
METHODS
published: 07 March 2018

doi: 10.3389/fninf.2018.00009

Frontiers in Neuroinformatics | www.frontiersin.org 1 March 2018 | Volume 12 | Article 9

Edited by:

Daniel Gardner,

Cornell University, United States

Reviewed by:

Daniel Llewellyn Rathbun,

Universität Tübingen, Germany

Ariel Rokem,

University of Washington,

United States

*Correspondence:

Jacob Huth

jahuth@uos.de

Received: 27 July 2017

Accepted: 21 February 2018

Published: 07 March 2018

Citation:

Huth J, Masquelier T and Arleo A

(2018) Convis: A Toolbox to Fit and

Simulate Filter-Based Models of Early

Visual Processing.

Front. Neuroinform. 12:9.

doi: 10.3389/fninf.2018.00009

Convis: A Toolbox to Fit and Simulate
Filter-Based Models of Early Visual
Processing

Jacob Huth 1*, Timothée Masquelier 2 and Angelo Arleo 1

1Centre National de la Recherche Scientifique, INSERM, Sorbonne Universités, UPMC Univ Paris 06, Paris, France, 2CERCO

UMR5549, Centre National de la Recherche Scientifique, University Toulouse 3, Toulouse, France

We developed Convis, a Python simulation toolbox for large scale neural populations
which offers arbitrary receptive fields by 3D convolutions executed on a graphics card.
The resulting software proves to be flexible and easily extensible in Python, while
building on the PyTorch library (The Pytorch Project, 2017), which was previously used
successfully in deep learning applications, for just-in-time optimization and compilation
of the model onto CPU or GPU architectures. An alternative implementation based on
Theano (Theano Development Team, 2016) is also available, although not fully supported.
Through automatic differentiation, any parameter of a specified model can be optimized
to approach a desired output which is a significant improvement over e.g., Monte Carlo
or particle optimizations without gradients. We show that a number of models including
even complex non-linearities such as contrast gain control and spiking mechanisms
can be implemented easily. We show in this paper that we can in particular recreate
the simulation results of a popular retina simulation software VirtualRetina (Wohrer and
Kornprobst, 2009), with the added benefit of providing (1) arbitrary linear filters instead of
the product of Gaussian and exponential filters and (2) optimization routines utilizing the
gradients of the model. We demonstrate the utility of 3d convolution filters with a simple
direction selective filter. Also we show that it is possible to optimize the input for a certain
goal, rather than the parameters, which can aid the design of experiments as well as
closed-loop online stimulus generation. Yet, Convis is more than a retina simulator. For
instance it can also predict the response of V1 orientation selective cells. Convis is open
source under the GPL-3.0 license and available from https://github.com/jahuth/convis/
with documentation at https://jahuth.github.io/convis/.

Keywords: vision model toolbox, retina model, primary visual cortex model, Python, GPU, Theano, PyTorch

1. INTRODUCTION

We developed Convis as an extension to the popular PyTorch toolbox (The Pytorch Project, 2017)
that can implement models of responses to visual inputs on a large scale and, using automatic
differentiation, derive the gradient of the output with respect to any input parameter. Linear
filtering is done as convolutions, giving full flexibility in the shape and temporal structure of
receptive fields. As an example, we show the utility of this method by examining models of retinal
ganglion cells (RGCs), ranging from a very simple linear-non-linear model to a many-parameter
mechanistic model which includes recurrent contrast gain control. Further, we show that this

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00009
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00009&domain=pdf&date_stamp=2018-03-07
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jahuth@uos.de
https://doi.org/10.3389/fninf.2018.00009
https://www.frontiersin.org/articles/10.3389/fninf.2018.00009/full
http://loop.frontiersin.org/people/456994/overview
http://loop.frontiersin.org/people/21932/overview
http://loop.frontiersin.org/people/1067/overview
https://github.com/jahuth/convis/
https://jahuth.github.io/convis/

Huth et al. Convis: Convolutional Vision Model Toolbox

toolbox can simulate cell populations on a similar scale and in
comparable time to previous large-scale retina simulators, even
though the computations refrain from simplifying the shape of
receptive fields.

We aim to bridge two use cases of vision models which
tended use distinct software solutions in the past. To understand
the structures and processes of the visual system, e.g., how
plasticity shapes representations (Masquelier, 2012), theorists are
interested in a relatively large portion of the visual field, which
requires a large number of neurons to be simulated according
to our current understanding of the typical response of the
respective cells. Experimentalists are in contrast concerned with
the responses of a set of particular, very individual cells. While
the mechanisms of the model used are often similar, the theorist
requires a large number of cells to be simulated rapidly and
efficiently with identical parameters from the literature and the
experimentalist needs a method to adjust model parameters such
that the model recreates the behavior of the cells observed in
experiments.

The toolbox we created can be used in these two applications.

1.1. Population Simulation Software
1.1.1. Large Scale Retina Models
The retina is the first stage of neural computation in vision.
Models of different complexity exist that predict retinal ganglion
cell (RGC) responses for a wide range of ganglion cell types
(from simple ON and OFF alpha cells up to direction selective
cells). Some efforts were made to create large scale population
simulators (e.g., VirtualRetina, Wohrer and Kornprobst, 2009
and COREM, Martínez-Cañada et al., 2016) that can create the
responses of thousands of retinal ganglion cells with efficient
computations. These can be used as input to higher visual
functions which generally need a large number of cells as input.

However, these simulators are not very useful for
experimentalists who want to model the behavior of cells
recorded in their experiments. The parameters of the model
cannot be directly inferred from an experiment and fitting the
simulation to the data can only be done via parameter grid
search or Monte Carlo methods—both being very computation
intense. Retinal processing is—in contrast to the rest of the visual
system—easily accessible to multi-array recordings. Despite
the relative consistency of retinal circuitry, a high number
of ganglion-cell response classes exists (Masland, 2001). To
characterize the properties of each class of cells, linear-non-linear
cascade models are the current gold standard. However, the
properties of e.g., contrast gain control are not easily extracted
from data: Experiments usually explore only distinct levels of
contrast, for instance Garvert and Gollisch (2013). Shapley and
Victor (1978) proposed a mechanism for contrast gain control,
which accounts for the phase advance and transfer function
recorded in RGC cells. It is incorporated into large scale retina
population simulators such as VirtualRetina in a formulation
that takes local contrast, rather than global contrast, into
account.

To keep computations tractable, VirtualRetina uses recursive
filtering rather than actual convolution, which limits the possible
applications of these models to circular receptive fields and

exponential temporal filters. But receptive fields are rarely
circular, in most studies RGC receptive fields will be visualized
as tilted ellipses (e.g., Liu et al., 2017), while Gauthier et al.
(2009) even show that the irregular shape of receptive fields is
linked to their objective to tile the visual field. To incorporate
non-circular receptive fields, Convis allows for recursive as well
as dense numerical filters, which are convolved with the input
on a graphics card. Cell responses with detailed receptive fields
can thus be simulated efficiently and the model can be fitted to
experimental recordings since the gradients of the computations
are available.

1.1.2. Computations in the Retina
RGCs transmit the output of the retina to different brain regions,
mainly the lateral geniculate nucleus (LGN). It is estimated that
there exist at least 30 different RGC types (Sanes and Masland,
2015), each population forming a tiling coverage of the visual
space, responding uniquely to light stimuli and possesses unique
proteins making it possible to distinguish between different types
histochemically. The visual system, even at this low level, is
complex. A model that predicts, for a given set of stimuli, the
corresponding responses accurately might not be able to do so for
some novel stimuli, due to over-fitting. The responses to “natural
images” lead to more complex models than the responses to
high-luminance on-off pulses, moving bars and gratings or even
random checkerboard stimuli (Simoncelli and Olshausen, 2001).
Still, a “natural stimulus” will also not cover all modes of behavior
and even more complex models are conceivable. Choosing the
complexity of a model is a hard problem in itself. The model
should explain the data while being as simple as possible to avoid
over-fitting as data is always limited. The simplest approximation
of RGC responses can be obtained with a linear-non-linear
model that predicts the firing probability of a cell by multiplying
the input with a spatial or spatio-temporal receptive field and
then applying a non-linearity (Marmarelis and Naka, 1972;
Korenberg and Hunter, 1986). When a stimulus is spatially more
complex and has a finer resolution, it becomes apparent that
subunits exist that integrate the stimulus independently under
a first non-linearity before being summed and subject to a
second non-linearity. Responses to these stimuli can be predicted
with subunit models (also called LN-cascade models as they
stack multiple levels of linear and non-linear processing). We
implemented a range of models on this spectrum of complexity
and assessed whether parameters could be estimated efficiently.

