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Abstract—Orchestrating network and computing resources in
Mobile Edge Computing (MEC) is an important item in the
networking research agenda. In this paper, we propose a novel
algorithmic approach to solve the problem of dynamically assign-
ing base stations to MEC facilities, while taking into consideration
multiple time-periods, and computing load switching and access
latency costs. In particular, leveraging on an existing state of
the art on mobile data analytics, we propose a methodology
to integrate arbitrary time-period aggregation methods into a
network optimization framework. We notably apply simple con-
secutive time period aggregation and agglomerative hierarchical
clustering. Even if the aggregation and optimization methods
represent techniques which are different in nature, and whose
aim is partially overlapping, we show that they can be integrated
in an efficient way. By simulation on real mobile cellular datasets,
we show that, thanks to the clustering, we can scale with the
number of time-periods considered, that our approach largely
outperforms the case without time-period aggregations in terms
of MEC access latency, and at which extent the use of clustering
and time aggregation affects computing time and solution quality.

I. INTRODUCTION

The softwarization of networks is an innovative trend ex-
pected to transform the mobile access environment in the com-
ing years. It is an evolution accompanied by the virtualization
of network functions and application servers, which can be
operated running virtualization clusters close to, or at cellular
base stations and mobile network points of presence [1].
The type of functions that can be virtualized ranges from
traffic load balancers and multimedia (de)coders to mobile core
functions such as those of the Long Term Evolution (LTE)
Evolved Packet Core (EPC) [2]. Application servers can also
be run in such facilities, so that the end-to-end user experience
benefits from low access latency [3].

An illustration of this evolution is given in Figure 1.
Figure 1a depicts a legacy 4G environment, where the user
accesses remote applications via cellular access, in such a
way that its wireless signals are processed at Base Band Unit
(BBU) nodes integrated to cellular Base Stations (BSs), its
traffic is routed through the EPC (composed of four main
functions), before reaching the Internet border on the way
to the application server. Figure 1b shows instead a fully
cloudified environment, where radio-network elements such
as the BBU, EPC functions, mobile phone remotely exe-
cutable applications, as well as application servers (possibly
synchronized with a remote cloud) are all virtualized in

(a) Legacy 4G access network.

(b) Fully cloudified access network.

Fig. 1: Mobile access network evolution with edge computing.

potentially the same place, called Mobile Edge Computing
(MEC) facility. Such a scenario is an extreme one, coping with
the virtualization of a variate set of hardware, but that could
correspond to the reality in the coming decade. In any case, the
virtualization of a subset of these functions is a certainty, as
demonstrated by different ongoing projects in the industry, for
instance those regarding the virtualization of EPC functions
(as announced by Orange Spain in fall 2017), of radio-access
network elements (as announced by China Mobile in 2011),
or of application servers (as encompassed in some reference
MEC use-cases [1]).

Among the virtualizable nodes at MEC facilities, we can
distinguish nodes that are strictly serving a subset of the BSs
of an operator (e.g., vBBU and vEPC nodes), and nodes that
serve single or multiple users (e.g., virtualized mobile device
environment for computation offloading, virtualized applica-
tion servers), possibly behind different BSs. An important
amount of traffic can therefore be aggregated at MEC facilities,
depending on the type of virtualized functions that are run
at these edge delivery points. The management of virtualized
nodes running at MEC facilities encompasses service and
network management operations mainly related to: i) BS-to-
MEC facility association, and ii) user-to-virtual machine (VM)
association (a VM being in turn associated to a MEC facility).
This kind of association decisions imply the execution of
VM-level MEC orchestration operations, such as VM scaling
up/down (increase/decrease of computing resources such as
memory, processor, storage), Virtual Network Function (VNF)
scaling in/out (more or less VM instances running a given
VNF), VM migration, VM creation or destruction.

At the time being, the telco industry is more focused on
the virtualization of the nodes that serve a subset of cellular



antennas (e.g., vBBU, vEPC), instead of working directly
at the user-VM granularity, mainly because of scalability
concerns. Therefore, one shall consider BS-to-MEC facility
switching decisions as critical ones. In this paper, we indeed
propose a MEC orchestration framework that primarily op-
timizes BS-to-MEC facility association over time, based on
a spatiotemporal grouping of the BSs, while integrating VM
workload adaptations across MEC facilities.

