
HAL Id: hal-01740823
https://hal.sorbonne-universite.fr/hal-01740823v1

Submitted on 22 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Internet Acceleration with LISP Traffic Engineering and
Multipath TCP

Chi-Dung Phung, Matthieu Coudron, Stefano Secci

To cite this version:
Chi-Dung Phung, Matthieu Coudron, Stefano Secci. Internet Acceleration with LISP Traffic Engi-
neering and Multipath TCP. Innovations in Cloud, Internet and Networks (ICIN) 2018, Feb 2018,
Paris, France. �10.1109/ICIN.2018.8401586�. �hal-01740823�

https://hal.sorbonne-universite.fr/hal-01740823v1
https://hal.archives-ouvertes.fr


Internet Acceleration with LISP Traffic Engineering
and Multipath TCP

Chi-Dung Phung, Matthieu Coudron∗, Stefano Secci
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, 75005, Paris, France. E-mail: first-name.last-name@upmc.fr

∗Internet Initiative Japan (IIJ), Tokyo, Japan. Email: coudron@iij.ad.jp

Abstract—We present different design options to imple-
ment Augmented Multipath Transmission Control Protocol (A-
MPTCP) communications via a Locator/Identifier Separation
Protocol (LISP) Traffic Engineering (TE) overlay network.
MPTCP allows a TCP connection using multiple subflows to
maximize resource usage. LISP is a routing and addressing
architecture that provides new semantics for IP communications,
by separating the device identity (endpoint identifier) from its
location (routing locator) using two different numbering spaces.
Our proposition is to adopt a LISP overlay network with traffic
engineering capabilities to steer MPTCP subflows across wide-
area Internet networks. The resulting augmentation consists of
a subflow forwarding that can reach edge bottleneck capacity
and surround inter-domain transit bottlenecks and inefficient
paths. It can be particularly useful for cases where, even if
endpoints are single-homed, inter-domain path diversity can be
grasped by the LISP-TE network overlay. We specify the different
modes at which this augmentation can take place, from stateless
and light modes with very limited management in the network,
to stateful and advanced modes implementable by a network
provider desiring a higher control on the network. Based on
extensive experimentation on the worldwide LISP testbed, we
show that the achievable gains up 25% in throughput, while
identifying required further improvements.

I. INTRODUCTION

The Internet relies heavily on two protocols - the Internet
Protocol (IP) and the Transmission Control Protocol (TCP). In
the network layer, IP provides an unreliable datagram service
trying to ensure that any host can exchange packets with any
other host. In transport layer, TCP provides a reliable byte-
stream service on top of IP. Indeed, even if TCP and IP
are separate protocols, the separation between them is not
complete. To differentiate the individual data stream among
incoming packets, a receiving end host demultiplexes the
packets based on source and destination IP addresses, port
numbers, and protocol identifiers. This implies that a TCP
connection is bound to the IP addresses used on the client and
the server at connection-establishment time. TCP connections
cannot move from one IP address to another. When a host
changes the active interface, it obtains a new IP address.
All existing TCP connections must be torn down and new
connections must be created.

The MPTCP protocol architecture allows packets of the
same TCP connection to be sent via different paths to an
MPTCP-capable destination. The MPTCP paths are called
subflows and are defined by pairs of source and destination IP
addresses or ports. MPTCP adoption is expected to explode
in the next few years, as it is readily available in many

mobile devices (e.g., in Apple iOS 7 and OSX 10.10, and for
the Linux kernel). Even if multi-homed endpoint situations
are certainly becoming a reality for mobile devices (where
a portable device typically has multiple interfaces like 3/4G,
WiFi, etc) and servers (that can be equipped with several
high-speed interfaces), the de-facto strongly dominant network
interconnection configuration today uses a single network
interface by an application connection for both outgoing and
incoming traffic forwarding at a given time. Indeed, the
potential of MPTCP may get unexploited because, even if
multiple subflows can be created by modifying the source
port numbers while keeping the same pair of IP interfaces,
their routing in the wide-area Internet segment is subject to
non deterministic bottlenecks.