1.1.3. A Complex Retina Model: VirtualRetina
As an example of what Convis can do, we implemented a retina
model close to the mathematical definition of VirtualRetina
(Wohrer and Kornprobst, 2009), but replaced the recursive
method to compute linear filters with convolution operations.

The recursive definition of filters makes VirtualRetina very
fast and efficient. Two-dimensional Gaussians for instance are
computed independently for the x and y direction, such that the
time complexity is scaling essentially linear with each dimension.
But recursive filters have the drawback that their shape is very
limited: the x-y separability is a huge constraint for receptive
fields. A radially symmetric filter is a good approximation

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

for a diffusion process, but neural connections tend to be
sparser and more selective (Gauthier et al., 2009). To simulate
arbitrary, non-round, non-Gaussian and non-continuous spatio-
temporal filters we used 1d, 2d or 3d convolutions, which
have the drawback of being very inefficient when implemented
in single threaded programs. To counter this flaw and to
keep the code comprehensible and maintainable, we used the
PyTorch library to create models and run optimized code on a
GPU. Spatio-temporal filters with finite impulse responses can
be implemented effectively with either a recursive definition
that keeps N previous states or higher moments in memory
(as used in VirtualRetina and COREM) or as a convolution
with a 3D kernel. We go further into the advantages and
disadvantages of the two methods in section 2.3.3. Although a
convolution is computationally costly because it has to calculate
the crossproduct of filter and image at each position of the 3D
image, the use of GPUs for cheap parallel computations can speed
up this process dramatically.

Fivemain types of processing happen in the layers of the retina
(Wohrer and Kornprobst, 2009). Through the absorption of light
in photoreceptors, the input is low-pass filtered in the spatial
and temporal domain and the sensitivity of each photoreceptor
is adjusted by adaptation mechanisms, e.g., photopigment
bleaching. Through the inhibitory surround signal of horizontal
cells, luminance information is mostly removed in favor of
contrast information. The photoreceptors already adapt to
luminance to some degree, but they are quite slow (between
seconds and minutes). The inhibition from the surround is much
faster path of luminance invariance. The combination of short
term adaptation to luminance and the center-surround receptive
field can be modeled as spatio-temporal high pass filters. The
weight of center and surround gives a cell a more phasic or
tonic response to luminance. When both receptive fields are
balanced, luminance is removed perfectly. This contrast signal
is again gain controlled by Bipolar-Amacrine synapses, resulting
in characteristic phase advance of contrast gain control (Shapley
and Victor, 1981) and rectified due to strictly positive synapses.
Lastly, spikes are generated in ganglion cells and sent along their
axons in the optic nerve.

Each ganglion cell type differs in the parameters of these
operations. Each filter operation can react differently to spatial
and temporal frequencies. While the simplest possible model
(a linear-non-linear model) can capture the general shape
of the classic, excitatory receptive field under one specific
condition, changes in illumination and surrounding contrast
as well as the presentation of natural images require non-
linear adaptation mechanisms for both (Rieke and Rudd, 2009).
Heitman et al. (2016) showed that generalized linear models
with scalar non-linearities fail to capture RGC responses to
natural images. Real et al. (2017) created a systematic hierarchy
of RGC models, starting with a linear-nonlinear model and
improving performance by adding subunits to the model, which
compute independent non-linear functions before their output is
aggregated and again subjected to a non-linearity. They further
improved performance with feedback mechanisms.

Consequently, RGC responses are most accurately modeled as
a cascade linear-non-linear model with gain control. The stages

of the VirtualRetina simulator for example consist of a linear,
spatio-temporally non-separable filtering mimicking the Outer
Plexiform Layer (OPL) which converts luminance into a contrast
image via a center-surround receptive field. The second stage,
modeling the contrast gain control properties of bipolar cells
subject to shunting inhibition, is a leaky integrator with leak
conductance that depends on a spatio-temporal neighborhood
of contrast magnitude. The last stage creates spikes by applying
a static non-linearity to the output of the bipolar cells and then
using a Leaky Integrate and Fire model to convert current into
precise spike times. The contrast gain control as implemented in
VirtualRetina has two effects in retinal processing: (1) it filters
frequencies and (2) a phase advance is applied to the signal. This
is typically assessed by exposing the system to a sum of sine
waves and varying the contrast. Not only does the gain change,
leading to sub-linear output, but with increasing contrast the
phase advance decreases the response time compared with lower
contrast stimuli.

Fitting the VirtualRetinamodel completely from experimental
data is not feasible. Many of the parameters have correlated
effects, the number of overall parameters is high and the non-
linear nature of some parameters increases the difficulty further.
Thus, the parameters used for simulations are usually taken from
the literature (such as the average receptive field size and size of
the suppressive surround) and remaining parameters are tuned
with Monte Carlo optimization to achieve the desired firing rates
(Wohrer and Kornprobst, 2009).

The reimplementation of VirtualRetina in the Convis toolbox
can in contrast be fitted to data by using the gradients of
the parameters. The first gradients give information about the
location of a nearby minimum (see section 3.3), while the second
derivatives can give information about the shape of the error
function, specifically if there is a global minimum, and the
interaction of parameters by calculating a Hessian Matrix (see
section 3.4).

1.2. Fitting Experimental Data
Experimentalists analyze the behavior of retinal ganglion cells
e.g., by calculating the spike-triggered average (STA) and spike-
triggered covariances (STC), which can then be used as receptive
fields in generative linear-nonlinear models (Liu et al., 2017). If
more complex parameters are added to themodel, more elaborate
parameter search has to be performed (e.g., Polak-Ribière in the
Supplementary Material of Real et al. (2017)).

More complex models have to be fitted with very elaborate
optimization procedures, usually by evaluating the model using
many different sets of parameters, e.g., by grid search (which
is not feasible for even moderate parameter spaces), Monte-
Carlo methods (Cessac et al., 2017) or even genetic algorithms
(Crespo-Cano et al., 2015).

Recently Batty et al. (2017) used the approach of multi-
layer recurrent neural networks to fit RGCs. While the model
can predict the responses in the data well, the model is not
interpretable and not mechanistic. So their final model is a
GLM-RNN hybrid in which the spatial filter is linear and
the temporal dynamics are achieved with two reservoirs of
recurrently connected neurons to capture many of the non-linear

Frontiers in Neuroinformatics | www.frontiersin.org 3 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

effects. While their general approach is very different from ours,
they also use a computational framework (in their case Theano)
that provided them with gradients to guide their optimization
routine.

All of the three use cases can benefit from the Convis
framework: We offer LN-cascade models for experimentalists
with many optimization algorithms out of the box. For
more complex, mechanistic and bio-inspired models, Convis
provides a way to use gradient-guided rather than brute force
optimization techniques. And finally experimental combinations
of modeling and machine learning can draw on the models
provided by Convis and the wealth of available PyTorch
packages to create new approaches rapidly with a small code
base.

2. METHODS

2.1. Usage
2.1.1. General Usability
We recommend using jupyter notebooks or IPython console to
work with Convis (Pérez and Granger, 2007). This way, models
can be built interactively, auto completion is available and data
can be inspected directly and plotted.

For code examples we provide, we assume that the necessary
packages are installed and a python interpreter is running with
the following code already executed:

import numpy as np

import matplotlib.pylab as plt

import torch

import convis

Convis aims to be compatible with Python 2.7 and Python
3.6. Installation instructions and a more in depth documentation
of features and usage can be found at https://jahuth.github.io/
convis/.

2.1.2. Creating and Running a Model
Models can be created by instantiating an instance of
one of the model classes available in Convis, e.g., the
convis.retina.Retina() model or the models found in
convis.models.*. Keeping with PyTorch, each model can
be called as a function to process some input. Additionally,
a run method can be called with an argument dt to
automatically break down the input into chunks of length dt

and processing one after another to limit memory usage. This
code sample will run the Retina model on a moving grating
stimulus:

retina = convis.retina.Retina() # creating

a model

some_input = convis.samples.moving_grating

(t=2000,x=20,y=20)

o = retina(some_input[0:100,:,:])

or

o = retina.run(some_input,dt=100)

By default the model will generate on and off spiking
responses.

