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Abstract 

The purpose of this paper is to show that it is possible to increase the diameter and the length 

of the nanostructures of a framework formed of oriented polypyrrole nanowires that has been 

prepared by a templateless electrochemical method based on the use of a pyrrole solution 

containing a high concentration of weak-acid anion and a low concentration of non-acidic 

anion. The dimensions of the initial nanowires are increased by performing an additional 

electrosynthesis in a ‘classical’ monomer solution. Depending on the polarization time of this 

last synthesis (a few tens of seconds), wires with various diameters, from one hundred up to 

several hundred nanometers, are obtained. In addition to the variation of the nanowire size, 

these findings confirm, as outlined in the reaction mechanism we have proposed, that the base 

of the nanowires is surrounded by a thin non-conductive polymer i.e. by an overoxidized 

polypyrrole film. Actually this paper shows a proof-of-concept. Indeed one can imagine that 

the second polymeric electrodeposit could be performed using an organic monomer solution, 

using functionalized pyrrole monomer to fabricate a biosensor having large specific area, 

and/or using anions which could be drugs. 
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1. Introduction 

Polypyrrole (PPy) is one of the most widely used conducting polymers, because of its 

numerous advantages such as its biocompatibility, environmental stability or ease of 

preparation even under nanostructured form. Polypyrrole nanostructures are generally 

synthesized either by a chemical or by an electrochemical route using soft or hard templates 

[1-11] or sacrificial oxidative templates such as MnO2 [12-15]. For instance, PPy nanotubes 

can be synthesized by using a self-degraded methyl orange (MO) template method [16-19]. 

However It has also been established that polypyrrole nanostructures can also be prepared 

without the use of any template [20-24]. Notably In that respect, in our previous works [25-

27], we brought to light that different polypyrrole nanostructures can be synthesized by using 

a one-step electrochemical synthesis, without using any template. Indeed, nanostructured 

polypyrrole films, which are superhydrophilic, are electrogenerated in the presence of (i) a 

high concentration of weak-acid anions conferring to upon the monomer solution a pH 

between 6 and 10, and (ii) a low concentration of non-acidic anions such as perchlorate ions.  

Notably, Depending on the perchlorate concentration of a 0.15 M pyrrole solution containing 

0.2 M monohydrogenophosphate, different PPy nanostructures can be synthesized. In the 

absence or in the presence of a very low concentration of perchlorate ions (< 10-4 M), an ultra-

thin non-conductive overoxidized PPy (OPPy) film is obtained [28, 29]. This finding was 

notably determined in particular by XPS analyses [28] and EIS studies [29]. Notice that due to 

its compactness, this OPPy film prevents the diffusion to the electrode surface of large redox 

species such as ascorbic acid and dopamine [30] or Fe(CN)6
4- and Ru(NH3)6

2+ [31] avoiding 

their electro-oxidation. It is not the case for On the contrary, small molecules such as H2O2 

and H2O can diffuse across this OPPy film, and therefore be oxidized at the electrode surface 

[30, 31]. In the presence of a higher concentration of perchlorate ions (> 10-4 M), an oriented 

nanowire (NW) array or a network of more or less interconnected nanofibers is formed [26]. 
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The oxidation of pyrrole (Py) leads to the formation of polypyrrole under its oxidized form, 

doped with anions (A-), according to the following reaction [32, 33]: 

           (1) 

where γ stands for the doping level of the polymer, it is generally in the range of 0.25 to 0.33 

[34, 35].  

 

In the presence of weak-acid anions, the protons released during Py oxidation (reaction (1)) 

are captured by these anions: 

                                     (2) 

The mechanism that we have previously proposed in order to explain the formation of a 

nanostructured polypyrrole film is summarized in Figure 1. It is based on the variation of the 

interfacial concentration of anions. Indeed, during pyrrole oxidation protons are released 

during pyrrole oxidation, and collected by the weak-acid anions present in the solution 

(reaction (2)), which results in a drastic decrease, or elimination, of anions at the 

electrode/solution interface. As pyrrole oxidation requires the presence of anions (reaction 

(1)), which are no longer available, this reaction cannot occur anymore.  Instead, water 

oxidation takes place, leading to the formation of hydroxyl radicals. These radicals can either 

react with the already formed polypyrrole film, resulting in its overoxidation [36], or with 

themselves, leading to the formation of H2O2 molecules. These molecules are subsequently 

oxidized into O2 molecules that form nanobubbles inside the polymer, protecting it against the 

hydroxyl radical action and therefore preventing locally its overoxidation allowing the 

conservation of some conductive zones (step 2 in Fig. 1). After bubbles evolution, the 

electrooxidation of the monomers takes place at these zones, leading to the formation of 

nanorods/nanowires (step � in Figure 1). Obviously, the diameter of these PPy 

nanostructures depends on the size of the O2 bubbles. Notice that this process differs from the 

--)( 
n
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one involving gas bubbles as template for PPy microstructure electrosynthesis [37-39]. 

