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Abstract 

CD4
+
CD25

+
FoxP3

+
 regulatory T cells (Tregs) are well known for their immune suppressive 

functions. While these tasks are important for maintaining immune tolerance and to prevent 

autoimmune and inflammatory diseases, suppression of innate and adaptive immune cells also 

leads to diminished immune response to vaccines including viral vaccines. Experimental 

models based on Treg depletion methods provided proof of concept that Tregs have negative 

impact on vaccine response. However such methodologies lack translational values due to 

adverse effects of Treg depletion. Therefore, targeting Tregs for vaccination purposes should 

aim at their transient inhibition of activities while keeping homeostatic functions intact.  
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Maintaining the immune homeostasis is important for preventing autoimmune and 

inflammatory diseases. Although several players are in place to ensure disease free status of 

an individual, CD4
+
CD25

+
FoxP3

+
 regulatory T cells or classically known as ‘Tregs’ have a 

major role in this process. These Tregs are either thymus-derived or generated in the 

periphery. The thymus-derived Tregs are self-antigen specific while Tregs towards foreign 

antigens are mostly derived in the periphery. The current evidence clearly shows that Tregs 

are not dependent on one single mechanism rather enforce immune tolerance via mutually 

non-excusive mechanisms.  For that matter, the arms of Tregs are quite long and extend their 

influence virtually on each and every cell of the immune system: both innate (like dendritic 

cells, macrophages, neutrophils and monocytes) and adaptive immune cells (T cell subsets 

and B cells) [1]. Thus, it is conceivable that Tregs regulate all steps of immune response 

starting from antigen recognition, presentation and initiation of cellular and humoral immune 

responses, both during primary and memory immune responses. While these functions 

virtually shut down autoimmune and inflammatory responses, suppressive effects of Tregs on 

immune cells also negatively influence protective immune response to pathogens and 

vaccines [2-4]. 

Several studies have shown that Tregs although important in acute viral infection to reduce 

inflammation-associated tissue damage [5], they enhance viral persistence in chronic viral 

infections and reduce anti-viral immune responses [2, 6-9]. Similarly, Tregs also hamper 

immune response to viral vaccines and their depletion leads to significant improvement in the 

protective responses as shown with recombinant subunit hepatitis B virus, herpes simplex 

virus type 1, influenza and other vaccines [10-13]. Data from humans also support these 

findings. In fact, following influenza vaccination, Tregs are increased post-vaccination and 

that post vaccination TGF-β levels, one of the cytokines of Tregs, negatively correlate with 

anti-influenza antibody titers [14]. Depletion of Tregs ex vivo also enhanced Gag-specific 
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CD8
+
 T cell polyfunctional response following dendritic cell-based therapeutic vaccination of 

HIV-1-infected patients who are on antiretroviral therapy [15]. Another study in tick-borne 

encephalitis virus vaccinated population revealed that FoxP3
+
 Tregs that are induced 

following booster vaccination might be responsible for suppression of T and B cell responses 

[16]. 

So, the burning question is how to tackle the influence of Tregs to boost protective immunity 

to vaccines: both intensity as well as duration of immune response, without compromising 

Treg role in maintaining immune tolerance. The experimental data on use of Treg depletion 

strategy through CD25 monoclonal antibodies gives only a proof of concept that Tregs have 

negative impact on vaccine response. But Treg depletion might leads to appearance of 

autoimmune symptoms and hence should be avoided for vaccination. In addition, in the 

vaccination scenario, the immune system will be in the activated state due to immune 

response to vaccines and hence more likelihood of breaking the immune tolerance if Tregs are 

depleted.  

Therefore, targeting Tregs for vaccination should aim at their transient inhibition of activities 

without having long-term effects on their homeostasis. As monoclonal antibodies have longer 

half-life, their use is not appropriate for achieving this goal. On the other hand, several 

promising alternative approaches have been reported to transiently inhibit Tregs that can be 

considered for viral vaccination. 

Several agonists of pattern recognition receptors such as poly(I:C), a toll-like receptor 3 

(TLR3) agonist, and the CpG-ODN, a TLR9 agonist have shown to expand exclusively 

effector T cells over Tregs [17] and are in various stages of clinical trials for cancer vaccines 

[18]. 
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Clinical studies have demonstrated that cyclophosphamide when used at metronomic doses, 

transiently reduce the frequency of Tregs without altering the functions of effector T cells. 

This strategy has been shown to enhance protective immune response to anti-tumor 

immunotherapy [19]. 

Pre-clinical models have demonstrated utility of tackling migration of Tregs at the time of 

vaccination. Chemokine-chemokine receptor interaction guides the migration of immune 

cells. Human Tregs express CCR4 and hence migrate in response to CCL22 and CCL17 

secreted by activated innate cells such as dendritic cells [20]. Thus, CCR4-CCL22/CCCL17 

pathway plays a critical role in leading Tregs toward innate cells and to their suppression of 

activation and ability to mount immune response. Therefore, we hypothesized that, if this 

chemokine axis is blocked transiently at the time of vaccination by using small molecule 

antagonists to CCR4, then immune response to vaccines could be enhanced. In fact, 

vaccination models of bacteria, parasite, virus (Hepatitis B virus) and tumor have shown that 

CCR4 antagonists when combined with vaccines, significantly enhance cellular and humoral 

immune responses [21-28]. Importantly, Treg number was not altered by this approach and no 

signs of autoimmune response was noticed [23, 29]. All these data suggest potential utility of 

small molecule antagonists to CCR4 for human viral vaccines.  

Predetermination of Treg epitopes in vaccine antigens by in silico approach and introducing 

appropriate modification in the antigens represents another way to reduce Treg influence on 

viral vaccines [30].  

Without a doubt, we have now few tools to tackle Tregs in order to boost protective immune 

response to viral vaccines while keeping homeostatic functions intact. It is however important 

to make sure that these strategies do not end up only in pre-clinical models. 
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