Creating a simple LN model can be defined like this:

m = convis.models.LN()

m.conv.set_weight(np.random.rand(10,5,5))

Models similar to the definitions from (Real et al., 2017) are
already implemented: LN, LNLN (called LNSN for subunit),
LNLN with feedback at the second stage (LNSNF) and both
stages (LNFSNF) and LNLN models with delayed feedback
(LNFDSNF). In contrast to Real et al., where the stimulus had
only one dimension in space, our filters are 3D spatio-temporal
filters.

2.1.3. Streams
In our use case we deal with three-dimensional movies or five-
dimensional tensors (including two additional dimensions for
batches and color channels). But the input might be larger than
the available memory or even infinite in duration if we stream
input for instance from a webcam. Thus, we only compute the
response to a time slice at a time, the size of which depends
on the available graphics card memory and image dimensions.
Normally, this would mean that each time slice would be
computed independently and the history of each process is lost.
To enable dynamics that have a longer reaction time than one
time slice, we use state variables, e.g., the values of a differential
equation at a certain point in time and a section of the input for
convolution operations. The downside of this method is that the
time slices cannot be computed in parallel, since they depend
on the history of previous slices. Another downsize is that the
computational graph will either grow infinitely, or has to be cut
off at some point between time slices. The default solution is to
cut the graph regularly, which can limit the possibility of fitting
processes with very slow time constants.

Convis supports multiple input and output formats, such as
sequences of images, videos, .npy and .inr files and input via
a network connection. Internally these are all represented by the
same interface as stream objects from which a number of frames
can be taken and to which a number of frames can be appended.
They can be automatically resampled to different frame rates (to
match the discrete time step of the model) and if more than one
input is required multiple streams can be synchronized using
timestamps.

To ease handling in- and outputs, image streams and a Runner
object can be used to automatically feed input into models.

inp = convis.streams.RandomStream(size=(10,

10),level=0.2,mean=0.5)

keeping the output in memory:

out1 = convis.streams.SequenceStream

(sequence=np.ones((0,10,10)))

visualizing the output using Tkinter:

out2 = convis.streams.run_visualizer()

saving the output uncompressed to disc:

out3 = convis.streams.InrImageStreamWriter

(’output.inr’)

saving the output compressed to disc:

out4 = convis.streams.HDF5Writer(’output.

h5’)

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2018 | Volume 12 | Article 9

https://jahuth.github.io/convis/
https://jahuth.github.io/convis/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

If OpenCV is installed, a number of video files can be read
from and written to and webcams can be accessed.

A Runner object ties together a model, an input stream and
an output stream. The Runner can spawn its own thread that
will constantly consume data from the input stream (if available),
process the data and feed the output to the output stream to e.g.,
visualize the data or save it to a file.

runner = convis.Runner(retina, input = inp,

output = out4)

runner.start()

... some time later

runner.stop()

To enable color processing or other additional channel
information, such as RGC types, we pass input from one layer
to the next as 5d tensors rather than 3d. We follow a convention
for 3D convolution, which is to add one dimension for “batches”,
which are independent and can be processed in parallel, and
one dimension for “channels”, such as color. We add those
dimensions as dimension 0 and 1, consistent with the dimensions
used by PyTorch 3d convolution. An input with a set number
of color channels requires the convolution filter to have the
exact same number of input channels and the output of all the
individual channel filters will be summed. Conversely a single
filter can also generate multiple output channels, which can be
passed to the next layer.

As an example the following filter accepts input with 3
channels and produces output of 3 channels, switching the red,
green and blue channels:

m = convis.models.LN()

kernel = np.zeros((3,3,1,1,1))

kernel[0,1,:,:,:] = 1.0

kernel[1,2,:,:,:] = 1.0

kernel[2,0,:,:,:] = 1.0

m.conv.set_weight(kernel)

2.1.4. Automatic Optimization
Using an optimization algorithm to fit a PyTorch model to data
can be done by creating the appropriate Optimizer object, filling
the gradient buffers and executing an optimization step:

x,y = convis.samples.generate_sample_data()

variables x and y are 3d time series

m = convis.models.LN()

opt = torch.optim.Adam(m.parameters())

opt.zero_grad()

model_output = m(x)

loss = ((model_output[0] - y)**2).mean()

loss.backward(retain_graph=True)

opt.step()

We added the set_optimizer and optimize methods
to all Convis models to simplify this code:

x,y = convis.samples.generate_sample_data()

m = convis.models.LN()

m.set_optimizer.Adam(m.parameters())

m.optimize(x,y) # fit the model, such that

input x will result in output y

The list and properties of all optimizers can be found
in the PyTorch documentation (http://pytorch.org/docs/
master/optim.html) or by using Tab-completion on
m.set_optimizer.<tab> and the help() function
(see also section 2.2.1).

2.2. Theory
2.2.1. The Computational Graph and Automatic

Optimization
A computational graph can represent mathematical operations
on data by combining symbols for variables and operations in
an acyclic graph. In deep learning frameworks, such as Theano,
Tensorflow or PyTorch, this graph is used to automatically derive
gradients by applying back-propagation rules.

In an earlier iteration of the toolbox, which is still available
on github https://github.com/jahuth/convis_theano, we used
Theano (Theano Development Team, 2016) to create models that
are fully implemented as computational graphs. In the current
version, which uses PyTorch, the computational graph is build
during computation and only used for automatically deriving
the gradients, while the forward computations are just-in-time
compiled either to for GPU or CPU. When the backward pass
is used on an output variable, the graph is traversed backwards
and the backwards computation of each operation is applied and
used for back-propagation. The resulting values get added to
the grad buffer of each variable along the way until the input
variables are reached.

Adapting the parameters of a model is a lot easier when
gradients are available. A small example is provided in Figure 7

where the response of a target exponential filter to a random
event train is approximated by a second exponential filter, and
Figure 8 where a receptive field was recovered by approximating
the response of the first filter.

PyTorch offers a range of optimization algorithms (The
Pytorch Project, 2017). Some examples are: Stochastic Gradient
Descent (SGD), Adam/Adamx (as used in Batty et al., 2017),
Adadelta (Zeiler, 2012), Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS), RMSProp. The Broyden-Fletcher-
Goldfarb-Shanno algorithm is a quasi-Newton method and
works very well for a large number of almost linear-behaving
parameters (see Figure 9).

2.2.2. Usability Goals
Getting familiar with a new tool is always a time investment,
especially for experimentalists. We chose to design Convis to
be used in an interactive Python environment, even though this
increases the learning curve compared to e.g., a GUI centered
application. The advantages of interactive Python sessions is that
there is no additional configuration language to create models.
Completely new models can be created and tested interactively,
giving immediate feedback and existing models can be inspected
and modified e.g., by replacing non-linearities or by replacing a
full numerical convolution filter with a recursive filter. One goal

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2018 | Volume 12 | Article 9

http://pytorch.org/docs/master/optim.html
http://pytorch.org/docs/master/optim.html
https://github.com/jahuth/convis_theano
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

in the design of Convis is that during runtime all parameters
and configuration options are discoverable—only a minimum
of names should have to be memorized to use the software
(e.g., that models can be found under convis.models). All other
names can be discovered by (1) tab completion in IPython (Pérez
and Granger, 2007), and other environments that inspect the
attributes of Python objects, (2) printing a model or layer,
revealing its layers and sub-layers and (3) accessing the doc
strings of the underlying classes.

>>> m = convis.models.LN()

>>> m.<press tab>

>>> print(m) # shows the structure of the

model

LN(

(conv): Conv3d (1, 1, kernel_size=(1, 1,

1), stride=(1, 1, 1), bias=False)

)

>>> help(m)

Help on LN in module convis.models object:

class LN(convis.base.Layer)

| A linear-nonlinear model with a

| convolution filter.

|

| Pads input automatically to produce

| output of the same size as the input.

|

| Parameters

| ----------

| kernel_dim: tuple(int,int,int) or tuple

| (int,int,int,int,int)

| Either the dimensions of a 3d kernel

| (time,x,y) or a 5d kernel (out

| _channels, in_channels,time,x,y).

| bias: bool

| Whether or not to include a scalar

| bias parameter in

| the linear filter

2.3. Implementation
2.3.1. PyTorch as Backend
We chose to implement our toolbox in PyTorch to benefit
from its just-in-time compilation and automatic differentiation
mechanisms.