Passing from multipath communications within a local area
network to communications across the wide area network,
bottleneck is commonly experienced in the Internet segment
(typically because of traffic shaping and node/link congestion).
Moreover, load balancing at the autonomous system (AS) level
is typically not done today, as investigated in [1]. One of the
reasons is that such extensions in the Border Gateway Protocol
(BGP) failed to be standardized [3], even if a few vendors
and open source implementations support it (e.g., [2]). Even
if Multipath BGP had to be massively deployed, it would
not to guarantee deterministic end-to-end multipath forwarding
for MPTCP subflows. In order to compensate for such BGP
shortcomings, building network overlays appear as a viable
solution as shown in [24].

Recently, for cases where at least one of the two end-
points belongs to a multihomed network registered to a Loca-
tor/Identifier Separation Protocol (LISP) [7] network, authors
in [4], [5] investigate the opportunity of building a network
overlay exploiting LISP border routers as multipath forwarding
nodes for MPTCP subflows - the solution was named the Aug-
mented MPTCP (A-MPTCP). The idea is to exploit endpoint
network loose path diversity information, i.e., the IP routing
locators (RLOCs), to balance different subflows over different
loose paths that have chances of not sharing a bottleneck in
the wide area network. The proposed method in [4], [5] relies
on a custom signaling between an MPTCP endpoint and the
LISP mapping system to obtain RLOC information, used to
compute the number of MPTCP subflows to which different
edge-to-edge paths can be deterministically stitched playing
on the 5-tuple identifier, assuming the hashing load-balancing
logic at LISP routers is known by the MPTCP endpoint.



Fig. 1: A 2-subflow A-MPTCP scenario.

While representing a novel promising approach, the proposal
in [4], [5] has three main limitations in many IP operations:
(i) deterministically knowing the correct hashing function at
LISP routers may be impossible; (ii) modifying the MPTCP
endpoint kernel as proposed may be unpractical; (iii) the loose
edge-to-edge LISP-enabled paths may not systematically lead
to a throughput increase due to subflow delay differences.

In this paper, we overcome these drawbacks by proposing
to exploit Traffic Engineering (TE) features we propose to
add to the LISP architecture [8], [9], without the need to
modify the MPTCP implementation at end-points. As depicted
in Fig. 1, our proposal consists of building a LISP-TE network
overlay that, combined with subflow state management and
route selection functions, can transparently offer deterministic
multipath forwarding to MPTCP connections, especially to
large (elephant) flows. Transparently here means that MPTCP
endpoints can keep working in their ‘greedy’ mode (opening as
many subflows as set or needed) and that the overlay does not
need any support from the underlay networks between LISP
routers. Our proposal was implemented using open source
nodes and the code is made available in github.com/lip6-lisp.

In the following, Section II presents LISP and its TE
extensions. In Section III, we describe different modes to
guaranteeing deterministic forwarding of MPTCP subflows. In
Section II, we specify the provisioning steps. In Section we
report experimental results. Section VI concludes the paper.

II. LISP TRAFFIC ENGINEERING

When two LISP networks exchange traffic, a source end-
point identifier (EID) in a site sends a packet to a destination
EID in the other LISP site. Packets are encapsulated by an
ingress tunnel router (ITR) toward the decapsulating egress
tunnel router (ETR). The path from the ITR to the ETR is
determined by the underlying routing protocol and metrics
it uses to select a shortest path (typically BGP and interior
gateway protocols). The ITR creates an IP-(UDP-LISP-)IP
tunnel to ETR so that all the packets between the EIDs are
encapsulated and sent via the tunnel. The LISP Mapping Sys-
tem [11] defines a control-plane based on two main interfaces:

• Map-Resolver (MR): accepts MAP-REQUESTs from ITRs
and allows resolving the EID-to-RLOC mapping using a
distributed mapping database;

• Map-Server (MS): learns authoritative EID-to-RLOC
mappings from ETR via Map-Register messages and
publishes them in the mapping database.

The LISP Delegated Database Tree (LISP-DDT) is a hier-
archical, distributed database protocol, which embodies the
delegation of authority to provide mappings from LISP EIDs to
RLOCs, forwarding MAP-REQUEST across Map-Resolvers and
Map-Servers. The xTR (i.e., ITR/ETR) functionality is present
in source and destination LISP routers [7]. For packets from
source to destination, source xTR acts as ITR and destination
xTR acts as ETR; for reverse traffic their role is reversed, i.e.,
destination xTR acts as ITR and source xTR acts as ETR.

In LISP Traffic Engineering (LISP-TE) extensions to
the basic LISP mode are specified to allow using a loose
path between ITR and ETR by introducing intermediate re-
encapsulating tunneling routers (RTRs) [8]. There are several
reasons why these features can be interesting. For instance:

• There may not be sufficient capacity or degraded perfor-
mance provided by the networks over a given subpath.