BS-to-MEC facility switching operations can not be rea-
sonably expected to run continuously, as this would incur
in traffic loss and overhead due to traffic handover, but to
occur only at certain points in time (e.g., once every thirty
minutes). Hence, introducing an implicit time discretization
of the orchestration system appears appropriate. In order to
identify suitable discrete-time profiles of the traffic demand,
different strategies can be employed. The simplest option is
to aggregate the demand observed at each BS during every
time step in a recent reference period, exploiting training data,
using one reference profile for each time step. Another option
to identify suitable discrete-time profiles of the traffic demand
is to use temporal clustering analytics on the historical data,
so as to group together time slots that feature very similar
distributions of the mobile traffic demand across the BSs.

In this paper, we explore the two options above, proposing a
prescriptive analytics approach integrating advanced temporal
clustering into a mathematical programming formulation of the
addressed MEC orchestration problem. The clustering returns
a limited number of profiles, each of which corresponds to
time intervals where the mobile network presents a similar
distribution of the demand. It is then possible to feed the
optimization framework with a small number of profiles, with
the risk of decreasing the solution quality, since typical profiles
can only approximate the actual MEC network load at a
specific time step. We assess in the paper the computational
and quality aspects of our prescriptive analytics approach, as
compared to basic time aggregation in the orchestration.

The manuscript is structured as follows. Section II draws
the necessary background. Our network model is described in
Section III, while our orchestration algorithm is described in
Section IV. Section V reports numerical results. Section VI
concludes the paper.

II. BACKGROUND

We draw in this section the necessary background on edge
computing and virtualization and on the integration of data
analytics in network optimization problems.

A. Edge computing and network virtualization

In a MEC infrastructure, virtualization clusters – called
‘MEC facilities’ or ‘MEC hosts’ in the standardization doc-
uments [1], or ‘cloudlets’ in academic jargon [5] – are con-
nected to access network nodes within a few hops, to deliver
access to application servers running as VMs. Various oper-
ations dealing with the changing mobile access demand can
be applied to orchestrate the resulting cloud-network system,
which include BS to MEC facility dynamic assignment, VM

capacity rescaling (addition or removal of computing power in
terms of live memory or virtual processors) and VM migration
(a VM state is moved from one MEC facility to another one).
An ‘orchestrator’ is in charge of instantiating such decisions
into the MEC infrastructure. Each orchestration action comes
at a cost, often referred to as ‘migration’ or ‘switching’ cost, as
it can require synchronizing states and reconfiguring network
equipment and servers, across a geographical network under
stringent performance guarantees. The technology to perform
MEC orchestration operations is being experimented since
many years [6]. It commonly takes into consideration changing
states of the network in time and space, related to user mobility
and digital usages behavior.

These dynamics are being considered for the management
of not only application servers, but also of the network services
needed to deliver resilient access to applications. Indeed, 5G
systems will also build on new networking paradigms such as
Network Function Virtualization (NFV) and Software Defined
Networking (SDN) in order to, on the one hand, support
the orchestration of virtualized network functions and, on the
other hand, provide to core network switches the necessary
features to support flow management that may be needed when
applying fine-grained orchestration decisions [7].

Eventually, for mobile access networks and in particular
cellular networks, the physical facility delivering application
and network function VMs is expected to be the same, as
already discussed in Figure 1, located in access network
aggregation points of presence. Such a convergence is also
clearly appearing in standardization efforts related to MEC
and NFV systems [8], [9], with equivalent interfaces between
virtualization layer and orchestration system components.

A significant amount of work exists in the area of MEC
and mobile-access NFV orchestration. A common problem
addressed is the virtualization cluster placement within the
access network, as considered in [10] for application VMs,
in [4] for the EPC functions and in [11] for radio-access func-
tions. A different orchestration dimension is the one related
to VM migration and rescaling across a given set of MEC
facilities, as a function of user mobility, as addressed in [12]
for application VMs and in [13] for the EPC functions. Finally,
in the area of virtualized radio-access network orchestration,
the problem of clustering, i.e., assigning a set of BSs to BBUs
was also extensively studied, as for instance in [14].

B. Data-driven mobile networks

A further step in this area, only marginally addressed to
date, is to investigate how to integrate the result of data
analytics in the instrumentation of MEC orchestration deci-
sions, related to placement, migration, rescaling and clustering
operations, along the lines traced in [15], [16].