Just-in-time compilation allows for fast execution of complex
operations, while still using the flexibility of the Python
interpreter. PyTorch can trace the execution of a Python function
and compile it efficiently using one of the compiler backends,
combining native C or CUDA functions with on-the-fly created
code to execute python for-loops as C for-loops.

Each computation that is performed is referenced in a
computational graph attached to the output variables. These
references can be used to compute values for each input variable
that corresponds to the gradient of the output with respect to this
input variable. These gradients can then be used in optimization
algorithms to efficiently fit a model to data.

A discontinued Theano based version is still available at
https://github.com/jahuth/convis_theano.

2.3.2. Parameters and Modules
We build on the torch.nn module and provide a Layer

class that adds a few convenience functions on top of the
torch.nn Modules (see the documentation at https://jahuth.
github.io/convis/). Similar to a torch.nn.Module, a Layer
has to define two functions: an initializer (__init__), which
sets up all the variables and computational modules the Layer
requires, and a function that does the actual computation
(forward). Parameters that are added as attributes to a Layer
are automatically collected by PyTorch, such that optimization
algorithms can find and optimize all available parameters of a
model. Also the values of all variables of the Layer can be exported
or imported. Since our models run not only once, but on a
sequence of input, we need to distinguish between variables that
signify a Parameter or a State. While a Parameter has a value
that is either fix or being optimized, a State is time dependent
and depends on the previous input. This can correspond to the
last n time slices of input for convolutional kernels with length
n in the time dimension or the n last input steps and k last
output steps for recursively defined filters. When a model is
first run on one input sequence and then on another, the States
have to be reset when the input is changed. For the general
behavior of the model, only the Parameters are important and
given the same input, the same model will produce the same
States.

2.3.3. Linear Filters
We provide two methods to apply a linear filter to every
position of the three dimensional input: kernel convolutions
and recursive filters. As mentioned before, they differ in
how closely they can approximate the desired output. While
recursive filters are bound to simplify responses (we implemented
exponential decay filters in time and Gaussian filters in
space), convolution filters can capture the contribution of each
input pixel in a certain spatio-temporal window. Recursive
temporal filters have few parameters, in the case of an
exponential filter only the time constant, while convolution
filters can have many hundreds. But when fitting these
parameters, convolution filters can be estimated rapidly by
efficient optimization algorithms, such as the Broyden-Fletcher-
Goldfarb-Shanno method (Broyden (1970), implemented in
PyTorch as LBFGS), as can be seen in Figures 8, 9. For the
recursive filters we have implemented however, this specific
method fails as can be seen in Figure 7. More basic gradient
descent methods can still be used, but their convergence can be
slow.

To be able to fit very slow processes with spatially variable
receptive fields, we also implemented a hybrid filter (SoftConv)
that multiplies a set of fixed recursive filters of increasing length
with a set of spatial filters that can be optimized. These filters
have a decreasing spatial resolutions with time and a smooth
temporal profile, yet they can capture spatial details, are efficient
to calculate (due to the temporal recursive filters) and to fit (due
to the spatial convolution filters).

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2018 | Volume 12 | Article 9

https://github.com/jahuth/convis_theano
https://jahuth.github.io/convis/
https://jahuth.github.io/convis/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

FIGURE 1 | A “chirp” stimulus: the stimulus is comprised of an Off-On-Off pulse, then oscillations with increase in frequency, then oscillations with increase in
amplitude.

FIGURE 2 | Comparison of VirtualRetina stages and the convolutional retina model to a chirp stimulus (see Figure 1). The response of VirtualRetina is shown as a
dashed black line, the response of the Convis retina is shown as a solid lines of different colors. Panel (A) shows the response of the linear OPL filter as configured
with the same configuration as VirtualRetina, while panel (B) shows the response of a single 3d filter that was fitted to the desired output. Panels (C–F) show the
responses of the subsequent layers up to the spike generation. A quantification of the match between the lines can be seen in Figure 3. More detailed plots for each
stage can be found in Supplementary Material in Figures S11–S16.

2.3.4. Kernel Convolutions
In Convis, receptive fields can have an arbitrary shape. The
receptive field of an RGC for example is comprised of an
excitatory center and a suppressive surround. These two

components also have different temporal dynamics making
the overall receptive field space-time inseparable. While it is
possible to construct it as the difference of two separable filters,
Convis can use completely inseparable filters by instantiating

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

a convis.filters.Conv3d filter and supplying a three-
dimensional receptive field as a tensor. Non-separable filters can
have any shape of receptive field and match e.g., a pattern of
motion (see section 3.2). When fitting a model, a convolutional
filter can be gradually adapted into a complex shape by gradient
descent methods or even unsupervised learning and then
analyzed post-hoc if it is possible to approximate it with more
efficient filters.

2.3.5. Recursive Filtering
Implementing an infinite impulse response filter for discrete
time steps is not possible with a simple convolution kernel. So,

FIGURE 3 | The fraction of variance of the original VirtualRetina explained for
each individual stage of the model for the comparison simulations in Figure 2.
Due to the filter resolution and numerical errors each stage has a slightly
different trajectory than the original model. The spike generation explains a
very small percentage of variance, as the process is inherently noisy. For a
more detailed comparison see Figures S11–S16 in Supplementary Materials.

in addition to convolutional filtering, we also reimplemented
recursive temporal and spatial filters. While this restricts the
shape of the filters, the computation is much more efficient,
especially for long temporal filters. The parameters of the filter
can be optimized using their gradient, which is an advantage over
the implementation in VirtualRetina.

A temporal recursive filter relies on a finite number of past
input and output values and multiplies them each with a vector
of coefficients. The recursive filter we implemented is defined as:

Y(k) =
M−1∑

j=0

bjX(k− j)−
N∑

i=0

aiY(k− i) (1)

with X being the input and Y being the output.M is the number
of the coefficients in vector b, N is the number of coefficients
in vector a. For N = 0 the filter has finite impulse response.
The computation has to be done in temporally correct order
and the previous timesteps must be accessible. In contrast to
convolution, which always only depends on a small, local area
of the input and is independent of all previous computations,
this is a challenge to parallelizing the computations of a recursive
filter. In contrast to exponential filters, Gaussians are symmetric
in both directions: If we interpret them as filters in time, they
have a causal and an anti-causal component, in space they extend
forward as well as backwards. A two dimensional Gaussian has
an additional option for optimization: since a recursive definition
in two directions simultaneously is very costly, splitting the
computation into two stages that are computed independently
and then combined improves the time complexity significantly.
Deriche (1993) uses for this the sum of a causal and an anti-causal
filter while Van Vliet et al. (1998) use the product of a causal and
anti-causal filter. The drawback of this optimization is that the
Gaussians in x and y direction have to be independent, i.e., either

FIGURE 4 | (A–C) Direction Selective Receptive Field and (D) direction tuning of a DS cell. Concentric rings are normalized response.

Frontiers in Neuroinformatics | www.frontiersin.org 8 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

FIGURE 5 | The difference between two models, slightly differing in their
parameters, is low for very fast or very slow moving gratings, but in between
there exists an optimum which is marked with a point. The same point is
marked in the gradient of the error with respect to the grating speed parameter
where it crosses 0. There are also secondary local maxima due to the
periodicity of the stimulus. (A) Shows the total difference between the output
of the two models while (B) shows the gradient of the difference with respect
to the speed of the input.

a circular Gaussian or an ellipse whose major axis is aligned with
either x or y. The recursive filters we implemented have exactly
the same drawbacks as the ones implemented in VirtualRetina,
except that it is possible to execute the computations on the
GPU and gradients with respect to the filters parameters can be
back-propagated.

3. RESULTS

3.1. Simulating a Population of RGCs
To verify that our new implementation of the VirtualRetina
model still replicates old results we made one-to-one
comparisons using different stimuli and retina configurations.