• There may be a policy set to avoid a particular subpath.
• There may be specific network functions (e.g., monitor-

ing, traffic inspection nodes) or even a chain of network
functions performed along one or many subpaths.

The ability to pilot RTRs allows us to explicitly manage
subpaths between RTRs. This makes the ITR-ETR direct path,
from a basic LISP perspective, a composition of subpaths
between ITR, RTRs, and ETR. This somehow is a form of
Internet-scale segment routing; indeed there is recently also
interest to use LISP-TE for segment routing [10]: segment
routing combines source routing and tunneling to steer traffic
through the transit network. In LISP-TE, the ETR can register
multiple Explicit Locator Paths (ELPs) each identifying a
path as a chain of RLOCs from source to destination. An
RTR is a router that acts as both an ETR, by decapsulating
packets where the destination address in the ‘outer’ IP header
is one of its own RLOCs, and an ITR, by making a decision
where to encapsulate the packet based on the next locator
in the ELP towards the ETR. In addition to the set of EID
prefixes to register, the MAP-REGISTER message includes one
or more RLOCs to be used by the MS when forwarding
MAP-REQUESTs received through the mapping system. An
ETR may request that the MS answers MAP-REQUESTs on its
behalf by setting the “proxy MAP-REPLY” flag (P-bit) in the
MAP-REGISTER message. In a LISP-TE context, building a
LISP-TE overlay for A-MPTCP communications between two
endpoints, say a source endpoint and a destination endpoint,
shall be done in such a way that:

1) The destination xTRs register a set of ELPs on a per-
EID-prefix basis (e.g., based on local information on the
path states and traffic statistics);

2) The mapping system replies to MAP-REQUESTs coming
from clients with one or many ELPs to use as loose
forwarding inter-domain paths;

3) Different subflows from the source to the destination
are forwarded over different ELPs, at least on the most
unloaded direction, so that intermediate RTRs determin-
istically guarantee no bottleneck.

As far as communications are asymmetric, using A-



MPTCP in a single direction can be sufficient. Otherwise, its
implementation in both directions shall be decorrelated from
each other, especially because Internet routing is often not
symmetric. Different modes are conceivable to implement the
above three steps. To ensure a deterministic binding of sub-
flows to ELP, and hence ensure high performance, states have
to be maintained at the LISP network nodes. Implementing the
subflow forwarding can imply only control-plane operations,
and also data-plane operations. The control on the overlay
usage can be left to the destination, to the source, or inter-
domain controllers, as elaborated in the next sections.

III. EXPLICIT LOCATOR PATH BINDING MODES

We propose two possible ELP binding modes for MPTCP
communications, describing protocol-level features needed.
The specific signaling is later detailed in Section IV.

When the source EID sends a packet to the destination
EID, source ITR sends a MAP-REQUEST message to the map
resolver to get the ETR RLOC. When there are multiple
ELPs defined leading to the destination ETR, that ETR may
be reachable by different paths. The MAP-REPLY is sent by
the destination ETR supposing MAP-REPLY proxying is not
enabled. The mapping of ELP to subflows can be decided
either at the destination ETR before replying with a single ELP
or at the source ITR. Such a decision needs to be taken for each
new subflow upon the detection of the MPTCP connection at
the source xTR. Hence we have two modes of ELP-to-subflow
binding operation described hereafter.

A. Destination-based stateful ELP binding

In this mode of operation, the destination ETR, upon
receiving the MAP-REQUEST triggered by the detection of
a new MPTCP subflow at the source ITR, sends one single
ELP to the source so that the source associates that ELP with
the subflow. When the source sends another requests upon
the detection of an additional subflow, it sends a different
ELP from the list of ELPs it has. In order to allow the ETR
differentiate among different subflows, the source ITR first and
the RTRs then must send the flow information in the MAP-
REQUEST. This is possible by sending MAP-REQUEST with the
LISP Canonical Address Format (LCAF) [9] message type 4
(see Fig. 2a) transporting four fields: source EID, destination
EID, source TCP port and destination TCP port. The fifth field
of the 5-tuple is protocol identifier and in this case it is TCP. In
the reference single-homed endpoint situation, a TCP subflow
is then identified based on source port because the other fields
are equal for all subflows.