Virtualized networks where significant resources are placed
in proximity of the radio access open substantial new scenarios
for the dynamic management of system operations. Solutions
based on data analytics are in particular expected to play a crit-
ical role: knowledge inferred by mining traffic measurements
and Key Performance Indicators (KPIs) will fuel effective



orchestration policies for the deployment and re-allocation
of resources across mobile edge computing facilities. The
vision of ‘data-driven’ (also referred to as ‘cognitive’) network
management is attracting the interest of a growing research
community [17], [18], and is supported by major players in
the 5G ecosystem [19].

Due to the very recent emergence of relevant use cases,
solutions to extract useful information from massive amounts
of mobile traffic data records and to employ it for network
configuration are still in their infancy. Data analytics for
mobile network traffic based on clustering or spectral analysis
have revealed regular macroscopic structures [20], [21] that are
highly predictable [22]. Actual experiments of data-driven net-
work management have mainly focused on optimizing video
streaming services [23], [24] and controlling core network
congestion [25], [26]. However, as of today there is almost no
practical demonstration of how MEC can benefit from data-
driven paradigms. The single application we could identify is
the data-driven BBU-to-BS clustering approach in [27], where
however the interconnection network is not modeled.

In this paper, we present a first application of data-driven
networking in the context of MEC orchestration, and more
precisely clustering decisions, considering both network and
systems constraints. Specifically, we leverage existing analyt-
ics for the spatiotemporal classification of traffic, and extract
long-timescale patterns in the spatial distribution of the mobile
traffic demand. We then employ these patterns to guide the
operation of MEC facilities so that the user Quality of Service
is maximized, by their integration in orchestration algorithms
based on mathematical programming.

C. Network optimization

The orchestration problem we address is to find groups
of BSs for their association to MEC facilities, in a multi-
period setting such that the BS-to-MEC facility association
can change across periods. In the area of network optimization,
this requires to tackle a multi-period extension of the famous
Generalized Assignment Problem (GAP) [28].

We point to [29] for a detailed review on the GAP and its
extensions. Despite the large body of research available on
the GAP, we are not aware of many papers directly dealing
with its multi-period extensions. In [30], the authors face a
single-source allocation problem with a flexible model and
an effective algorithm; however, their model does not handle
limited capacity, which is a crucial feature in our application.
The multi-period allocation problem discussed in [31], in
which a dual ascent technique is adapted to telecommunication
networks applications, is similarly missing the handling of
capacities.

Although our problem does not require to decide the loca-
tion of the facilities, which is instead assumed to be optimized
in a prior strategic planning [10] and given as input, one may
expect features and computational challenges similar to those
of multi-period location problems [33]. Recent approaches
on that field include [34]: the authors face a multi-period
concentrator location and dimensioning problem, providing

MILP formulations and reduction techniques, and solving to
optimality in less than one hour of computation instances with
up to 30 clients, 10 candidate location sites and 15 time
periods, or 100 clients, 30 candidate locations and 5 time
periods. In [35] the authors introduce exact methods for a
capacitated multi-period facility location problem in which,
however, unlike our case, the demand of each client can be
fractionally served by multiple facilities. Large scale instances
with up to 200 facilities, three periods and an arbitrary number
of clients could be solved with their algorithms.

III. MEC NETWORK ORCHESTRATION MODEL

We elaborate our reference MEC network orchestration
model along the following generic lines. BSs have associated
mobile traffic demand, that changes over time. Each MEC
facility has a certain capacity, limiting the overall amount of
demand it can serve simultaneously. BSs must be assigned to
MEC facilities; each new assignment implies a cost for each
user connected to the BS in terms of latency for communicat-
ing with the associated MEC server. Due to capacity limits, it
might not always be a good decision to assign each AP to its
MEC facility of minimum latency; furthermore, since demand
changes over time, an assignment pattern would hardly remain
an efficient one over the whole planning horizon. We therefore
leave the option of changing assignments over time, taking
into account that each change implies a switching cost for the
network, for example in terms of signaling to move session
data of active users. An optimization problem therefore arises,
that is to assign BSs to MEC facilities over time, respecting
capacity constraints and minimizing a combination of users
(assignment) and network (switching) costs.

Before providing a more formal problem statement and
mathematical formulation, we describe the data analytics prob-
lem we address to instrument the orchestration algorithm.

A. Data analytics

The data analytics we adopt to drive our resource orchestra-
tion problem is inspired by the temporal classifier of mobile
network traffic introduced by [37]. The classifier leverages an
agglomerative hierarchical clustering with fine-tuned distance
measures, and allows detecting long time periods during which
the geographic distribution of the mobile traffic demand does
not vary significantly. The results presented in the original
paper show that, e.g., the aggregate demand of voice calls and
text messages switches among a very small number of possible
spatial configurations during a whole week.