Our implementation of the VirtualRetina model using Convis
is available in the convis.retina submodule. To verify
that the temporal responses are identical to the same model
implemented in VirtualRetina, we used a full field chirp stimulus
as used in Baden et al. (2016) (see Figure 1) to characterize
the temporal characteristics of retinal ganglion cells. The
chirp features an OFF-ON-OFF pulse followed by oscillations
increasing in frequency and then oscillations increasing in
amplitude. The configuration was supplied as an xml file,
as is typically used for VirtualRetina. Both simulations were
configured with the same configuration file. Yet the Convis
version created corresponding convolutional filters as opposed
to recursive filers. As it can be seen in Figures S11, S13, S14
(Supplementary Material), while the bipolar and ganglion cell
stages replicate the results of VirtualRetina with high accuracy,
the OPL layer has some numerical differences for very abrupt
changes due to the low precision of the filters that are generated
from the configuration. In Figure S12 (Supplementary Material)

we show a convolution kernel that is fitted to match the response
of the OPL, showing that the response can be more faithfully
reproduced by a single linear convolution filter. Overall, the
output of the models is close enough that the difference is
unobservable when spikes are generated and compared as either
instantaneous rates or spike times. Figure 3 gives a quantification
of the variance explained for each layer in isolation.

3.2. Simulating Direction Selective
Responses
The main advantage of full numerical 3d filters is that reactions
to motion patterns can be captured in a straight forward
manner. Movement sensitive receptive fields can be created with
selectivity of certain speeds and directions, an example can be
seen in Figure 4: A Gaussian that moves across the receptive
field is most excited by a stimulus that travels in unison with it.
To make the response ignore any other stimulus characteristics,
a negative Gaussian closely follows the first, such that only an
edge can excite the cell. To respond to both negative and positive
edges, the absolute value of the response is taken. Figure 4 shows
the resulting direction tuning curve.

These arbitrary filters can model a wide range of responses,
including simple and complex V1 cells. Complex cells can be
simulated either adding a rectification non-linearity and a second
linear stage for spatial summation.

3.3. Estimating Parameters From Synthetic
Data
3.3.1. Fitting a Spatial Receptive Field
Numerical filters have a large number of parameters, but since
their behavior is linear, they are easy to fit. To test that, we
created a model with a convolutional 2d receptive field of
a delicate structure: an image of the letters “con” and “vis”
with some noise added. Figure 8 shows how well a simple
gradient descent method can recover the shape of the filter
from an linear-nonlinear model using a normal distributed noise
stimulus. The SGD optimizer can find the parameters after some
optimization steps while the LBFGS optimizer can jump right
to the solution for simple nonlinearities (half wave rectification,
thresholding). The receptive field is even easier to recover
for purely linear models or when the stimulus noise is more
sparse. Figure 9 shows the LBFGS optimizer trying to estimate
a linear filter that is subject to different non-linearities. While
the optimization converges rapidly for simple non-linearities
such as squaring or half-wave rectification, non-linearities with
a very shallow gradient such as tanh or a sigmoid can pose a
problem for the optimizer. Although a threshold non-linearity
does not actually have an informative gradient at any point
except the decision boundary, the PyTorch implementation of
this operations backward function allows a fast convergence for
this model (see Figure 9D).

3.3.2. Fitting a Recursive Exponential Filter
To show a simple example of optimization in the temporal
domain we created a Poisson spike train which is convolved with
an exponential filter of a certain time constant. Then we used
the gradient with respect to the time constant of the recursively
defined exponential filter to optimize this variable. As this is a

Frontiers in Neuroinformatics | www.frontiersin.org 9 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

T
A
B
L
E
1
|
C
om

p
ar
in
g
d
iff
er
en

t
re
tin

a
si
m
ul
at
io
n
so

ftw
ar
e:

V
irt
ua

lR
et
in
a
(W

oh
re
r
an

d
K
or
np

ro
b
st
,2

00
9)
,T

op
og

ra
p
hi
ca

(B
ed

na
r,
20

12
),
V
irt
ua

lR
et
in
a+

+
(c
on

tin
ue

d
d
ev
el
op

m
en

t
of

V
R
in

th
e
E
N
A
S
/P
R
A
N
A
S
p
ac

ka
ge

C
es

sa
c
an

d
P
al
ac

io
s,

20
13

),
(L
or
ac

h
et

al
.,
20

12
),
an

d
R
et
in
aS

tu
d
io

(M
ar
tín

ez
-Á

lv
ar
ez

et
al
.,
20

13
).

N
a
m
e
/a
p
p
li
c
a
ti
o
n

L
u
m
in
a
n
c
e

g
a
in

c
o
n
tr
o
l

C
o
n
tr
a
s
t
g
a
in

c
o
n
tr
o
l

L
a
n
g
u
a
g
e
o
f
s
o
u
rc
e

c
o
d
e
,
c
o
n
fi
g
u
ra
ti
o
n

O
p
e
n
s
o
u
rc
e

F
il
te
rs

C
o
n
ti
n
u
o
u
s

in
/o
u
tp
u
t

O
p
ti
m
iz
a
ti
o
n
/

p
la
s
ti
c
it
y

V
irt
ua

lR
et
in
a
(W

oh
re
r
an

d
K
or
np

ro
b
st
,2

00
9)

R
G
C

re
sp

on
se

s
Ye

s
Lo

ca
ls
hu

nt
in
g

C
+
+
,x

m
l

Ye
s
(C
eC

IL
L-
C
)

R
ec

ur
si
ve

N
o

N
o

To
p
og

ra
p
hi
ca

(B
ed

na
r,
20

12
)P

V
C
/N

eu
ra
lM

ap
s

Ye
s

N
ak

a-
R
us

ht
on

(N
ak

a
an

d
R
us

ht
on

,
19

66
)

C
,P

yt
ho

n
Ye

s
(B
S
D
3)

C
on

vo
lu
tio

n
Ye

s

E
N
A
S
(C
es

sa
c
an

d
P
al
ac

io
s,

20
13

)M
od

el
Ve

rifi
ca

tio
n

Ye
s

≈
V
R

C
+
+
,x

m
l/G

U
I

N
o

R
ec

ur
si
ve

N
o

N
o

Lo
ra
ch

et
al
.N

eu
ro
p
ro
st
he

tic
s

Ye
s

N
o

ha
rd
w
ar
e
D
V
S
,M

at
la
b

N
o

C
on

vo
lu
tio

n
N
o

N
o

C
O
R
E
M

(M
ar
tín

ez
-C

añ
ad

a
et

al
.,
20

16
)R

G
C

re
sp

on
se

s
Ye

s
≈
V
R

C
+
+
,s

cr
ip
ts

Ye
s(
C
eC

IL
L-
C
)

R
ec

ur
si
ve

Ye
s

N
o

R
et
in
aS

tu
d
io

(M
ar
tín

ez
-Á

lv
ar
ez

et
al
.,
20

13
)

N
eu

ro
p
ro
st
he

tic
s

C
#/
Fl
ow

la
ng

Fl
ow

la
ng

N
o

N
o

is
et
b
io

(B
ra
in
ar
d
et

al
.,
20

17
)P

er
ce

p
tu
al
th
re
sh

ol
d
s

op
tic
al
ab

er
at
io
ns

p
ho

to
re
ce

p
to
r
sa

m
p
lin
g

-
M
at
la
b

Ye
s
(M

IT
)

H
ex

ag
on

al
gr
id

N
o

N
o

p
ul
se

2p
er
ce

p
t
(B
ey
el
er

et
al
.,
20

17
)P

er
ce

p
tu
al

th
re
sh

ol
d
s
of

R
G
C
s
fo
r
im

p
la
nt

as
se

ss
m
en

t
-

P
yt
ho

n/
S
ci
p
y

Ye
s
(B
S
D
3-
cl
au

se
)

S
q
ua

re
or

ga
us

si
an

R
Fs

,
ra
d
ia
lc
ur
re
nt

sp
re
ad

N
o

N
o

iM
od

el
R
et
_M

es
h
(B
ak

er
an

d
B
ai
r,
20

13
)R

G
C

re
sp

on
se

s
Ye

s
N
o

C
/O

p
en

G
L/
Ja

va
co

d
e
av
ai
la
b
le
fro

m
im

od
el
.o
rg

w
eb

si
te

H
ex

ag
on

al
gr
id

R
Fs

N
o

N
o

d
ee

p
re
tin

a
(M

ci
nt
os

h
et

al
.,
20

16
)R

G
C
re
sp

on
se

s
H
P
fil
te
rs

p
os

si
b
le

N
o

P
yt
ho

n/
Th

ea
no

A
va
ila
b
le
on

gi
th
ub

(n
o
lic
en

se
sp

ec
ifi
ed

)
C
on

vo
lu
tio

n
N
o

Ye
s

C
on

vi
s
R
G
C
re
sp

on
se

s
Ye

s
≈
V
R

P
yt
ho

n/
P
yT
or
ch

Ye
s
(G
P
L-
3)

R
ec

ur
si
ve

or
co

nv
ol
ut
io
n

Ye
s

Ye
s

≈
V
R
s
ig
n
ifi
e
s
th
a
t
th
e
g
a
in
c
o
n
tr
o
lw

a
s
im
p
le
m
e
n
te
d
s
im
ila
rl
y
to
V
ir
tu
a
lR
e
ti
n
a
:
C
o
n
tr
a
s
t
g
a
in
c
o
n
tr
o
lt
h
ro
u
g
h
s
h
u
n
ti
n
g
in
h
ib
it
io
n
,
u
s
in
g
a
lo
c
a
le
s
ti
m
a
te
o
f
s
p
a
ti
o
-t
e
m
p
o
ra
lc
o
n
tr
a
s
t
(W
o
h
re
r
e
t
a
l.,
2
0
0
7
).