This mode is therefore stateful in the sense that the LISP
network nodes serving the destination (ITRs, RTRs and the
ETRs) need to maintain a subflow-to-ELP association table.
Therefore, the best ELP selection algorithm runs on the
destination ETR for each subsequent subflow-related MAP-
REQUEST. When intermediate RTRs (situated between source
ITR and destination ETR) send the request, the ETR must first
do a local lookup and see if the subflow is already associated
with an ELP. Since the binding should be triggered by the

(a) LCAF type 4

(b) LCAF type 10

Fig. 2: Two LISP Canonical Address Format (LCAF)
control-plane header types.

source ITR, requests from RTR should be dropped if the sub-
flow indicated in the map request from that RTR is not already
associated to any ELP. The benefits in keeping the state of all
sub-flows of all incoming connection at the destination ETR
and RTR level derive from a better system control by the
destination network. The main drawback is scalability, as an
important processing load is on the stateful nodes, in particular
the RTRs that could be used by multiple destination networks.

B. Source-based stateless ELP binding

An alternative is to let the LISP nodes serving the desti-
nation network stay stateless. This is possible by letting the
destination ETR send the complete list of all ELPs along
with their priorities to the source ITR and intermediate RTRs.
Source ITR and RTRs can therefore send a standard non-
LCAF MAP-REQUEST upon detection of a new subflow. The
response is encapsulated using LCAF type 10 (see Fig. 2b)
containing all the ELPs. The source ITR then selects the
best path from the set of ELPs and associates each subflow
with different ELP; the best ELP selection algorithm is later
described. In this mode, the destination ETR and the RTRs
do not need to keep any state about sub-flows associations to
ELPs. This makes it a more scalable solution in [5]). However,
the destination network does not have any control over sub-
flow forwarding. There is still a missing brick: intermediate
RTRs still need to identify the ELP associated to a given
subflow. In absence of alternative techniques to uniquely
identify the best ELP, we propose two light-way alternative
methods:



Fig. 3: A-MPTCP stateful provisioning steps.

1) Path Identifier (PID): the source ITR uses a field in
the LISP data plane shim header (the flag field or the
instance-ID field) to code an ELP identifier correspond-
ing to the binding, that is a consecutive number of the
ELP in the LCAF-10 MAP-REPLY. In a convergent state,
this order is later maintained also in the replies to RTRs.
The mechanism would be altered if the set of registered
ELPs changes during the transmission, which can be
considered a rare event during a single connection.

2) ELP Link-Disjointness (ELD): in case ELPs do not
share any RTR-to-RTR link, then identifying the path
in the data-plane is not necessary. Upon receiving the
LCAF-10 MAP-REPLY, the RTR can recognize the ELP
based on the previous RTR address included in the
outer header source address field. This implicit ELP
recognition avoids therefore extra-work at the source
ITR, yet it requires the destination to register link-
disjoint ELP, which could be a best practice as it is a
win-win option, if the RTR topology is sufficiently rich.

IV. A-MPTCP OVERLAY PROVISIONING STEPS

We specify in the following the AMPTCP overlay provi-
sioning steps for the two binding modes.

A. Destination-based stateful ELP binding

Fig. 3 depicts an example configuration to describe the
provisioning steps for the stateful case. They are as follows:

1) The destination xTR registers ELPs using MAP-
REGISTER messages with no MAP-REPLY proxying.

2) The source endpoint opens a MPTCP session with the
destination endpoint.

3) The source xTR catches the MPTCP-CAPABLE option
and identifies the first MPTCP subflow in a local table
with the hash of the 4-tuple source-destination EID IPs

and TCP ports (the ELP column is empty at this stage),
plus a local MPTCP subflow session identifier.

4) The source xTR sends a MAP-REQUEST with LCAF type
4 (Fig. 2a), transporting the 4-tuple source-dest TCP
ports and EID IPs, which reaches the destination xTR.

5) The destination xTR selects the best ELP from its set
based on the local TE policy (the candidate ELP set
should be precomputed for the sake of scalability) and
binds it with the subflow. It stores in a local subflow
table the subflow’s 4-tuple, a local MPTCP session ID
(created for the first subflow), and the ELP bound to it.

6) The destination xTR replies to the received encapsulated
MAP-REQUEST using a MAP-REPLY with LCAF type 10
(Fig. 2b) containing the selected ELP.