We employ the classifier above as a building block, and
proceed through the 4 phases, also summarized in Fig. 2:
Phase 1: We collect substantial measurement data from an
operational mobile network. The data captures the demand for
a major mobile service in two large-scale metropolitan regions
for a period of several consecutive months. Details on the data
collection are provided in Sec. V-A.
Phase 2: For a subset of the collected data, representing our
training set, we compute the typical weekly average demand,
by aggregating all data collected at the same time of the week.
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Fig. 2: Workflow for the classification of network usage profiles. The final intersection cluster set Cq is used for the training.
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Fig. 3: Sample cluster set of 10-minute time instants for a
mobile service. The plot outlines the existence of 20 temporal
classes of spatial distributions of the demand, during each
daytime (abscissa) of different weekdays (ordinate).

For instance, the representative offered load on Monday, 4:00
pm at one antenna is the average of all measurements on
Mondays in the training set, at that specific time and antenna.
Clearly, time needs to be discretized in order to obtain a finite
set of time instants: we thus assume that each time instant
refers in fact to a period of duration T .
Phase 3: Following the methodology suggested in [37], we run
two separate instances of the classifier on the average week,
considering two distance metrics to compute the similarity
of demands at diverse time instants. The first such metric is
the difference of total traffic volumes, which tends to cluster
together time instants with equivalent total demands. The
second metric is the difference of the normalized fraction of
traffic at each antenna, which groups together time instants
that feature comparable spatial distributions of the demand.
Phase 4: We derive the intersection of the two cluster sets,
obtaining our final set of time instant classes. The rationale is
that such an intersection yields classes that have i) equivalent
total traffic volumes, that are ii) distributed in the same way
across antennas. In other words, the demands in time instants
that belong to the same class are similar from all viewpoints.

Figure 3 shows an example of the final cluster set for our
reference mobile service, when considering that each time
instant spans T = 10 minutes. In the specific case under study,
our approach categorizes all 10-minute time periods in a week
into just 20 classes, i.e., spatial configurations of the mobile
service demand. The fact that 20 classes capture the diversity
of offered loads in more than 1,000 time instants underscores
how the demand for our target mobile service shows significant

regularity over time. The emergence of 20 classes is also good
news for our case study, as it implies that a small number of
MEC facility deployments can be sufficient to accommodate
all possible spatial dynamics in the traffic.

Another interesting observation is that time instants in a
same class are typically contiguous. Also this aspect plays
in favor of our objective: the temporal consistence of spatial
configurations entails that MEC resource allocation profiles
remain valid throughout quite long timespans, and the number
of switches between profiles is reduced. The expectation
(confirmed by our numerical evaluation) is that these intrinsic
properties of the mobile service demand can make a data-
driven approach for MEC deployment highly effective.

B. Orchestration Optimization Model

Our MEC orchestrator includes an optimization core for
performing prescriptive analytics on a tactical level. We adapt
models and methods from [38]. In particular, we build dynamic
assignment plans detailing, for each time slot, the set of
BSs to be connected to each MEC facility and, as a by-
product, the set of switching operations to be performed
between subsequent time slots. We consider a periodic single-
assignment operational policy, that is, in each time slot each
BS is assigned to exactly one MEC facility, and the last time
slot is assumed to be followed by the first one.

The task details are the following.
Input. We assume to be given the set of BSs, the set of MEC
facilities and a discretization of the time horizon in a set T
of time slots. We also assume to be given i) for each BS,
the mobile traffic demand that has to be accommodated in
each time slot, ii) the capacity of each MEC facility, iii) the
physical distance between each BS and each MEC facility
and the network distance between each pair of MEC facilities
(that is, a measure directly proportional to the network latency,
including packet processing latency at intermediate nodes, and
physical distance).
Output. We expect, as output of the optimization core, an
assignment plan: for each BS and each time slot, an indication
of the MEC facility where traffic needs to be routed. As a side
result, we expect a switching plan, that is a boolean value for
each BS and each pair of MEC facilities for each time slot,



indicating whether that BS switches at that time between a
particular pair of MEC facilities, or not.
Requirements. The assignment plan satisfies the following
conditions: i) the overall demand assigned to each MEC
facility at each time slot must not exceed its capacity, ii) each
BS is connected to exactly one MEC facility at each time slot,
iii) assignment and switching plans must be coherent.
Objective. The plans must target a trade-off between the
minimization of network- and user-related costs. The former
is generated by the change of BS-MEC facility associations
in consecutive time slots, which produces some overhead due
to the necessity of migrating VMs. The latter is instead the
latency experienced by the user with the current BS-MEC
facility association. The relative weight of the network- and
user-related costs in the objective function is represented by
suitable parameters, set to equal weights in our experiments.

