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Churn Possibilities and Impossibilities?

Dianne Foreback1, Mikhail Nesterenko1, and Sébastien Tixeuil2

1 Kent State University, Kent, OH, USA,
2 Sorbonne Université, CNRS, LIP6, FR-75005, France

Abstract. Churn is processes joining or leaving the peer-to-peer overlay network. We study handling
of various churn variants. Cooperative churn requires leaving processes to participate in the churn
algorithm while adversarial churn allows the processes to just quit. Infinite churn considers unbounded
number of churning processes throughout a single computation. Unlimited churn does not place a bound
on the number of concurrently churning processes. Fair churn handling requires that each churn request
is eventually satisfied. A local solution involves only a limited part of the network in handing a churn
request.

We prove that it is impossible to handle adversarial unlimited churn. We sketch a global solution to
all variants of cooperative churn and focus on local churn handling. We prove that a local fair solution
to infinite churn, whether limited or unlimited, is impossible. On the constructive side, we present an
algorithm that maintains a linear topology and handles the least restrictive unfair churn: infinite and
unlimited. We extend this solution to a 1-2 skip list, describe enhancements for generalized skip lists
and skip graphs.

1 Introduction

In a peer-to-peer overlay network, each member maintains the identifiers of its overlay neigh-
bors in its memory while leaving message routing to the underlay. Such a network is in-
herently decentralized and scales well. Peer-to-peer overlays are well suited for distributed
content storage and delivery. Their recent applications range from internet telephony [8] to
digital cryptocurrencies [28]. Due to the lack of central authority and the volunteer nature of
overlay network participation, churn, or joining and leaving of peers, is a particularly vexing
problem. Churn may be cooperative, if departing processes execute a prescribed departure
algorithm; or adversarial, if they just quit.

Infinite and unlimited churn. Every peer-to-peer overlay network has to handle churn.
Usually, while the topological changes in the overlay required by the churn request occur, the
primary services of the overlay, such as content retrieval, are either suspended or disregarded
altogether. In other words, the churn is considered finite and the overlay network users have
to wait till join/leave requests stop coming. Then, the overlay network recovers and restores
services. This may be tolerable if churn is infrequent since the overlay network is available
most of the time. However, at the scales that peer-to-peer overlay networks achieve, churn

? Preliminary fragments of this work appeared in [17].
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is frequent if not continuous. In this case, churn related service degradation may become
unacceptable. It is, therefore, necessary to consider infinite churn under which the overlay
network has to maintain services while handling it.

One way to handle churn is to engineer sufficient redundancy in the overlay network topol-
ogy so that if peers leave or join, there are enough alternative paths for the operation of the
network to proceed uninterrupted. In this approach, the amount of redundancy necessarily
places a limit on the number of processes that churn concurrently: the churning processes
must not sever all redundant paths. If this limit is breached due to extensive churn, the
network may collapse and partition itself. To prevent such an outcome, the redundancy has
to be extensive. However, in the absence of heavy churn, this redundancy wastes resources.
In this paper, we consider unlimited churn with no bound on the number of concurrently
joining or leaving processes.

Unfair and local churn. In cooperative churn, the joining or leaving peer submits a request
to the churn handling algorithm. Such an algorithm is fair if it eventually satisfies every
such request. A fair algorithm may not always be possible or efficient. An unfair churn
handling algorithm may guarantee progress by satisfying some requests but denying others
indefinitely. A global churn handling algorithm may designate a single process to handle all
churn requests. Although such a serial request handling solution may be simple, it may not
be practical as it creates a performance bottleneck and a single point of failure. In contrast,
a local solution only involves processes in the vicinity of the churning process. In this paper,
we study fairness and locality of churn solutions.

Topologies. An ad hoc peer-to-peer network forms haphazardly. A structured peer-to-peer
network maintains a particular topology to optimize its performance. Most structured net-
works start with peer linearization [18] and then add skip-links for search acceleration [1,
5, 33, 36]. A skip-list and skip-graph [13, 23, 29] are examples of a structured network built
in this manner. Handling churn in a skip-list extends to other similarly built structured
networks in a straightforward manner.