7) The source xTR processes the MAP-REPLY, adds the
content to the local mapping cache, binds the ELP to the
subflow in the local table, and encapsulates accordingly.

8) Afterwards, upon reception of the first encapsulated
packet(s), intermediate RTRs first send a MAP-REQUEST
to the destination ETR as in step 4, which replies with a
LCAF type 10 MAP-REPLY as in step 6, acting then as
in step 7. Depending on single-layer or multi-layer path
signaling mode, they may either encapsulate the packet
and send it to the ELP next hop or send another map
request for the next hop, get the intra-domain ELP for
next hop and then send the packet to the first entry in
the ELP.

9) The source xTRs catches each additional subflow for
each MPTCP flow, based on variation of source port only
and MPTCP SYN+MP-JOIN options, update the subflow
table and send for each new subflow a MAP-REQUEST
as in point 4 - 8.

10) When source and destination xTRs catch the termination
of a subflow (based on MPTCP option FIN) or a subflow
is timeout, they clean the entry from the subflow table.



Fig. 4: A-MPTCP stateless provisioning steps.

B. Source-based stateless ELP binding

Fig. 4 depicts an example configuration to describe the
provisioning steps for the stateless case. They are as follows:

1) The destination xTR registers ELPs using MAP-
REGISTER messages with LCAF type 10. Destination
xTR can set the proxy bit indifferently either MAP-
REPLY proxy or no proxy.

2) The source endpoint opens a MPTCP session with the
destination endpoint.

3) The source xTR catches the MPTCP-CAPABLE op-
tion and identifies the MPTCP session in a local table
with a hash of the 4-tuple source-destination TCP ports
and EID IPs, plus a local identifier.

4) The source xTR sends a standard non-LCAF MAP-
REQUEST through the mapping system.

5) The destination xTR (if no proxy reply option) or
the Map-Server/Map-Resolver (if proxy reply option)
replies to the received encapsulated MAP-REQUEST us-
ing a MAP-REPLY with LCAF type 10 containing all
the ELPs (Fig. 4 shows a MAP-REPLY from destination
xTR, for the case when destination xTR registers with
no MAP-REPLY proxy).

6) The source xTR processes the MAP-REPLY, adds all
ELPs to the local mapping cache, finds the best ELP
based on the local TE policy, binds an ELP to the
subflow, and encapsulates accordingly to the ELP to the
next RTR hop (the path identifier, PID, may be included
in the LISP data header as specified in Section III.II).

7) Afterwards, upon reception of the first encapsulated
packet(s), intermediate RTRs first send a MAP-REQUEST
as in step 4, and receive a LCAF type 10 MAP-REPLY as
in step 5, acting then as in step 6. As in the stateful case,

they may or not work under multi-layer path signaling
mode. To identify the next-hop RTRs can either use the
PID in the LISP data header, or identify itself in the ELP
under the ELD assumption, as explained in Section III.II.

8) The source xTR catches each additional MPTCP sub-
flow, based on variation of source port only and MPTCP
SYN+MP-JOIN options, updates the subflow table and
binds the second (best) ELP to it.

9) As in the step 10 of the stateful mode, when source
and destination xTRs catch the termination of a subflow
(based on MPTCP option FIN) or a subflow is timeout,
they clean the subflow entry from the subflow table.

It is worth mentioning that the local TE path selection
policies mentioned in step 6 above and in step 5 of the stateful
provisioning step need to be carefully drafted so as to grant
marginal improvement to ELP-to-subflow binding with respect
to the standard/previous situation. As one of the main factors
affecting transport protocol performance is the Round Trip
Time (RTT), there is the need to collect RTT information in the
overlay network topology composed of xTRs and RTRs. This
can be natively done in a LISP network by enabling the so-
called ‘RLOC probing’ functionality [7] that by piggybacking
MAP-REQUEST messages is able to collect RTT information.
Once collected, this information can be used for the TE path
selection policy run over the weighted overlay network graph.

V. EXPERIMENTAL RESULTS

The proposed framework was implemented and tested
through large-scale experiments, as described in the following.

We preferred running tests using real routing and end-
point nodes rather than simulators because the complexity of
the MPTCP+LISP-TE combined network system is such that



(a) LIP6 source (b) NSS source (c) Rezopole source

Fig. 5: Packet loss rate for different number of ELPs, in stateless and statefull modes (boxplot format).

(a) LIP6 source (b) NSS source (c) Rezopole source

Fig. 6: Correlation scatter of throughput vs differential RTT.

