) coupling between states of

different symmetry with ∆Λ = 1, vanish in the asymptotic limit. But the condition of

vanishing asymptotic coupling is not a sufficient condition to ensure that the basis set

is complete.

An illustration of the problem is given by Gargaud et al. [13] in their calculations

of both differential and total electron capture cross sections in the reaction:

N3+(2s2)1S +H(1s)→ N2+(2s23s)2S +H+, (42)

for which further details can be found in the work of Roudjane et al. [25].

From Figure 1 showing the adiabatic energies of the quasi-molecule NH3+ for

different internuclear distances, it is clear that the reaction (42) is dominated by a
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Figure 1. Adiabatic energies as a function of internuclear distance.

single avoided crossing occuring at an internuclear distance around 9 a.u., of two 2Σ

states leading to charge transfer from the N3+ +H entry channel to the N2++H+ exit

channel. In such a case, it is often assumed that even the standard Jacobi coordinates

with the origin on the centre of nuclear mass can be used since the asymptotic radial

coupling terms vanish asymptotically. However, a simple analysis of the radial coupling

element shown in Figure 2, responsible for a charge transfer to the N2++H+ exit channel,

shows an important dependence of the non-adiabatic coupling element on the coordinate

system, which should automatically lead to a dependence of the electron capture cross

section.

As shown in Figure 3, when chosing the origin of coordinates on the centre of

nuclear mass (close to coordinates centred on N), the cross section does not agree with

experiment. This is a clear indication that using origin of coordinates on the centre of

nuclear mass in a two-state basis does not allow for a correct representation of both the

entry and rearrangement channels.

Indeed, a calculation of the matrix elements of D shown in Figure 4 indicates that

the closure relation (39) is not satisfied when the origin is taken on the N nucleus.

Equally, an inportant difference between the matrix elements of D and those of -U2 is

shown in Figure 5, when the origin is taken on the H nucleus. This confirms that even

when the radial coupling terms vanish asymptotically, the two-state basis is far from

being complete if standard Jacobi coordinates are used. On the other hand, from Figure

(6), when using reaction coordinates, it can be concluded that the closure relation (39)

is reasonably well satisfied, especially in the vicinity of the avided crossing, where charge

transfer occurs. This clearly indicates that a two-state basis is sufficient to describe the
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Figure 2. Three variants of the radial coupling matrix element

charge transfer process, when reaction coordinates are used.

A more spectacular demonstration of the necessity of reaction coordinates is

furnished by the problem of the selective electron capture in collisions of multiply

charged ions with neutral atoms, as described in the reaction:

H(1s) + C4+(2s2)1S → H+ + C3+(1s2, nl)2S(nl = 3s, 3p, 3d), (43)

which has been extensively studied by detailed calculations [18, 19, 28] and by merged

beams experiments [29, 30, 31] as well. Details of the calculations are given in the work

by Rabli and McCarroll [19] and only a few of the more significant results will be shown

here.

For this system electron capture can take place into the (3s)2S, (3p)2P, (3d)2D of

C3+ ion. The electron capture takes place via avoided crossings involving the 4 Σ states,

and asymptotic rotational coupling involving Π and ∆ states.

To test the convergence of the adiabatic basis, we can examine the closure relation

(39). In Figures 7,8 and 9, we compare the matrix elements Dij calculated directly with

the results of the matrix elements derived from the matrix elements of U. It is clearly

seen that only for the reaction coordinate system, there is excellent agreement, whereas

for coordinates with origin on the heavy nucleus, (which is almost identical to the centre

of mass), or origin on hydrogen, the closure relation (39) is not satisfied.

5. Miscellaneous Procedures

Over the years, several other variants have dealt with the problem of non-vanishing radial

coupling matrix elements. One such is that proposed by Solovev and Vitinsky [32], who
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Figure 3. Total cross sections (10−16cm2) for electron capture in N3+/H collisions

as a function of ion energy (laboratory system). The solid curve represents the results

with account taken of translation. The two upper dashed curves refer to results (ours

and those of Bienstock et al. [26]) with no translation and with the origin of electron

coordinates on the N nucleus. The lower short-dashed curve refers to our results with no

trans- lation and with the origin of electron coordinates on the H atom. Experimental

results [27] are given with their error bars.

pointed out that by using as independent variable the scaled variable r
′

= r/R rather

than r, the radial couplings vanish in the asymptotic limit. Unpublished calculations by

Gargaud and McCarroll using spheroidal coordinates, which indeed are scaled variables,

produced results comparable with the reaction coordinate procedure. However, such

scaled variables do not address the problem of the asymptotic rotational (Coriolis)

coupling, and it can only be applied to relatively simple systems, where rotational

coupling is negligible.

Another approach using the traditional Jacobi coordinates with electron coordinates

centred on the cent re of mass of the nuclei (CMN), is the retro-projection method

of Belyaev [33]. In the case of non-vanishing radial matrix elements, the scattering

equations are integrated far into the asymptotic region and then re-projected on to the

atomic centre. In the application of the retro-projection approach to inelastic collisions

between Li and Na atoms, where there are no significant avoided crossings, it is expected

that the computed cross sections should indeed be negligibly small (of the order of

10−23cm2). Since the centre of nuclear mass is located neither on Li nor on Na there are

quite large non-vanishing asymptotic radial matrix elements.
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Figure 4. Non-adiabatic matrix elements, U2 and Dij in the Jacobi system (origin on

N nucleus). Index 1,2 refer to entrance channel N3+(2s2)1S +H(1s) and exit channel

N2+(2s23s)2S +H+, respectively.
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Figure 5. Non-adiabatic matrix elements, U2 and Dij in the Jacobi system (origin on

H nucleus). Index 1,2 refer to entrance channel N3+(2s2)1S +H(1s) and exit channel

N2+(2s23s)2S +H+, respectively.