A sample instance with three APs (squares), two MEC
facilities (circles) and two time-slots (left and right parts) is
depicted in Figure 4: AP 2 is assigned to MEC facility A at
t = 1 and MEC facility B at time t = 2, therefore a switching
operation from A to B needs to be performed.

Formally, our orchestration task can be modeled with the
following Mathematical Program:

min α
∑
t∈T

∑
i∈A

∑
(j,k)∈
K×K

dtiljky
t
ijk+ β

∑
t∈T

∑
i∈A

∑
k∈K

dtimikx
t
ik

(1)

s.t.
∑
i∈A

dtix
t
ik ≤ Ck ∀t ∈ T, ∀k ∈ K

(2)∑
k∈K

xtik = 1 ∀i ∈ A,∀t ∈ T

(3)

xtik =
∑
l∈K

ytilk
∀i∈A,∀k∈K
∀t∈T\{1}

(4)

xtik =
∑
l∈K

yt+1
ikl

∀i∈A,∀k∈K
∀t∈T\{T}

(5)

xti,k ∈ {0, 1} ∀i∈A,∀k∈K
∀t∈T

(6)

yti,k′,k′′ ∈ {0, 1} ∀i∈A,∀t∈T
∀k′,k′′∈K

(7)

where A is the set of BSs, K is the set of MEC facilities,
T is the set of time slots, dti is the demand of BS i ∈ A
during time slot t ∈ T , Ck is the capacity of MEC facility
k ∈ K and ljk (resp. mik) is the distance from facility j to
facility k (resp. from BS i to facility k). Assignment plans
are encoded by variables xtik, which take value 1 if BS i is
assigned to facility k at time t, 0 otherwise. Switching plans
are encoded by variables ytijk, which are 1 if traffic from BS
i must be switched from facility j to facility k at time t, 0
otherwise. Constraints (2) and (3) model requirement i) and

ii), respectively. Collectively, constraints (4) and (5) ensure
assignment and switching plans to be coherent. The first term
in the objective function (1) models switching costs, while the
second term models assignment costs.

t = 1

A B

1 2 3

t = 2

A B

1 2 3

x12A x22B

y22AB

Fig. 4: x and y variables

IV. RESOLUTION ALGORITHM

Problem (1) – (7) is NP-Hard in general [29]. When the
size of the MEC network is large, the resolution of the orches-
tration problem requires ad-hoc algorithms. A decomposition
approach can be employed: when the requirements on MEC fa-
cility capacities are considered in ‘soft’ form, penalizing their
violation with suitable multipliers in the objective function, the
problem disaggregates in independent subproblems per BS.

In particular, when a penalty multiplier is fixed for each
capacity unit violation, a minimum cost path problem in a
suitable graph needs to be solved independently for each BS;
these problems admit polynomial time algorithms, and can
therefore be computed efficiently also on large scale networks
and fine grained time discretizations.

In turn, we are able to obtain a set of optimal multipliers
through Dantzig Wolfe Reformulation and Column Generation
methods [38]. Strictly speaking, the solution found by means
of Dantzig Wolfe Reformulation might be fractional, that is
some BSs might be fractionally assigned to more than a
single MEC facility in some time slots. In that case, we run
a heuristic, selectively rounding these fractions, and thereby
always choosing a single MEC facility. Our heuristic works as
follows. We iterate over each time slot in sequential order. In
each time slot, for each BS, the MEC facility having highest
fractional assignment is retrieved: we sort the set of BSs
according to these assignment values (from highest to lowest).
Then, we iterate over each BS following this order, assigning
a single MEC facility to each BS; whenever an integer
assignment would yield a capacity violation, an alternative
MEC facility is selected for that BS, still in order of non-
increasing fractional assignment values in the particular time
slot. Our computational experiments revealed this heuristic to
be highly effective.