(a) LIP6 source (b) NSS source (c) Rezopole source

Fig. 7: Average RTT cumulative distribution functions for the different ELPs and sources.

using discrete-time event simulators would risk to introduce
too much determinism with the risk of low credibility.

A. Implementation details

For running experimental tests, we extended the OpenLISP
control-plane [25] and data-plane implementations adding: (i)
LCAF 4 and LCAF 10 processing at the control-plane level;
(ii) stateful and stateless functions, with the corresponding
subflow table management functions; (iii) an enhanced RLOC
probing behavior for collecting RTT measurements between
overlay network nodes.

We centralized the collection of RLOC probing results at
both ETR and ITR level to support the ELP search on the over-
lay network graph weighted with RTT probing information.
Then, we used as k-shortest path algorithm the one described
in [26], to select ELPs with least differential RTT, with the
goal to minimize the occurrence of head-of-line blocking when
buffering packets.

The resulting versions v0.3 and v4.0 of the OpenLISP
data-plane and control-plane software nodes including these
extensions are released with a BSD license (see github.com/
lip6-lisp). We used the MPTCP linux implementation (v.0.90),
with the default least-RTT scheduler.

B. Network testbed

We built an overlay network of RTRs over the LISP-Lab
project testbed (lisplab.lip6.fr), interconnected to the global
LISP network with the OpenLISP DDT root named ‘lambda’
(see ddt-root.org). For the tests, we set as destination the LISP-
Lab site of Univ. of Missouri-Kansas City (UMKC), Kansas-
City, USA, and used three different source LISP-Lab sites: the
LIP6, Paris, France, Rezopole, in Lyon, France, and NSS, in
east Paris, France, ones. Each source site deploys one xTR, one
RTR and own EID prefix. To complete the overlay network, we
use the following additional sites: Inria, in Sophia Antipolis,
France, VNU, in Hanoi, Vietnam, POLIMI, in Milan, Italy,



each running an RTR. All the nodes, xTRs, RTRs and EIDs
run as virtual machines with a number of cores varying from
1 to 4, from 2 to 2.6 Ghz, and live memory from 1 to 4
GB. EIDs implemented the version 0.90 of the open source
MPTCP Linux kernel implementation (multipath-tcp.org).

We run 30 transfers for each mode (stateless and stateful),
lasting 120 seconds each, using the iperf tool, for each source-
destination pair, distributed on a period of two days. For each
transfer, we first setup the nodes in the topology, and then use
the RLOC probing between all nodes to collect RTTs between
each pair of the node (used to calculate the ELP set for both
source and destination xTRs). After deploying the computed
ELP set to source and destination xTR, we start the transfer.
As the overlay topology RTT were quite stable during the
experiments, we got a fixed set of ELPs as follows:

• the LIP6-UMKC communications, ELP1 was via LIP6-
UMKC, ELP2 via Rezopole-UMKC, ELP3 via NSS-
UMKC, and ELP4 via VNU-UMKC;

• for NSS-UMKC communications, ELP1 was via NSS-
UMKC, ELP2 via Rezopole-UMKC, ELP3 via LIP6-
UMKC, and ELP4 via VNU-UMKC;

• for Rezopole-UMKC communications, ELP1 was via
Rezopole-UMKC, ELP2 via LIP6-UMKC, ELP3 via
NSS-UMKC, and ELP4 via VNU-UMKC.

In the following, SLX and SFX indicates the stateless
and stateful tests, respectively, run with a number of X ELPs.
SD stands for standard transmission, that is using basic LISP-
MPTCP communications with LISP-TE stitching as in [4], [5]
with two subflows. SDY , SLXY and SFXY indicates the Y th
subflow used in SD, SL and SF modes, respectively.

C. Tests characterization

Let us characterize first the tests, in order to better under-
stand the throughput results.

Fig. 5 gives the experienced packet loss, at the subflow
level, for the various modes with a number of subflows ranging
from 2 to 4. The SD mode suffered an important packet loss
during the experiments. Among the sources, the NSS one
suffered more, essentially because we suspect the employed
datacenter run shaping policies at the top-of-rack level.

Fig. 6 gives three scatter plots, one for each source, corre-
lating the throughput to the differential RTT (the minimum
RTT difference among subflows) for all the tests. We can
observe the strong positive correlation between the two factors,
with highest throughput reached for least differential RTTs.