Frontiers in Neuroinformatics | www.frontiersin.org 10 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

fairly simple task, the only possible complication that can arise
comes from choosing the learning rate parameter: convergence
can be too slow or oscillate around the true value. This can
be remedied by introducing a momentum term or adapting the
learning rate over time. Figure 7 shows how the response of
the model approaches the target. Again, naïve gradient descent
works, but it is not an efficient method as the direction of the
gradient does not change, but the magnitude is proportional to
the distance to the ground truth parameter and thus slows down
the closer it is to the true value.

3.3.3. Fitting Non-Linear Parameters
For deep-learning models, non-linearities are usually fixed to
very simple functions without any free parameters. A half-wave
rectification or a sigmoid function can be deemed parameter
free, since their parameters concern the linear scaling of in- and
output, which is already part of the linear filters of the model.
In contrast, the VirtualRetina model has non-linear parameters
that cannot be emulated by scaling the linear filters. To describe
the behavior of experimental data, these parameters also have to
be adapted to recreate the non-linear behavior of the examined
system. We examined the case that the examined system has the
same general architecture as our model and only the value of
the parameters differ. We evaluated the response of a ground
truth model to a stimulus and then varied the parameters of a
secondmodel instance to examine the curve of the error function.
The error function (see Figure 10) does not look like a square
function, but still the function is concave and the gradient points
toward the minimum, allowing gradient descent methods. It is
possible to fit a polynomial to all points so far encountered,
but the quality of the solution depends on the location in the
parameter space and the noise in the fitting process. The most
efficient way to find the true parameter is to get close enough
that a 2nd degree polynomial is a good approximation to the
local error function and then use Newton-like methods to find
the optimum.

3.4. Using the Second Derivative
The gradients in Figure 8C show that the gradients lie on a
straight line. If the linear filter would have been subject to a
stronger non-linearity, this would no longer be the case. The
second derivative of the error with respect to a parameter will
give rapid information about this. While in the simple case the
2nd derivative will be almost constant, it will vary more strongly
for more complex non-linearities. Additional information about
the derivatives of the error will decrease the number of samples
needed to estimate the shape of the error function. As an example,
in the simple case of a noise-less linear parameter, the error
function is a 2nd degree polynomial. To estimate it, we would
either need three samples of the error at different parameter
values, or only two samples of the gradient, since we only have to
fit a line rather than a parabola. If noise is present (as is the case
in Figure 8), the advantage of estimating a lower-degree function
can be even larger.

Another application of 2nd derivatives is to capture the
interaction of parameters. Figure S17 in Supplementary Material
shows the interaction between two linearly interdependent

parameters in the Bipolar stage of the retina model, given
a random checker-board flicker stimulus and a ground-truth
model with default parameters. We show the gradient with
respect to each parameter and a resulting flow field over a
visualization of the error. A long corridor of almost identical
solutions exists on the line gleak = λbip. From this plot we can
already assume that gradient descent will be very inefficient, but
using a Hessian based descent method is more effective.

3.5. Optimizing the Input to a Model
We set up a small simulation in which we simulated two retina
models (A and B) and took the difference of their outputs.
The configuration between the models differed slightly. Then
we created a moving grating stimulus, dependent on a few
parameters, such as direction and speed. We added this stimulus
as an input to the model, building a graph of operations. When
we now vary the speed of the gratings, the difference between
the two models will change, for one, there is only a certain range
where the moving gratings are actually visible for the model due
to bandpass filtering (and the limitations of resolution). Figure 5
shows the optimal speed to discern the two models. The function
is not a simple relation, and even shows more than one local
maximum, possibly due to harmonics. We can compute the
gradient of the difference with respect to the speed parameter
of the gratings, which fits well with the actual error observed.
If this were an actual experiment and we were trying to decide
whether model A or B is closer to the actual mechanism we were
observing, we could now choose the stimulus that will give us the
greatest amount of information.

An application of this method could be the creation of tailored
stimuli to distinguish a set of a-priori known classes of cells.
Stereotypical responses shown e.g., in Baden et al. (2016) can
be used to fit a prototype model per class. Next a parametrized
function that generates a visual stimulus can be optimized for
a pair of models each such that when that specific stimulus is
presented, the output of the two models is maximally different.
A sequence of these optimal stimuli can then be used to rapidly
classify cells into known classes, even if their responses e.g., to
a chirp stimulus is very similar, which would require a large
number of trials to reliably classify a cell using current methods
of e.g., estimating and matching the temporal profiles of the
receptive fields. A different application concerns the problem of
model fitting and validation itself. Depending on the exploration
of the parameter space and the complexity of the model, multiple
parameter combinations can achieve a similar fit to the data.
These sets of solutions might behave similar on the observed
stimulus, but different on stimuli that were not observed. Finding
these stimuli can be posed as an optimization problem on a
parametrized input stimulus.

It is possible to do any of these computations online, during
an experiment. Depending on the complexity of the model,
the fitting process will introduce a lag (see section 3.6.1 for
an estimate of running speed), however given the possibility
of parallelization and the decreasing costs of GPUs, repeated
model fitting and stimulus optimization during an experiment is
achievable.

Frontiers in Neuroinformatics | www.frontiersin.org 11 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

FIGURE 6 | Comparison of the calculation speed of different Convis models and VirtualRetina (Wohrer and Kornprobst, 2009) over a range of stimulus sizes. The
stimuli were square videos of moving bars and the calculations were repeated 10 times. Thin lines show when models cross from faster-than-real-time to
slower-than-real-time and the approximate image size below which real-time processing is possible.

FIGURE 7 | The trace of an exponential filter being fitted to a target: (A) Different traces (with a very small adaptation between each iteration) from dark blue
(beginning) to yellow (end). (B) Instantaneous error over time for each trial using gradient based optimization methods. Note that using naive gradient descent (SGD)
the convergence slows down the closer we are to the solution. Adam (Batty et al., 2017) and Adadelta (Zeiler, 2012) converge fast, while LBFGS (Broyden, 1970) fails
to converge.

3.6. Comparison to Other Simulation
Software
As we have shown in section 3.1, the response of Convis
is identical to the VirtualRetina if an identical configuration
is used. The linear filtering and gain control properties are

identical within numerical errors the magnitude of which
is configurable. In addition to those response characteristics,
Convis can also simulate non-circular, non-Gaussian and non-
continuous receptive field shapes. Similarly to COREM, Convis
can be configured more flexibly, combining basic filters.

Frontiers in Neuroinformatics | www.frontiersin.org 12 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

FIGURE 8 | A receptive field of a simple linear-nonlinear model recovered using the gradients: Although the parameter space is large (16 × 16 pixel), the direction for
each pixel can be estimated well. Panel (A) shows the successive parameter values (dots from blue to yellow) compared to their ground truth when optimizing using
LBFGS (orange line) or Stochastic Gradient Descent (SGD, blue line), panel (B) shows the convergence of SGD from early (blue dots) to late in the fitting process
(orange dots, dot color corresponds to the iteration steps in A). Panel (C) shows the convergence of LBFGS optimization which finds the perfect solution in only three
steps; (D) shows the original filter, a sparse text sample with added noise; (E,F) show the filters recovered by SGD and LBFGS respectively.

Table 1 shows a comparison between different retina
simulation software.