Furthermore, we employ several techniques for speeding up
our algorithms, like the use of Lagrangean fixing procedures
to reduce the search space. In particular, we initialize column
generation using greedy heuristics: for each time slot, BSs are
sorted by non-increasing demand and each BS is associated to
a profitable MEC facility. The most profitable MEC facility is
considered to be that involving no switching cost, if enough
residual capacity is available, or the nearest one with enough
residual capacity, otherwise.



V. SIMULATION RESULTS

We implemented our algorithms in C++, using CPLEX 12.6
[39] to solve the master LP subproblems, running tests on an
Intel i7 4GHz workstation equipped with 32 GB of RAM.
Before describing the results on orchestration time period
assessment and MEC performance, we describe the dataset.

A. Dataset

The dataset used in our study was collected in the core
network of Orange, a major European mobile operator, during
three months in 2016. It describes the traffic generated by sev-
eral millions of mobile subscribers in the French metropolitan
areas of Lyon and Paris, for a specific mobile service, i.e.,
Facebook. More precisely, the data was recorded by monitor-
ing IP sessions at the 3G and 4G core network gateways. A
combination of Deep Packet Inspection (DPI) and proprietary
fingerprinting tools was employed to infer application-level
information on Facebook user sessions. The approach allows
to determine the volume of all content traffic related to
the Facebook mobile service, including streaming content or
messaging, accessed through the app or web interfaces.

The rationale for the choice of Facebook is that it represents
a prominent mobile service, generating around 20% of the
compound downlink and uplink demand in the network. It is
also an example of typical service that could benefit from the
improved quality of service granted by a MEC infrastructure.

It is important to remark that the traffic is aggregated at
the antenna sector level. This ensures that the information in
the dataset is a combination of the Facebook sessions of many
users, hence it does not contain personal data or raises privacy
issues. The dataset is composed of twelve weeks of traffic
demands, aggregated by 10-minutes time-periods.

B. Time-period granularity

In order to identify suitable demand discrete-time profiles,
we evaluated six different time-period aggregations:
• aggregating consecutive 10-minute periods to form a

period of four, two and one hour (‘4H’, ‘2H’ and ‘1H’
in the remainder). The resulting training sets consist of
42, 84 and 168 time-periods, respectively. Using shorter
time periods for this strategy revealed to be too complex
to solve; at the same time we found tests on longer time
periods not informative, as already the 4H case is domi-
nated by 2H and 1H aggregations, and the experimental
trend is clear, as discussed in the remainder;

• aggregating 10-minute periods belonging to the same
clustering profile generated as presented in Subsec-
tion III-A, with clustersets of one hour (‘1HC’), 30-
minute (‘30MC’) and 10-minute (‘10MC’); the resulting
training sets differs for Lyon and Paris dataset: for Lyon
dataset, time-periods are 99 for ‘1HC’, 171 for ‘30MC’
and 260 for ‘10MC’; for Paris dataset, time-periods are
60 for ‘1HC’, 160 for ‘30MC’ and 141 for ‘10MC’.

We observe that the number or time-periods in 2H is similar
to that of 1HC. The same can be observed for 1H and 30MC.

For the training set, we use the first 4 weeks of the dataset to
build the typical average week used by the clustering approach
in the classification process. As recommended in [37], we also
tested the construction of the typical week using the median
value of the demand, but the results only marginally differed
with respect to the average week, so we avoid reporting them.

Lyon dataset contains demands from 332 BSs, while Paris
dataset has 1907 BSs. We set three cardinalities of facilities
for the dataset of Lyon (10, 20 and 30, resp.) and two
cardinalities of facilities for the dataset of Paris (20 and 50,
resp.). The location of the facilities was generated by a k-
medoid algorithm, using the coordinates of the BS locations as
input data. Distances between BS and facilities were computed
using the Haversine formula [40]. Parameters α and β of
objective function (1) were both set to 1. The resulting training
set is composed of 60 instances.

a) Benchmark: As benchmark for our methodology, we
considered a baseline approach without the time-period ag-
gregation we propose with our model, therefore with a single
time-period, leading to a single assignment for every BS to a
MEC facility over the week and no switching of assignment
among MEC facilities during the week. We computed a single
time-period demand averaging demands of all time-periods
in our dataset; we used this single-time average demand to
train our model for every city and every facility cardinality
(5 training instances). We solved the corresponding problem
with the ILP general solver of CPLEX, stopping the resolution
when an optimality gap lower than 1% was reached. We label
such instances as ‘S’ in the remainder.