Fig. 7 completes the picture with the distribution of the
RTT (average among the RTTs of the single subflows) for the
different ELPs. The fourth ELP for all sources suffers from
a much higher RTT, hence one can expect its addition can
generate head-of-line blocking. For the NSS source, ELP3 has
a slightly higher RTT than the others. The remaining ELPs
have a differential RTT quite low.

D. Throughput results

Fig. 8 reports the achieved performance in terms of
throughput for the different source-destination pairs, under

the stateful and stateless modes, with the number of ELPs
ranging from 1 to 4. We can notice that there is practically no
improvement with the NSS source: this is likely the result of
the many retransmissions due to the observed higher packet
loss rates, likely due to shaping in the source network. For
the other two sources, the gain ranges from 10% to 25%
with two paths, hence without adding paths with respect to
SD, just bypassing the default routes by using the network
overlay. Adding a third ELP leads marginal gains only for
the LIP6 source. Adding the fourth ELP, with high RTT, does
decrease the throughput as expected, likely because of head-
of-line blocking. Finally, an important observation is that there
is no better mode in terms of throughput performance between
stateless and statefull modes.

With a deeper look to the subflow contribution to the
throughput, shown in Fig. 9, also in perspective with the ELP
RTTs qualified in Fig. 7, we can observe that the fourth ELP
does indeed bring a very low, in practice null contribution,
besides causing likely buffering issues. Then, we can see the
impact of the scheduler, which load mostly one subflow (the
least RTT one), this subflow often being the first one (because
we can see there can be a very low difference between the
RTTs of ELP1 and ELP2 for all sources). We identify in
the scheduler an important potential of further bandwidth
aggregation, as other ELPs with very close RTT to the least
RTT one could be used more with another type of scheduler.
Unfortunately, such an advanced scheduler is still not designed
and implemented as of our knowledge.

VI. CONCLUSION

We described in this paper a novel overlay network pro-
tocol architecture based on MPTCP and LISP-TE protocols,
with some extensions in particular to the overlay routers
state management. Despite we could benefit from only few
overlay network nodes, we could experimentally evaluate our
proposals showing the positive impact by using our overlay
network, the negative impact of long RTTs on some MPTCP
subflows, and the strong correlation between the differential
RTT among subflows and the throughput performance.

Different directions of further investigations are open.
First, we believe our approach, making use of an incrementally
deployable protocol such as LISP, can be a viable one for
building an overlay network across network domains such as
via internet exchange points or software-defined network do-
mains. Second, the major limitation to the achievable through-
put gain being represented by the MPTCP scheduler, we plan
to design a new scheduler able to better aggregate bandwidth
on multiple subflows with different RTT performance. As
introducing an advanced scheduler may be too difficult to do
at the device level, and as devices may not even be MPTCP
capable, one promising direction is to integrate it into MPTCP
proxies using frameworks such as the one described in [27].

ACKNOWLEDGEMENT

This work was funded by the ANR LISP-Lab project
(lisplab.lip6.fr - Grant No: ANR-13-INFR-0009), the FUI 15



(a) LIP6 source (b) NSS source (c) Rezopole source

Fig. 8: Throughput performance for different number of ELPs, in stateless and statefull modes (boxplot format).

(a) LIP6 source (b) NSS source (c) Rezopole source

Fig. 9: ELPs contribution to the MPTCP connection throughput.

project RAVIR (http://www.ravir.io) and the EIT ICT-Labs
Future Networking Services action line (eitictlabs.eu).

We thank G. Maier, D. Medhi, and D. Saucez for making
available their LISP-Lab site, and P. Bellavista for his valuable
feedback. We also thank N. Kukreja for his artworks and
support in the tests for his master thesis, and R. Alvizu for
the discussions on least differential delay path selection.

REFERENCES

[1] E. Elena, J.-L. Rougier, S. Secci, “Characterisation of AS-level Path
Deviations and Multipath in Internet Routing”, in Proc. of NGI 2010.

[2] “Configuring BGP to Select Multiple BGP Paths”, JUNOS document.
[3] A. Lange, “Issues in Revising BGP-4”, draft-ietf-idr-bgp-issues-06, 2012.
[4] M. Coudron, S. Secci, G. Pujolle, “Augmented Multipath TCP Commu-

nications”, in Proc. of IEEE ICNP 2013.
[5] M. Coudron, S. Secci, G. Pujolle, P. Raad, P. Gallard, “Cross-layer

Cooperation to Boost Multipath TCP Performance in Cloud Networks”,
in Proc. of IEEE CLOUDNET 2013.