finite infinite
limited or unlimited limited or unlimited

global possible, Proposition 1

local
unfair

possible, Theorems 3 and 4
fair impossible,Theorem 2

Fig. 1. Cooperative churn solutions summary.
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Our contribution. We consider the problem of churn in structured peer-to-peer overlay
networks in the asynchronous message passing system model. We first prove that there
does not exist an algorithm that can handle unlimited adversarial churn. We then focus on
cooperative unlimited churn. Our results are summarized in Figure 1. We outline the solution
to global unlimited churn and focus on local solutions. We distinguish fair and unfair types
of the problem. We prove that there is no local solution to the Fair Infinite Churn Problem
regardless of whether it is limited or unlimited. We then present an algorithm that solves the
unfair version of the problem while maintaining a linear topology, i.e. topological sort. This
solution immediately applies to fair and finite churn. We extend our algorithm to handle
churn in a more efficient structure of a 1-2 skip list. We describe solutions for generalized
skip lists and skip graphs.

To the best of our knowledge, this paper is one of the first to focus specifically on churn
and is the first systematic study of unlimited infinite churn.

Related work. Independently of peer-to-peer overlay networks, several papers [24, 27, 37]
address determination of the rate of churn, which is a difficult task itself. Churn is studied
for some fundamental problems in distributed computing such as Agreement [3, 4, 20]. Churn
can potentially be addressed by the solution to the Group Membership Problem [11] or
an implementation of a perfect failure detector [12]. However, the studied problems are
inherently global, which makes them unsuitable for peer-to-peer network use.

Peer-to-peer overlay networks are often designed to have redundant links so that they
can withstand limited churn [5–7, 19]. Many papers address repairing the topology after
determining a process unexpectedly left the overlay network [1, 4, 15, 21, 33, 34]. Others limit
churn to maintain overlay services while adjusting the network [2, 26].

An alternative approach is to self-stabilize from churn. Self-stabilization allows the peer-
to-peer network to recover from an arbitrary state once the disruptions cease [9, 10, 14, 16,
18, 22, 23, 25, 29, 30, 32, 35]. Using oracles allows a peer-to-peer network to recover from an
initial incorrect state, even disconnection [16, 30]. A general framework of dealing with node
departures is discussed [9, 25]. These approaches address finite churn.

Thus, previously, studies focused on limited or finite churn, while this paper focuses on
unlimited and infinite churn.

2 Model and Problem Statement

Peer-to-peer overlay networks, topology. A peer-to-peer overlay network consists of a
set of processes with unique identifiers. When it is clear from the context, we refer to processes
and their identifiers interchangeably. Processes communicate by message passing. A process
stores identifiers of other processes in its memory. Process a is a neighbor of process b if b
stores the identifier of a. Note that b is not necessarily a neighbor of a. A process may send
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a message to any of its neighbors. Message routing from the sender to the receiver is carried
out by the underlying network. A process may send a message only to the receiver with a
specific id, i.e. we do not consider broadcasts or multicasts. Communication channels are
FIFO with unlimited message capacity. A structured peer-to-peer overlay network maintains
a particular topology. One of the basic topologies is linear, or a topological sort, where each
process b has two neighbors a < b and b < c such that a is the highest id in the overlay
network that is less than b and c is the lowest id greater than b.

Consider a particular topology. A cut-set is a (proper) subset of processes of the network
such that the removal of these processes and their incident edges disconnects the network. It
is known that if a network topology is not a complete graph, it has a cut-set. Since a peer-to-
peer overlay network maintains its connectivity by storing identifiers in the memory of other
processes, once disconnected it may not re-connect. Hence, a peer-to-peer overlay network
must not become disconnected either through the actions of the algorithm or through churn
actions.

Searching, joining and leaving the overlay network. The primary use of a peer-to-
peer overlay network is to determine whether a certain identifier is present in the network. A
search request message bearing the identifier of interest may appear in the incoming channel
of any process that has already joined the overlay network. The request is routed until either
the identifier is found or its absence is determined.

A process may request to join the overlay network. We abstract bootstrapping by as-
suming that a join request, bearing the joining process identifier, appears in an incoming
channel of any process that has already joined the overlay network. A process that joined the
overlay network may leave it in two ways. In adversarial churn a leaving process just exits
the overlay network without participating in further algorithm actions. In cooperative churn
a leaving process sends a request to leave the overlay network; the leaving process exits only
after it is allowed to do so by the algorithm. A process may join the overlay network and
then leave. However, a process that left the overlay network may not join it again with the
same identifier. A join or leave request is a churn request and the corresponding join or leave
message is a churn message. When a leaving process exits the overlay network, the messages
in its incoming channels are lost. However, the messages sent from this process before exiting
remain in the incoming channel of the receiving process.