b) Training Computational Results: In Figure 5 we
present the box-plots of the execution times of the training sets,
in logarithmic scale (base 10), highlighting each the different
time-period granularity (a boxplot shows a box bars indicating
the minimum, 1st quartile, median, 3rd quartile, maximum).
We can notice that the consecutive 1H case has the highest
execution time (up to 10 hours of executions), followed by
the 30MC case, while a lower time is required by 4H and 2H
and 1HC, with S as fastest approach. In addition to the plot,
we found that the average execution time for ‘S’ is 10 seconds,
for ‘4H’, ‘2H’ and ‘1HC’ is less than five minutes (165.1 s,
273.5 s and 268.8 s, resp.), for ‘1H’ is more than 2 hours
(9022.6 s), for ‘30MC’ is slightly more then 1 hour (4515.6
s) and finally for ‘10MC’ half an hour (2012.9 s). Having
similar number of time-periods, ‘2H’ and ‘1HC’ (resp. ‘1H’
and ‘30MC’) require similar training time.

In Figure 6 we present the box-plots of the optimality
gap of the training sets, still highlighting each the different
time-period granularity. As specified previously, ‘S’ training
was stopped as soon as an optimality gap less than 1%
was reached. We can notice little difference among different
aggregations: with respect to the worst-case performance,
‘4HC’ has the worst result, while the clustering cases have
better performances; with respect to the median performance,
all aggregations show similar results in the range 2–5%. In
addition to the plot, we found that the average optimality gap
for ‘4H’ is around 5%, for ‘2H’, ‘1H’ and ‘1HC’ is around



Fig. 5: Execution Time

Fig. 6: Optimality Gap

4%, while ‘30MC’ and ‘10MC’ is around 3.3%.

C. Cost components assessment

We tested the assignments generated by our algorithm
against the original 10-minute periods demands in our datasets,
considering all twelve weeks separately. That is, for every
training instance we have twelve tests with a different demand.

First, we compare the performance of the time-periods
aggregation from the point of view of the MEC access latency
costs, that is defined by the objective function of model (1).

We present the costs in three parts:
• the assignment cost considering the distance between

a BS and MEC facility and the demand of the BS
(component β

∑
t∈T

∑
i∈A

∑
k∈K dtimikx

t
ik in (1));

• the switching cost considering the distance between MEC
facilities in considering time-slots and the demand of the
BS (component α

∑
t∈T

∑
i∈A

∑
(j,k)∈
K×K

dtiljky
t
ijk in (1));

• and the total cost (1).
We do not present the absolute value of the assignment

and total costs, rather for every test week we compute the
percentage difference between the lowest cost among those
obtained with the seven time-period aggregations (4H, 2H,
... 10MC, plus the benchmark S) and the cost obtained with
the given time-period aggregation. For example, while testing
with 10 facilities, trained with average reference week, let us
assume that for test week 1 the minimum cost c̄1 is given by
the training assignment generated by ‘30MC’ aggregation: the
percentage difference of the costs of the test week 1 of every
time-period aggregation is computed as (c1 − c̄1)/c̄1. Hence,
‘30MC’ will have a percentage gap of 0 for test week 1, in
the scenario with 10 facilities trained with average week.

In Figure 7 we present the box-plots of the percentage gaps
of the costs. Every figure contains a separate box-plot for each
time-period aggregation method. We can notice that:
• the positive effect of clustering can be evaluated by com-

paring ‘1H’ with ‘30MC’: they yield a similar number of
time-periods, but the latter allows slightly faster training,
producing at the same time solutions of lower costs;

• w.r.t. assignment costs (Fig. 7a), ‘S’ always leads to
the highest cost, i.e. longer MEC access latency, on
median 20% higher than the minimum; all other ag-
gregations show similar results, except ‘4H’ which has
slightly worse results (on median 8% higher cost than the
minimum): the lowest average cost is given by ‘30MC’,
‘1H’ retrieves a cost higher on median of 1%, while
‘2H’,‘1HC’ and ‘10MC’ show worsening of about 2-4%;

• on the contrary, w.r.t. switching costs (Fig. 7b), with
the exception of ‘S’ which always ensures no switching
costs, ‘4H’ always leads to the lowest cost, i.e., the least
number of MEC facility switching, and on median all
other aggregations retrieve a switching costs from 2 to 8
times the cost given by ‘4H’;

• however, the huge difference in the switching cost does
not lead to a significant change in the total cost (Fig. 7c):
this latter is composed mostly of the aggregation costs
and it shows similar difference gaps.