[6] C. Raiciu et al., “Improving Datacenter Performance and Robustness with
Multipath TCP”, in Proc. of ACM SIGCOMM 2011.

[7] D. Lewis et al., “Locator/ID Separation Protocol (LISP)”, RFC 6830,
Jan. 2013.

[8] D. Farinacci, P. Lahiri, M. Kowal, “LISP Traffic Engineering Use-Cases”,
draft-farinacci-lisp-te-07, Sept. 2014.

[9] D. Farinacci, D. Meyer, J. Snijders, “LISP Canonical Address Format
(LCAF) ”, draft-ietf-lisp-lcaf-05, May 2014.

[10] F. Brockners et al., “LISP Extensions for Segment Routing”, draft-
brockners-lisp-sr-01, Feb. 2014.

[11] V. Fuller, D. Farinacci, “Locator/ID Separation Protocol (LISP) Map-
Server Interface”, RFC 6833, Jan. 2013.

[12] N. McKeown, A. Mekkittikul, V. Anantharam, J. Walrand, “Achieving
100% throughput in an input-queued switch”, IEEE Transactions on
Communications, Vol. 47, No. 8, pp:1260-1267, 1999.

[13] S. Rai, O. Deshpande, C. Ou, U. Martel, B. Mukherjee, “Reliable
multipath provisioning for high-capacity backbone mesh networks”,
IEEE/ACM Trans. on Networking, Vol. 15, pp. 803-812, 2007.

[14] S.-J. Lee, M. Gerla, “Split multipath routing with maximally disjoint
paths in ad hoc networks”, in Proc. of ICC 2001.

[15] J. Tang, G. Xue, “Node-disjoint path routing in wireless networks:
tradeoff between path lifetime and total energy”, in Proc. of ICC 2004.

[16] J. Chen, S.-H. Chan, V. O. Li, “Multipath routing for video delivery
over bandwidth-limited networks”, IEEE J. on Selected Areas in Com-
munications, Vol. 22, pp. 1920-1932, 2004.

[17] F. Paganini, E. Mallada, “A Unified Approach to Congestion Control
and Node-Based Multipath Routing”, IEEE/ACM Trans. on Networking,
Vol. 17, pp. 1413-1426, 2009.

[18] S. S. Ahuja, T. Korkmaz, M. Krunz, “Minimizing the differential delay
for virtually concatenated Ethernet over SONET systems”, in Proc. of
ICCCN 2004.

[19] A. Srivastava, S. Acharya, M. Alicherry, B. Gupta, P. Risbood, “Differ-
ential delay aware routing for Ethernet over SONET/SDH”, in Proc. of
IEEE INFOCOM 2005.

[20] A. Srivastava, “Flow aware differential delay routing for next-generation
Ethernet over SONET/SDH”, in Proc. of IEEE ICC 2006.

[21] W. Zhang, J. Tang, C. Wang, S. De Soysa, “Reliable adaptive multipath
provisioning with bandwidth and differential delay constraints”, in Proc.
of IEEE INFOCOM 2010.

[22] H. Sheng, C. U. Martel, B. Mukherjee, “Survivable Multipath Provi-
sioning With Differential Delay Constraint in Telecom Mesh Networks”,
IEEE/ACM Trans. on Networking, Vol. 19, pp. 657-669, 2011.

[23] R. Bhandari, Survivable networks: algorithms for diverse routing,
Springer, 1999.

[24] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris “Resilient
Overlay Networks”, ACM SIGCOMM Computer Communication Review,
Vol. 32 pp. 1-66,2002

[25] D.C. Phung, S. Secci, D. Saucez, L. Iannone, “The OpenLISP Control-
Plane Architecture”, IEEE Network Magazine, Vol. 28, No. 2, pp: 24-40,
March-April 2014.

[26] R. Alvizu, G. Maier, M. Tornatore, M. Piro, “Differential delay
constrained multipath routing for SDN and optical networks”, Electronic
Notes in Discrete Mathematics, Vol. 52, pp: 277-284, 2016.

[27] M. Boucadair et al., “Extensions for Network-Assisted MPTCP De-
ployment Models”, draft-boucadair-mptcp-plain-mode-10, IETF technical
report, March 2017.