The retro-projection procedure is in principle correct and a negligibly small cross

section is found. On the other hand, had there been a significant non adiabatic coupling

in the interaction region, the choice of the centre of nuclear mass as origin is not correct

and the basis set would not converge.
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Figure 6. Equivalent matrix elements U2 and Dij in the reaction coordinate

system. Index 1,2 refer to entrance channel N3+(2s2)1S + H(1s) and exit channel

N2+(2s23s)2S +H+, respectively.

Figure 7. Matrix elements D11, (−U2)11, D12, (−U2)12, for the system C4+ /H. Case

(a) corresponds to Jacobi coordinates with electron origin on the C nucleus, case (b)

corresponds to Jacobi coordinates with electron origin on the H nucleus and case

(c) corresponds to appropriate reaction coordinates. Index 1 and 2 refer to channels

Σ1 : H+ + C3+(1s2, 3s)2S and Σ2 : H+ + C3+(1s2, 3p)2P , respectively

6. Concluding remarks

Finally, some general remarks on why it took such a long time to develop consistent

and reliable theoretical methods using an adiabatic basis set to study excitation and
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Figure 8. Matrix elements D13, (−U2)13, D14, (−U2)14, for the system C4+ /H. Case

(a) corresponds to Jacobi coordinates with electron origin on the C nucleus, case (b)

corresponds to Jacobi coordinates with electron origin on the H nucleus and case (c)

corresponds to appropriate reaction coordinates. Index 1,3 and 4 refer to channels

Σ1 : H+ + C3+(1s2, 3s)2S, Σ3 : H+ + C3+(1s2, 3d)2D and Σ4 : H(1s) + C4+(1s2),

respectively.

Figure 9. Matrix elements D22, (−U2)22, D23, (−U2)23, for the system C4+ /H. Case

(a) corresponds to Jacobi coordinates with electron origin on the C nucleus, case (b)

corresponds to Jacobi coordinates with electron origin on the H nucleus and case

(c) corresponds to appropriate reaction coordinates. Index 2 and 3 refer to channels

Σ2 : H+ + C3+(1s2, 3p)2P and Σ3 : H+ + C3+(1s2, 3d)2D, respectively
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Figure 10. Differential cross sections (10−16cm2/sr) in CM system for electron

capture in N3+/H collisions as a function of scattering angle θcm(mrad) for a selection

of incident ion energies (in lab system).

rearrangement processes in ion-atom and atom-atom collisions. In particular, it is

now clear that the impact parameter method, which transforms the time-independent

Schrödinger equation to a time-dependent equation, in which the nuclear motion is

described by classical rectilinear trajectories, is more restrictive than originally thought.

In reality, the time-dependent impact parameter equation may be considered as an

asymptote of the stationary Schrödinger equation in the limit ~2/M → 0 and E →∞.

But, recently, Solovev [12] pointed out that for the typical collision energies of interest,

the nuclear momentum of the different channels can be significantly different, in which

case a unique time for all channels does not exist. And it was for this reason that

it proved necessary to modify the impact parameter equation by the introduction of

ETF. But it is also clear from the reasons invoked by Solovev that it would have been

preferable to avoid altogether the notion of translation factors. In retrospect, it now

seems regrettable that a consistent quantum mechanical formulation of the problem was

not exploited sooner. It is clear that had the problems of the impact parameter approach

been understood correctly, there would have been no need to introduce the notion

of translation factors. Contrary to what is often believed, the quantum mechanical

formulation offers some simplifying features. The quantum calculations reduce to the

solution of differential equations and angular momentum being a constant of motion,

the calculation of the differential cross sections is simple and valid for all energies. Of

course the since the adiabatic basis set is limited to energies of the order of 1 keV, the

number of partial waves required to represent the collision remains reasonable.

There seems to be a belief that the impact parameter equations are simpler

than those resulting from a quantum mechanical approach. But it should be borne



Djamal Rabli and Ronald McCarroll 19

in mind that the impact parameter equations involve complex functions whereas the

time-independent Schrödinger equation only involves real functions. Furthermore,since

angular momentum is conserved, the contribution of a given angular momentum L to

the collision cross section can be calculated independently in a quantum method. It then

suffices to sum over all L to determine the cross section. So in practice quantum methods

are more efficient when both the differential and total cross sections are required. For

calculation of the total cross sections which depend only on the modulus of the transition

amplitude, impact parameter methods are satisfactory at energies in the keV range. On

the other hand, the calculation of differential cross sections shown in Figure (10) are

simpler in a quantum mechanical method.

In conclusion, this work shows that the quantum mechanical approach, which

retains terms in the Hamiltonian correct to first order in the electron/nuclear mass

ratio, leads naturally to the notion of reaction coordinates and makes it possible in test

the completeness of the adiabatic basis set used in any specific calculation on inelastic

and rearrangement collision processes in ion-atom collisions.
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