In order to further analyze this behavior, in Figures 8 and 9
we present two indices regarding the assignments and the
switching arising from the training:
• given that every BS has to be assigned to a MEC

facility in every time-period, in our model the best option
corresponds to the nearest facility. Therefore, we compute
for every case the percentage of times a BS has not been
assigned to its nearest MEC facility, that we present in
Figure 8 as single box-plots for every time-period aggre-
gation. We can notice that ‘S’ has the highest median non-
nearest assignments (more than 30% of the assignments);
‘4H’ and ‘1HC’ have similar median behavior with 26%
of non-nearest assignments, and all other aggregations
show a value around 22%. This behavior better explains
the poor performance of ‘S’ and ‘4H’ for what concerns
assignment costs.

• in Figure 9 we present the percentage of times a switching
occurs in any time-period for any BS (i.e. number of
switching over (|T | − 1) · |A|), as box-plot for each
time-period aggregation: we can notice that this value
is considerably low for ‘4H’ (on average less than 0.5%
of the time a switching occurs) and is on average low
for every aggregation (the highest value is 1.25% of the
times). This behavior also explains the low effect of the
switching costs in the total cost computation.

D. Computing capacity violation

Given that the BS-MEC facility assignment is computed
using a reference week, it can generate a violation of the MEC
facility capacity given by the change of the demand pattern in
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Fig. 7: MEC access latency and switching costs gaps.

the test week from the reference week. In order to measure
the violation of capacity, we introduce three indices:
• average capacity excess (‘SUM-SUM’ in the remainder):∑

t∈T

∑
k∈K

max{
∑

i∈A d
t
ix

t
ik − Ck, 0}

Ck · |K| · |T |

• percentage number of times a capacity is exceeded
(‘SUPPORT’ in the remainder):

|{(t, k) :
∑

i∈A d
t
ix

t
ik − Ck < 0,∀t ∈ T, ∀k ∈ K}|
|K| · |T |

• average of excess, only when a violation occurs (‘SUM-
SUM-SUPPORT’):∑

t∈T,k∈K:dt
ix

t
ik−Ck<0

(∑
i∈A dt

ix
t
ik−Ck

Ck

)
|{(t, k) :

∑
i∈A d

t
ix

t
ik − Ck < 0,∀t ∈ T, ∀k ∈ K}|

In Figure 10 we present box-plots of these three indices, in
logarithmic scale (base 10). We can notice that:
• the ‘SUM-SUM’ index (Fig. 10a) is rather low for every

time-period aggregation, only the ‘10MC’ show a slightly
higher median value, but it is less than the 0.05% for both
the reference weeks;

• the ‘SUPPORT’ index (Fig. 10b), i.e. the percentage of
time-periods in which a MEC facility has a capacity
violation, does not show particular differences between
the time-periods aggregation; ‘4H’ shows a lower third
quartile, that is however always lower than 0.5% for every
time-period aggregation;

Fig. 8: Non-Nearest Assignments

• the ‘SUM-SUM-SUPPORT’ index (Fig. 10c), i.e. the
average violation computed only when violations occur,
show a different behaviour for the ‘10MC’ aggregation:
while the median value is almost constant for all aggre-
gations, ‘10MC’ in the worst-case can violates a MEC
capacity of more than 350% (i.e. it assign to a facility
an amount of demand that is more than three times its
capacity); this behaviour would advise against ‘10MC’.

VI. CONCLUSIONS

We presented in this paper a MEC orchestration framework
that (i) enables taking orchestration decisions on base station
to MEC facility assignments, and that (ii) at an arbitrary time
period granularity within a reference horizon hence taking into
consideration load variations along time, while (iii) supporting
advanced spatio-temporal clustering among base stations based
on network data analytics. It is, as of our knowledge, the first
effort of this type.

We show that - by extensive simulations against real net-
work data of an application that could benefit from MEC
- with our framework we (a) largely outperform baseline
orchestration decision without time-period aggregation by a
order of magnitude in terms of MEC access latency, (b)
scale with the number of time periods by leveraging on
spatio-temporal clustering of base stations, and (c) identify
which time-periods and aggregation techniques better allow
minimizing MEC access latency and facility switching costs.

As a further work we plan at refining the clustering algo-
rithms so as to anticipate factors in the preprocessing phase
that could enhance the quality of the orchestration solutions.

Fig. 9: Switching Occurrences
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Fig. 10: Capacity violation measures.
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