3.6.1. Calculation Speed
For the application in closed-loop experiments, running time
can be crucial. The additional features of Convis compared
to VirtualRetina come at a cost of calculation speed. The
computational graph adds a small overhead to each operation
(in the order of 10µS according to the PyTorch developers).
Convolutions are also remarkably slower than recursive filtering
for large filters. Recursive circular Gaussian spatial filtering is
separable into x and y components, which can be efficiently
computed while convolutions have to process ximage × yimage ×

xfilter × yfilter single multiplications. Including a time dimension
into the filters which are not separable further increases the
complexity drastically. Even when these calculations are done on
a GPU, there is some overhead in starting the computations.

To assess how useful Convis can be for specific applications,
we compared VirtualRetina and a set of Convis models over
a range on stimulus sizes (see Figure 6). The comparison was
done on a Dell PC with a 6-core Intel(R) Xeon(R) CPU E5 v3
running at 2.40 GHz, 32 gb of RAM and a NVIDIA Quadro
K620 GPU. For all models small stimuli could be processed faster

than real-time and larger stimuli increased the running time
polynomially. The Convis Retinamodel is for small stimulus sizes
the slowest model and also has the smallest stimulus size that still
allows real-time processing (20x20 pixel on our machine). The
original VirtualRetina program outperformed the Convis model
for all stimulus sizes and could still process 40x40 pixel images
in close to real-time. However, this is only the case if the only
relevant output are the produced spikes. When the input current
to the ganglion cells is required for further analysis, the data has
also be written to a hard disk which brings the overall running
time close to the Convis Retina model.

For a use case where just spikes are required, receptive
fields can be assumed circular and the model need not be
optimized, VirtualRetina has a strong speed advantage over the
Convis Retina model. If however the model has to be fitted to
data, the speed increase through gradient based optimizations
compared to gradient-free optimizations is reversed. If non-
circular receptive fields are required, VirtualRetina is not
applicable at all.

The linear-nonlinear convolution models–LN, LNLN and a
convolution model similar to Mcintosh et al. (2016)–show a very
similar increase in computation time: They are faster than all
other models for very small input stimuli and slower than all

Frontiers in Neuroinformatics | www.frontiersin.org 13 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

FIGURE 9 | Recovering a receptive field under a range of non-linearities. LBFGS can find the solution after one step for linear and threshold non-linearity (A,D), very
fast for squared output and half wave rectification (B,C) and only after a larger number optimization steps, or a random re-initialization for tanh and sigmoid
non-linearities (E,F). (G) Shows the decrease in loss over the first 20 iterations for the models in (A–F).

FIGURE 10 | Non-linear parameters do not show a squared error function. Still the shape is concave and the gradient points toward the minimum (red dot) which
makes gradient based optimization very efficient. (A) and (B) show parameters with concave error functions while the parameter in (C) can only be approximated as a
parabola close to the true value.

other models for large stimuli sizes due to the computational
complexity of 3d convolution.

3.6.2. Features of VirtualRetina Not Implemented
We did not implement code to parse radially varying parameters.
While the general idea of retinotopic varying parameters can be
useful, we found that we were interested in rather local retinal
populations (<2 deg) which will be fairly uniform. Radially
varying blur can still be used when filtering with recursive spatial
filters, but the configuration values for radially varying blurs
in VirtualRetina xml files will be ignored by default. Also, we

did not implement cell sampling schemes. One pixel is one
cell for us, however selecting a subset of cells from the output
(before compiling the model) is possible and it can reduce
the computations actually performed by the model due to the
optimization mechanisms.

4. DISCUSSION

Using the Convis toolbox we can create models for responses to
visual stimuli, e.g., retinal ganglion cells or V1 cells.

Frontiers in Neuroinformatics | www.frontiersin.org 14 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

Ganglion cell responses can be simulated comparably to
VirtualRetina on an equally large scale (section 3.1) while being
able to switch between Gaussian receptive fields and arbitrary
receptive field shapes. If users of VirtualRetina want to use
receptive fields with arbitrary shapes or modify the model on the
fly, Convis offers that possibility.

For a more general approach, Convis includes more general
linear-nonlinear models. To fit them to motion sensitive cells,
Convis can use non-separable convolution filters to implement
filters in a very straightforward manner (section 3.2) which can
be optimized by a range of established, gradient-guided methods.
Large, linear convolution filters also have the advantage that their
parameters, although numerous, are easy to fit (section 3.3). Still,
non-linear parameters can be optimized with the same methods
(3.3.3).

The open architecture of PyTorch and thus Convis makes it
easy to build custom models and build on traditional LN models,
extending them with machine learning tools such as recurrent or
deep neural networks, as was done by Batty et al. (2017) using a
Theano.

The stimulus plays an important role when comparing a
model and a physical system. To aid experimenters in choosing
a good stimulus, we demonstrated that also the parameters of
a stimulus can be optimized with gradient descent to maximize
the difference between two very similar models and thus the

information that new experiments will provide for the model
fitting process (section 3.5).

AUTHOR CONTRIBUTIONS

All authors (JH, TM, and AA) contributed to the conception of
the project and the drafting of the manuscript. JH implemented
the toolbox and proof-of-concept examples.

FUNDING

This research was supported by ANR–Essilor SilverSight Chair
ANR-14-CHIN-0001.

ACKNOWLEDGMENTS

Thanks to Adrien Wohrer for helpful insights into the workings
of VirtualRetina and thanks to Richard Carrillo for insightful
comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2018.00009/full#supplementary-material

REFERENCES

Baden, T., Berens, P., Franke, K., Rosón, M. R., Bethge, M., and Euler, T. (2016).
The functional diversity of retinal ganglion cells in the mouse. Nature 529,
345–350. doi: 10.1038/nature16468

Baker, P. M., and Bair, W. (2013). Wm: an integrated framework for modeling the
visual system. Front. Neuroinform. 7:84. doi: 10.3389/conf.fninf.2013.09.00084

Batty, E., Merel, J., Brackbill, N., Heitman, A., Sher, A., Litke, A., et al.
(2017). “Multilayer recurrent network models of primate retinal ganlion cell
responses,” in International Conference on Learning Representations (Toulon).
Available online at: https://openreview.net/forum?id=HkEI22jeg

Bednar, J. A. (2012). Building a mechanistic model of the development and
function of the primary visual cortex. J. Physiol. Paris 106, 194–211.
doi: 10.1016/j.jphysparis.2011.12.001

Beyeler, M., Boynton, G. M., Fine, I., and Rokem, A. (2017). pulse2percept:
a python-based simulation framework for bionic vision. bioRxiv.
doi: 10.25080/shinma-7f4c6e7-00c

Brainard, D. H., Jiang, H., Cottaris, N. P., Rieke, F., Chichilnisky, E., Farrell, J. E.,
et al. (2017). Pytorch Github Repository. Available online at: https://github.com/
isetbio/isetbio

Broyden, C. G. (1970). The convergence of a class of double-rank minimization
algorithms 1. general considerations. IMA J. Appl. Math. 6, 76–90.
doi: 10.1093/imamat/6.1.76

Cessac, B., Kornprobst, P., Kraria, S., Nasser, H., Pamplona, D., et al. (2017).
Pranas: a new platform for retinal analysis and simulation. Front. Neuroinform.

11:49. doi: 10.3389/fninf.2017.00049
Cessac, B., and Palacios, A. (2013). “Spike train statistics from empirical facts

to theory: the case of the retina,” in Modeling in Computational Biology and

Biomedicine: A Multidisciplinary Endeavor, eds F. Cazals and P. Kornprobst
(Berlin; Heidelberg: Springer). Available online at: https://hal.inria.fr/hal-
00640507

Crespo-Cano, R., Martínez-Álvarez, A., Díaz-Tahoces, A., Cuenca-Asensi, S.,
Ferrández, J. M., and Fernández, E. (2015). “On the automatic tuning of a
retina model by using a Multi-objective Optimization Genetic Algorithm,” in
Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes

in Computer Science, Vol. 9107, eds J. Ferrández Vicente, J. Álvarez-Sánchez,
F. de la Paz López, F. Toledo-Moreo, and H. Adeli (Cham: Springer), 108–118.

Deriche, R. (1993). Recursively Implementating the Gaussian and Its Derivatives.
Ph.D. thesis, INRIA.

Garvert, M. M., and Gollisch, T. (2013). Local and global contrast adaptation in
retinal ganglion cells. Neuron 77, 915–928.