Churn algorithm. A churn algorithm handles churn requests in cooperative churn. For
each process, an algorithm specifies a set of variables and actions. An action is of the form
〈label〉 : 〈guard〉 −→ 〈command〉 where label differentiates actions, guard is a predicate
over local variables, and command is a sequence of statements that are executed atomically.
The execution of an action transitions the overlay network from one state to another. An
algorithm computation is an infinite fair sequence of such states. We assume two kinds of
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fairness of computation: weak fairness of action execution and fair message receipt. Weak
fairness of action execution means that if an action is enabled in all but finitely many
states of the computation then this action is executed infinitely often. Fair message receipt
means that if the computation contains a state where there is a message in a channel, this
computation also contains a later state where this message is not present in the channel,
i.e. there is no message loss and the message is received. We place no bounds on message
propagation delay or relative process execution speeds, i.e. we consider fully asynchronous
computations.

Algorithm locality. A churn request may potentially be far, i.e. a large number of hops,
from the place where the topology maintenance operation needs to occur. Place of join for
a join request of process x, is the pair of processes y and z that already joined the overlay
network, such that y has the greatest identifier less than x and z has the smallest identifier
greater than x. In every particular state of the overlay network, for any join request, there
is a unique place of join. Note that as the algorithm progresses and other processes join or
leave the overlay network, the place of join may change. Place of leave for a leave request of
process x is defined similarly. Place of churn is a place of join or leave.

A network topology is expansive if there exists a constant m independent of the network
size such that for every pair of processes x and y where the distance between x and y is
greater than m, a finite number of processes may be added m hops away from x and the
same number of processes may be removed from the network such the distance between x
and y is increased by at least one. This constant m is the expansion vicinity of the topology.
In other words, in an expansive topology, every pair of processes far enough away may be
further separated by adding processes to the network while removing processes elsewhere.
Note that a completely connected topology is not expansive since the distance between any
pair of processes is always one. However, a lot of practical peer-to-peer overlay network
topologies are expansive. For example, a linear topology is expansive with expansion vicinity
of 1 since the distance between any pair of processes at least two hops away may be increased
by one if a process is added outside the neighborhood of one member of the pair.

A churn algorithm is local if there exists a constant l independent of the overlay network
size, such that only processes within l hops from the place of churn need to take steps
to satisfy this churn request. The maximum such constant l is the locality of the algorithm.
Note that a local algorithm may maintain only an expansive topology, and that the expansive
vicinity of this topology must not be greater than the locality of the algorithm.

Orthogonality of infinite and unlimited churn. A churn algorithm is designed to handle
particular churn. Churn is infinite if the number of churn requests in a computation is not
bounded by a constant either known or unknown to the algorithm. To prevent the degenerate
case of an indefinitely expanding network, we assume that the difference between the number
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of join and leave requests is still bounded. Churn is unlimited if the number of concurrent
churn requests in the overlay network is not bounded by a constant either known or unknown
to the algorithm. Observe that unlimited churn allows, for example, that all process of the
network request to leave. For limited churn, we assume that there is a number k > 1 such
that in any computation, the number of concurrent requests is no more than k.

Note that these pairs of conditions are orthogonal. For example, churn may be finite
but unlimited: all processes may request to leave but no more join or leave requests are
forthcoming. Alternatively, in infinite limited churn, there may be an infinite total number
of join or leave requests but only, for example, five of them in any given state.

The problem statements. A link is the state of channels between a pair of neighbor
processes. As a churn algorithm services requests, it may temporarily violate the overlay
network topology that is being maintained. A transitional link violates the overlay network
topology while a stable link conforms to it. An algorithm that solves a particular churn
problem conforms to the following properties.

request progress: if there is a churn request in the overlay network, some churn request is
eventually satisfied;

fair request: if there is a churn request in the overlay network, this churn request is even-
tually satisfied;

terminating transition: every transitional link eventually becomes stable;
message progress: a message in a stable link is either delivered or forwarded closer to the

destination;
message safety: a message in a transitional link is not lost.

Note that the fair request property implies the request progress property. The converse
is not necessarily true. The following combinations of properties are of particular interest.

Definition 1. A solution to the Unfair Churn Problem satisfies the combination of request
progress, terminating transition, message progress and message safety properties.

Definition 2. A solution to the Fair Churn Problem satisfies the combination of fair request,
terminating transition, message progress and message safety properties.