Therefore, the nature of the anions present in the monomer solution and the release of protons 

during Py electropolymerization are the two main parameters involved in polypyrrole 

nanostructure formation.  Under potentiostatic conditions, using a Pt anode, the diameter of 

the PPy nanowires is about 80 nm and their length depends on the electrode polarization time 

[25]. It has been shown that PPy nanostructures are also electrogenerated in the presence of a 

low monomer concentration and a high non-acidic anion concentration [26]. 

The oriented PPy nanowire array could be used as framework for the growth of larger and 

longer nano/micro structures. Therefore, a second electrosynthesis could be done, using for 

example functionalized monomer in order to prepare a biosensor [40-46], or using organic 

solvent containing anions which could be drugs [47-50]. 

The aim of the present work is to show that it is possible to vary the diameter and the length 

of oriented polypyrrole nanowires by performing an additional electrosynthesis in a classical 

pyrrole solution. Moreover, it allows to confirm provides confirmation that the nanowire base 

is surrounded by an overoxidized polypyrrole (non-conductive polymer) layer. These 

experiments also allow us to determine whether or not the polypyrrole nanowires are 

conductive over their entire surface (top and sides). Therefore, the strategy developed in the 

present work involves two steps. The first one requires is the electrogeneration of oriented 

nanowires, which requires the use of a monomer solution containing a high concentration of 

weak-acid anions and a low concentration of perchlorates. The second step is based on 

implies an anodic polarization in a classical monomer solution, without any weak-acid anions.  

 

2. Experimental  

The polypyrrole films were synthesized using preliminarily distilled pyrrole. All the solutions 

were prepared with bi-distilled water. Py, K2HPO4, KCH3COO, K2CO3 and LiClO4 were 

purchased from Aldrich. 
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The electrochemical experiments were performed in a classical three-electrode 

electrochemical cell. A platinum foil was used as counter electrode and a saturated calomel 

electrode (SCE) was used as the reference electrode. A double junction was used in order to 

avoid chloride diffusion into the Py solution. The working electrode was a Pt electrode (S = 

0.07 cm2) for electrochemical studies and Au/mica substrate for SEM observations. The 

preparation of the substrates was the following: a thin gold film (∼ 80 nm) was deposited 

under low pressure (10−4 Pa) by thermal evaporation on a mica substrate.  

All the electrosyntheses were performed under potentiostatic conditions, in 0.15 M Py + 0.2 

M K2HPO4 + 10-3M LiClO4 for the first synthesis and in 0.15 M Py + 0.2 M LiClO4 for the 

second one, during given times named t1 and t2, respectively. The pH of the first monomer 

solution is 8.9. 

The superhydrophilic character of the PPy films was checked by a drop test experiment: a 

small pure water droplet is deposited onto the film and the spreading of the drop is analyzed. 

When the film is nanostructured the drop spreads out whereas it does not for classical 

cauliflower-like films.  

As far as the electropolymerization of Py is concerned, an Autolab PGSTAT30 potentiostat 

(Ecochemie) controlled with the GPES software was employed. The film morphology was 

examined under a field emission gun scanning electron microscope (FEG-SEM), Ultra55 

Zeiss, operating at 5 kV. 

 

3. Results and discussion 

Firstly, the framework composed of oriented PPy nanowires was synthesized by performing 

an electropolymerization of pyrrole monomers under potentiostatic conditions at 0.75 V/SCE 

in a solution composed of 0.15 M pyrrole, 0.2 M K2HPO4 and 10-3 M LiClO4 (see the SEM 

micrograph in Fig. 1). The average diameter of the nanowires is about 80 nm. Notice that the 

framework can also be obtained using acetate or carbonate instead of 
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monohydrogenophosphate. Indeed by replacing HPO4
2- by CO3

2- or CH3COO-, we have 

obtained the same results i.e. nanostructured PPy films (see Table 1). Then, another 

polypyrrole deposit was performed onto these nanostructures. This second electrosynthesis 

was conducted in a monomer solution containing only perchlorates as anions, solution which 

generally leads to the formation of a PPy film with cauliflower-like structure.  