Gauthier, J. L., Field, G. D., Sher, A., Greschner, M., Shlens, J., Litke, A. M., et al.
(2009). Receptive fields in primate retina are coordinated to sample visual space
more uniformly. PLoS Biol. 7:e1000063. doi: 10.1371/journal.pbio.1000063

Heitman, A., Brackbill, N., Greschner, M., Sher, A., Litke, A. M., and Chichilnisky,
E. (2016). Testing pseudo-linear models of responses to natural scenes in
primate retina. bioRxiv 045336. doi: 10.1101/045336

Korenberg, M. J., and Hunter, I. W. (1986). The identification of nonlinear
biological systems: Lnl cascade models. Biol. Cybernet. 55, 125–134.

Liu, J. K., Schreyer, H. M., Onken, A., Rozenblit, F., Khani, M. H.,
Krishnamoorthy, V., et al. (2017). Inference of neuronal functional circuitry
with spike-triggered non-negative matrix factorization. Nat. Commun. 8:149.
doi: 10.1038/s41467-017-00156-9

Lorach, H., Benosman, R., Marre, O., Ieng, S.-H., Sahel, J. A., and Picaud, S. (2012).
Artificial retina: the multichannel processing of the mammalian retina achieved
with a neuromorphic asynchronous light acquisition device. J. Neural Eng.
9:066004. doi: 10.1088/1741-2560/9/6/066004

Marmarelis, P. Z., and Naka, K.-I. (1972). White-noise analysis of a neuron
chain: an application of the wiener theory. Science 175, 1276–1278.
doi: 10.1126/science.175.4027.1276

Martínez-Álvarez, A., Olmedo-Payá, A., Cuenca-Asensi, S., Ferrández, J. M., and
Fernández, E. (2013). RetinaStudio: a bioinspired framework to encode visual
information. Neurocomputing 114, 45–53. doi: 10.1016/j.neucom.2012.07.035

Martínez-Cañada, P., Morillas, C., Pino, B., Ros, E., and Pelayo, F. (2016). A
computational framework for realistic retina modeling. Int. J. Neural Syst.
26:1650030. doi: 10.1142/S0129065716500301

Masland, R. H. (2001). The fundamental plan of the retina. Nat. Neurosci. 4,
877–886. doi: 10.1038/nn0901-877

Masquelier, T. (2012). Relative spike time coding and STDP-based orientation
selectivity in the early visual system in natural continuous and saccadic

Frontiers in Neuroinformatics | www.frontiersin.org 15 March 2018 | Volume 12 | Article 9

https://www.frontiersin.org/articles/10.3389/fninf.2018.00009/full#supplementary-material
https://doi.org/10.1038/nature16468
https://doi.org/10.3389/conf.fninf.2013.09.00084
https://openreview.net/forum?id=HkEI22jeg
https://doi.org/10.1016/j.jphysparis.2011.12.001
https://doi.org/10.25080/shinma-7f4c6e7-00c
https://github.com/isetbio/isetbio
https://github.com/isetbio/isetbio
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.3389/fninf.2017.00049
https://hal.inria.fr/hal-00640507
https://hal.inria.fr/hal-00640507
https://doi.org/10.1371/journal.pbio.1000063
https://doi.org/10.1101/045336
https://doi.org/10.1038/s41467-017-00156-9
https://doi.org/10.1088/1741-2560/9/6/066004
https://doi.org/10.1126/science.175.4027.1276
https://doi.org/10.1016/j.neucom.2012.07.035
https://doi.org/10.1142/S0129065716500301
https://doi.org/10.1038/nn0901-877
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Huth et al. Convis: Convolutional Vision Model Toolbox

vision: a computational model. J. Comput. Neurosci. 32, 425–441.
doi: 10.1007/s10827-011-0361-9

Mcintosh, L. T., Maheswaranathan, N., Nayebi, A., Ganguli, S., and Baccus, S. A.
(2016). “Deep Learning models of the retinal response to natural scenes,”
in Advances in Neural Information Processing Systems 29 (NIPS), (Barcelona:
Nips), 1–9.

Naka, K., and Rushton, W. (1966). S-potentials from colour units in the retina of
fish (cyprinidae). J. Physiol. 185, 536–555. doi: 10.1113/jphysiol.1966.sp008001

Pérez, F., and Granger, B. E. (2007). Ipython: a system for interactive scientific
computing. Comput. Sci. Eng. 9:21. doi: 10.1109/MCSE.2007.53

Real, E., Asari, H., Gollisch, T., and Meister, M. (2017). Neural circuit
inference from function to structure. Curr. Biol. 27, 189–198.
doi: 10.1016/j.cub.2016.11.040

Rieke, F., and Rudd, M. E. (2009). The challenges natural images pose for visual
adaptation. Neuron 64, 605–616. doi: 10.1016/j.neuron.2009.11.028

Sanes, J. R., and Masland, R. H. (2015). The types of retinal ganglion cells: current
status and implications for neuronal classification. Annu. Rev. Neurosci. 38,
221–246. doi: 10.1146/annurev-neuro-071714-034120

Shapley, R., and Victor, J. (1978). The effect of contrast on the
transfer properties of cat retinal ganglion cells. J. Physiol. 285:275.
doi: 10.1113/jphysiol.1978.sp012571

Shapley, R. M., and Victor, J. D. (1981). How the contrast gain control modifies
the frequency responses of cat retinal ganglion cells. J. Physiol. 318, 161–179.
doi: 10.1113/jphysiol.1981.sp013856

Simoncelli, E. P., and Olshausen, B. A. (2001). Natural image statistics
and neural representation. Annu. Rev. Neurosci. 24, 1193–1216.
doi: 10.1146/annurev.neuro.24.1.1193

The Pytorch Project (2017). Pytorch Github Repository. Available online at: https://
github.com/pytorch/pytorch

Theano Development Team (2016). Theano: a Python framework for fast
computation of mathematical expressions. arXiv e-prints, abs/1605.02688.

Van Vliet, L. J., Young, I. T., and Verbeek, P. W. (1998). “Recursive gaussian
derivative filters,” in Pattern Recognition, 1998. Proceedings. Fourteenth

International Conference on, Vol. 1 (Brisbane, LD: IEEE), 509–514.
Wohrer, A., and Kornprobst, P. (2009). Virtual Retina: a biological retina model

and simulator, with contrast gain control. J. Comput. Neurosci. 26, 219–49.
doi: 10.1007/s10827-008-0108-4

Wohrer, A., Kornprobst, P., and Vi, T. (2007). Virtual Retina : a biological retina
model and simulator, with contrast gain control [Research Report]. RR-6243,
32 inria–00160716v2.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Huth, Masquelier and Arleo. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 March 2018 | Volume 12 | Article 9

https://doi.org/10.1007/s10827-011-0361-9
https://doi.org/10.1113/jphysiol.1966.sp008001
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1016/j.cub.2016.11.040
https://doi.org/10.1016/j.neuron.2009.11.028
https://doi.org/10.1146/annurev-neuro-071714-034120
https://doi.org/10.1113/jphysiol.1978.sp012571
https://doi.org/10.1113/jphysiol.1981.sp013856
https://doi.org/10.1146/annurev.neuro.24.1.1193
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://doi.org/10.1007/s10827-008-0108-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Convis: A Toolbox to Fit and Simulate Filter-Based Models of Early Visual Processing
	1. Introduction
	1.1. Population Simulation Software
	1.1.1. Large Scale Retina Models
	1.1.2. Computations in the Retina
	1.1.3. A Complex Retina Model: VirtualRetina

	1.2. Fitting Experimental Data

	2. Methods
	2.1. Usage
	2.1.1. General Usability
	2.1.2. Creating and Running a Model
	2.1.3. Streams
	2.1.4. Automatic Optimization

	2.2. Theory
	2.2.1. The Computational Graph and Automatic Optimization
	2.2.2. Usability Goals

	2.3. Implementation
	2.3.1. PyTorch as Backend
	2.3.2. Parameters and Modules
	2.3.3. Linear Filters
	2.3.4. Kernel Convolutions
	2.3.5. Recursive Filtering

	3. Results
	3.1. Simulating a Population of RGCs
	3.2. Simulating Direction Selective Responses
	3.3. Estimating Parameters From Synthetic Data
	3.3.1. Fitting a Spatial Receptive Field
	3.3.2. Fitting a Recursive Exponential Filter
	3.3.3. Fitting Non-Linear Parameters

	3.4. Using the Second Derivative
	3.5. Optimizing the Input to a Model
	3.6. Comparison to Other Simulation Software
	3.6.1. Calculation Speed
	3.6.2. Features of VirtualRetina Not Implemented

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