In other words, a solution to the Fair Churn Problem guarantees that every churn request
is eventually satisfied while a solution to the Unfair Churn Problem does not. An algorithm
may satisfy these properties while handling finite or infinite, limited or unlimited churn.
Note that if a solution is proven impossible under more restrictive churn conditions, it is also
impossible under less restrictive conditions. For example, if the solution to the Fair Churn
Problem cannot handle limited churn, it cannot handle unlimited churn either. Conversely,
if a solution is proven to handle less restrictive conditions, it is guaranteed to handle more
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restrictive conditions. For example, if the solution to the Unfair Churn Problem handles
infinite unlimited churn, it also handles limited and finite churn.

3 Impossibilities and Global Solutions

Adversarial churn.

Theorem 1. There does not exist a solution for unlimited adversarial churn if the main-
tained topology is not fully connected.

Proof: Assume there is an algorithm A that maintains a topology that is not fully con-
nected such that A is resilient against unlimited adversarial churn. Let N be the number of
processes in the overlay network in some global state. If the topology is not fully connected,
there exists a cut-set P of processes whose cardinality is less than N . Since A handles un-
limited churn, it should handle the departure of every process in P . However, since P is
a cut-set, its departure disconnects the overlay network, which is not possible to handle.
Hence, A is not able to handle unlimited adversarial churn. �

Intuitively, the reason for the negative result of Theorem 1 is as follows. So long as the
network is not completely connected, there is a subset of nodes whose abrupt departure may
disconnect the network.

For the rest of the paper, we are focusing on cooperative churn.

Theorem 2. There does not exist a local solution to the Fair Churn Problem that can handle
infinite limited or unlimited churn for an expansive overlay network topology.

Proof: We prove the theorem for the less restrictive condition of limited churn. The result
for unlimited churn follows immediately. We assume that the churn is limited to k > 1.

Assume there exists a local algorithm A with locality l that solves the Fair Churn Prob-
lem and can handle infinite churn while maintaining an expansive topology with expansion
vicinity of m > l. Let us consider the state of the algorithm where the number of requests is
less than k. Let us add a churn request with id x to the incoming channel of another process
y whose distance d to the place of churn for x is greater than m and, therefore, l. The current
number of requests in the system equal to k.

Since the topology is expansive, there exist a finite number of processes that can be added
to the network and the same number of processes removed from the network at least m hops
away from y such that the distance d between y and the place of churn for x increases by at
least one. Let A be the set of added processes and R be the set of removed processes. The
cardinalities of A and R are equal.

Observe that A is assumed to be local with locality l that is less than expansion vicinity
m. This means that every process in A may be added to the overlay network and processes
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of R may be removed from the network without y having to take a step. Let us add the
processes of A and remove processes in R.

Let us then have y receive the churn request for x. Since A is a Fair Churn Algorithm,
due to progress property, y must forward this request closer to its place of churn. Suppose y
forwards this request to some process u. However, since the distance from y to x’s place of
churn is at least d + 1, the distance from u to this place of churn is at least d. We continue
the formation of this sequence in a similar manner ad infinitum.

The resultant sequence is a computation of algorithm A. Moreover, the number of leaves
is equal to the number of joins. This means the churn in this compuation is limited. Yet,
there is a churn request of process x that is never satisfied. This means that A violates the
fair request property the Fair Churn Algorithm is supposed to satisfy. This contradicts our
initial assumption. �

The intuition for Theorem 2 is that, in an expansive overlay network topology, the re-
quests may arrive to produce a “treadmill effect” for a particular churn request r: the satis-
faction of inopportune requests by a local algorithm extends the topology such that r never
reaches its place of churn. Hence, no fairness.

Global churn handling.

Proposition 1. There exists a global Fair Churn Algorithm that can handle infinite unlim-
ited cooperative churn.

Let us sketch the global solution. The algorithm chooses the coordinator, for example
the process with the highest id, to handle churn requests. All processes know this coordi-
nator and forward their requests to it. The coordinator serializes the requests handling. For
each request, the coordinator sends the topology updates to the churning process and its
neighbors. The coordinator waits for the process acknowledgements before starting the next
request. If the coordinator x itself requests to leave, it stops handling other churn requests,
selects the next coordinator y, forwards the incoming requests to y. The new coordinator
y does not start handling requests until it gets the permission from x. Meanwhile, x in-
forms all processes of the coordinator change, waits for their acknowledgements, forwards
the permission for y to start handling requests and then leaves. This algorithm satisfies all
the properties of the Fair Churn Algorithm.