Figures 2A and 2B (curves (a)) show the anodic current versus time responses for the first and 

second synthesis, respectively (5 experiments: t1 = 200 s, t2 = 30, 60, 90 180 or 300 s). For 

comparison, the curve recorded at a bare Pt electrode, in the experimental conditions 

employed for the second synthesis, is also depicted in Fig. 2B (curve (b)). The shape of the 

I(t) curves and the total anodic charge (Fig. 3) clearly depend on the experimental conditions. 

After the second electrosynthesis, if the deposition times are longer than 90 seconds, the PPy 

films are no more superhydrophilic i.e. no more nanostructured. As previously stated, curves 

(a) and (b) in Fig. 2B correspond to the two-step and to the one-step 300 second synthesis, 

respectively. The shape of these I(t) responses differs regarding the 90 first seconds, which is 

consistent with the fact that the substrates are not the same (NW-PPy/Pt and bare Pt). After 

this period (90 s), (a) and (b) curves are parallel in good agreement with the cauliflower 

structure obtained when the second synthesis lasts more than 90 s (at 0.75V/SCE) (see 

below). 

The anodic charges (Q) versus the electrode polarization time are plotted in Figure 3. In this 

figure, the black open squares indicate the PPy films which are superhydrophilic i.e. which 

are nanostructured. With regard to the second synthesis (green squares), the Q(t) relationship 

is linear. One can notice that when the polarization lasts 300 s, the charge passed during the 

second synthesis is about 20% higher than those recorded in the same conditions but using a 

bare Pt electrode, 215 mC and 177 mC respectively, in good agreement with the initial real 

surface of the electrode (3D / 2D).  
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Some of these polypyrrole films have been observed by SEM. In Figure 4 are reported  

micrographs obtained for a Au/mica substrate first polarized during 600 s and then only a part 

of its surface has undergone a second polarization of 50 seconds in the ‘classical’ Py solution. 

Micrograph A shows the film after the first polarization whereas micrographs B-D show the 

film after the second polarization. Notice that micrographs A and B were done at the same 

magnitude. From these micrographs, it is clear that the growth of the polymer occurs on the 

whole surface of the nanowires, since their diameter increases from 80 nm to 200 nm and 

their length increases from 500 nm [25]  up to 1500 nm. Besides, the SEM micrographs 

presented in Figure 5 show different kinds of (nano)structures depending on the second 

synthesis duration, the first synthesis duration being 200 s. When the second polarization 

duration increases, the polypyrrole nanowire diameter increases too. Finally, for 300 seconds 

of polymerization, the PPy film has a cauliflower-like structure (see micrographs E and F in 

Fig. 5) because during the electrode polarization the diameter of the nanowires has so 

increased that their coalescence has occurred. 

The diameter and the length of the polypyrrole nanostructures obtained after the second 

synthesis versus the polymerization duration are plotted in Figure 6. The nanowire diameter 

increases with the second polarization time, leading to a decrease of the space between the 

nanowires until they coalesce and form a 2D film that is no more superhydrophilic, 

confirming  

that the PPy film is no longer nanostructured. Before coalescence, the growth rate in terms of 

fiber length is about 17 nm s-1, which is almost 20 times faster than the rate determined with 

the Py solution used for the framework synthesis (first synthesis) [25]. This finding could be 

explained by the fact that the Py electropolymerization is limited by the concentration of the 

anions present at the electrode/solution interface [51]. Finally, a series of PPy framework was 

prepared by varying the polarization durations (t1), leading to different anodic charges (Q1). A 

second polarization, lasting a given time (t2 = 10, 15, 20, 30, 40 or 50 seconds), was then 
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performed in the ‘classical’ Py solution (solution containing only perchlorates as anions). The 

anodic charges after the second synthesis (Q2) vs. anodic charges after the first synthesis (Q1) 

are plotted in Fig. 7A. As it can be noticed from this figure, for a given t2, the relationship 

between Q1 and Q2 is linear and does not pass through the origin:   

Q2 = α + β Q1                (3) 

Whatever t1 is, the first synthesis leads to PPy nanowire arrays having the same NW density 

and the same NW diameter, as these parameters only depend on the nature of the electrode, 

the applied potential, and the Py solution composition. Therefore, the variation of t1 i.e. Q1 

only leads to the variation of the PPy nanowire length [25]. As the relationship between the 

charge passed during the second synthesis and the one passed during the first synthesis (which 

determines the length of the wires) is linear, one can conclude that the Py polymerization 

takes place on the entire surface of the nanowires and not only on their top. In this latter case, 

Q2 should be independent of the wire length i.e. of Q1. This conclusion is in good agreement 

with the SEM observations (Figs. 4, 5, 6). 

α and β parameters of equation (3) versus the polarization time of the second synthesis are 

depicted in Figures 7B and 7C, respectively.  These relationships are linear. Q2 corresponds to 

Py oxidation that leads to the generation of PPy at a place that can be divided into three zones, 

named a, b, and c in Figure 8.   

Q2 = Qa + Qb + Qc           (4)  

As it can be noticed from Figure 8, zone a corresponds to the enlargement of the nanowires. 

Therefore, Qa is function of Q1. Zones b and c correspond to the elongation of the nanowires 

and the enlargement of the nanowires formed during the second synthesis, respectively. 

Therefore both Qb and Qc are independent from Q1, which sets the length of the nanowire. α is 

proportional to t2 as evidenced by Fig. 7B, in good agreement with Fig. 6.  

Consequently, taking into account that α = Qb + Qc  and β = a t2, the combination of equations 

(3) and (4) gives  
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Q2 = Qb + Qc + a t2 Q1        (5) 

All these findings allow us to confirm that the PPy nanowires of the framework (first 

synthesis) are conductive on their entire surface i.e. on their top and their sides, as it is 

possible to deposit another polypyrrole film all around the nanostructures whose diameter 

increases with the polarization time of the second synthesis (Fig. 6). Moreover, these findings 

confirm that the layer which surrounds the nanowire base is non-conductive i.e. it is an 

overoxidized PPy film, as shown in the mechanism proposed in our previous work regarding 

the formation of the different polypyrrole nanostructures (see Fig. 1).   

 

4. Conclusions 

It is possible to use oriented polypyrrole nanowires obtained by a one-step templateless 

electrochemical method as framework to perform a second synthesis in a pyrrole solution that 

does not contain a high concentration of weak-acid anions. Depending on the polarization 

duration of this synthesis, the diameter of the nanowires varies from a few tens of nanometers 

up to several hundred nanometers, and after a threshold of polarization time cauliflower-like 

structures are obtained. These findings are important because they allow us to confirm the 

global mechanism we proposed to achieve the electrogeneration of PPy nanostructure without 

the use of any template, just by using a monomer solution containing a high concentration of 

weak-acidic anions having pKa > 6. Finally, this paper shows a proof-of-concept, indeed one 

can imagine that the second electrodeposit could be performed using functionalized pyrrole 

monomer to fabricate electrochemical biosensors with large specific area, for example or 

using an organic solvent, and/or using anions which could be drugs.  
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Table 1 :   First synthesis : influence of the nature of the weak-acid anion. PPy films obtained by 

polarization at 0.78 V/SCE for 600 s in 0.15 M Py aqueous solution containing 0.2 M of weak-acid 

anion + 10
-3

 M perchlorate or containing 0.2 M perchlorate (no weak-acid anion). 

Weak-acid 

anion 
Py solution pH Anodic charge (mC) 

Superhydrophilic 

PPy film 
(1)

 
 

HPO4
2-

 8.9 9.7 Yes This work 

CH3COO
-
 8.3 5.9 Yes This work 

CO3
2-

 11.1 2.8 Yes This work 

PO4
3-

 12.6 1.15     No 
(2)

 Ref. 26 

H2PO4
-
 4.8 350 No Ref. 26 

No 

([ClO4
-
] = 0.2M) 

8.9 
(3)

 500 mC No Ref. 26 

(1)
 Nanostructured film ; 

(2)
 Overoxidized PPy film ; 

(3)
 pH adjusted with KOH 
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Figure 1. General mechanism of PPy nanowire electrogeneration. Left: Drawing showing the 

evolution of the polymer deposit with the anodic polarization time, in Py aqueous solution 

containing a high concentration of K2HPO4 and a low concentration of LiClO4. Right: SEM 

micrograph (side view, 60°) of PPy nanowires electrosynthesized at 0.75 V/SCE for 200 s in 

0.15 M Py + 0.2 M K2HPO4 + 10-3 M LiClO4 aqueous solution. Steps 1, 3, 4: Py oxidation 

; step 2 :  water oxidation leading to OH� and O2 formation. O2 locally protect the PPy film 

against the action of OH� which overoxidizes PPy. Steps 1, 2, 3 last around a few seconds. 
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Figure 2. PPy electrosynthesis under potentiostatic conditions. Current density vs. time at a Pt 

electrode polarized at 0.75 V/SCE in 0.15 M Py + 0.2 M K2HPO4 + 10-3 M LiClO4 (A) and 

then in 0.15 M Py + 0.2 M LiClO4 (B curves (a)). B curve (b) bare Pt electrode polarized at 

0.75 V/SCE in 0.15 M Py + 0.2 M LiClO4. In all cases, the surface used to calculate J is 0.07 

cm2. 
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Figure 3. Anodic charge vs. polarization time, (�) first syntheses in 0.15 M Py + 0.2 M 

K2HPO4 + 10-3 M LiClO4 (the j(t) curves  are shown in Fig. 2A ; Q ≈ 1 mC) ; (�) second 

syntheses in 0.15 M Py + 0.2 M LiClO4 (curves (a) in Fig. 2B) ; (�) synthesis in 0.15 M Py + 

0.2 M LiClO4 (curve (b) in Fig. 2B) (at a bare Pt electrode). The black open squares indicate 

the superhydrophilic PPy films i.e. the nanostructured films. 
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Figure 4. SEM micrographs of PPy. A) after a first synthesis at 0.75 V/SCE for 600 s in 0.15 

M Py + 0.2 M K2HPO4 + 10-3 M LiClO4 aqueous solution. B-D) after a second synthesis at 

0.75 V/SCE for 50 s in 0.15 M Py + 0.2 M LiClO4 aqueous solution. A,B,C top view, D side 

view (60°). Scale bar: 200 nm (A), (B), (D) ; 100 nm (C). 
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Figure 5. SEM micrographs of PPy films electrogenerated at 0.75 V/SCE in two steps. First 

step was performed in 0.15 M Py + 0.2 M K2HPO4 + 10-3 M LiClO4 solution for 200 s ; 

second step in 0.15M Py + 0.2 M LiClO4 solution for (A,B) 30 s, (C) 60 s, (D) 90 s, (E,F) 300 

s. Scale bars: (A) 200 nm, (B-D) 2 µm, (E, F) 1 µm. 
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Figure 6. PPy nanowire (NW) characteristics after the second synthesis at 0.75 V/SCE in 

0.15 M Py + 0.2 LiClO4 at a NW-PPy/Pt electrode, the NW-PPy film being formed at 0.75 

V/SCE for 200 s in 0.15 M Py + 0.2 M K2HPO4 + 10-3 M LiClO4. Left: NW diameter (�), 

right: NW length (�) or film thickness (����) vs. polarization time. Some SEM micrographs are 

shown in Fig. 5. 
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Figure 7. A) Anodic charge of the second synthesis performed during various times (t2) in a 

classical Py solution (0.2 M LiClO4 + 0.15 M Py) vs. anodic charge of the first synthesis 

performed in 0.2 M K2HPO4 + 10-3 M LiClO4 + 0.15 M Py solution, the polarization time of 

the first synthesis varying from 30 to 180 s (variation of the nanowire length). Electrode: Pt 

(0.07 cm2). Applied potential: 0.75 V/SCE. B and C) Y-intercept and slope of the relationship 

Q2 = f (Q1) (graph A) vs. the polarization time of the second synthesis, respectively. 
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Figure 8. Drawing showing one PPy nanowire electrogenerated at 0.75 V/SCE in two steps, 

the first synthesis being performed in 0.2 M K2HPO4 + 10-3 M LiClO4 + 0.15 M Py solution 

and the second one in a ‘classical’ Py solution (0.2 M LiClO4 + 0.15 M Py). Black: ultra-thin 

film of overoxidized PPy; dark grey: PPy nanowire after the first synthesis; light grey: PPy 

generated during the second synthesis.  

 