Note that the outlined algorithm handles the least restrictive churn: infinite and unlim-
ited. Therefore, this algorithm also handles infinite limited and finite limited and unlimited,
see Figure 1. We now focus on local algorithms.
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4 Linear Topology Churn Handling

Linear topology under churn. In a linear topology, each process p maintains two iden-
tifiers: left, where it stores the largest identifier less than p and right, where it stores the
smallest identifier greater than p. Processes are thus joined in a chain. For ease of exposi-
tion, we consider the chain laid out horizontally with higher-id processes to the right and
lower-id processes to the left. The largest process stores positive infinity in its right variable;
the smallest process stores negative infinity in left. A left end of a link is the smaller-id
neighbor process. A right end is the greater-id process.

As a process joins or leaves the overlay network, it may change the values of its own
or its neighbors variables thus transitioning the link from one state to another. In a linear
topology, a link is transitional if its left end is not a neighbor of its right end or vice versa.
The link is stable otherwise. The largest and smallest processes may not leave. The links to
the right of the largest process and to the left of the smallest processes are always stable. A
process may leave the overlay network only after it has joined. We assume that in the initial
state of the overlay network, all links are stable.
Algorithm description. We present a local algorithm Unfair Infinite Unlimited Churn
(CL) that satisfies the four properties of the Unfair Churn Problem while handling unfair
unlimited churn and maintaining a linear topology. The basic idea of the algorithm is to have
the handler process with the smaller identifier of the place of join coordinate churn requests
to its immediate right. This handler considers one such request at a time. This serializes
request processing and guarantees the accepted request’s eventual completion.

The algorithm is shown in Figure 2. To maintain the topology, each process p has two
variables: left and right with respective domains less than p and greater than p. Read-only
variable leaving is set to true by the environment once the joined process wishes to leave
the overlay network. Variable busy is used by the handler process to indicate whether it
currently coordinates a churn request, or is initialized to true for a joining process. The
incoming channel for process p is variable C. Processes do not accept churn requests when
busy is true.

The request is sent in the form of a single join or leave message. We assume that a join
and, for symmetry, a leave message is inserted into an incoming channel of an arbitrary
joined process in the overlay network.

Message join carries the identifier of the process wishing to join the overlay network.
Message leave carries the identifier of the leaving process as well as the identifier of the process
immediately to its right. Actions joinRequest and leaveRequest describe the processing of the
two types of requests. If the receiver realizes that it is to the immediate left of the place of
join or leave, and the receiver is not currently handling another request, i.e. busy 6= true,
and it does not want to leave, it starts handling the arrived request. Otherwise, the recipient
process forwards the request to its left or right.
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constant p // process identifier
variables

left , right: ids of left and right neighbors,
⊥ if undefined

leaving: boolean, initially false, read only,
application request

busy: boolean, initially false; true when
servicing a join/leave request
or when joining

C: incoming channel

actions
joinRequest :

join ∈ C −→
receive join (reqId)
if (p < reqId < right) and not leaving
and not busy then

send sua(right) to reqId
busy := true

else
if reqId < p then

send join(reqId) to left
else

send join(reqId) to right

leaveRequest :
leave ∈ C −→

receive leave(reqId , q)
if reqId = right and not leaving
and not busy then

send sua(⊥) to q
busy := true

else
if p <= reqId then

send leave(reqId , q) to left
else

send leave(reqId , q) to right

setUpA:
sua ∈ C −→

receive sua(reqId) from q
if reqId 6= ⊥ then // Join 1.1 received

right := reqId
left := q
send sua(⊥) to right

else // Join 1.2 or Leave 1 received
left := q
send sub to left

setUpB :
sub ∈ C −→

receive sub from q
if q 6= right then // Join 2.2 or Leave 2 received

send tda to right
right := q

else // Join 2.1 received
send sub to left

tearDownA:
tda ∈ C −→

receive tda from q
if q 6= left then // Join 3 or Leave 3.2 received

send tdb to q
else // Leave 3.1 received

send tda to right

tearDownB :
tdb ∈ C −→

receive tdb from q
if q 6= right then // Join 4 or Leave 4.2 received

send ftd to q
busy := false

else // Leave 4.1 received
send tdb to left

tranDone:
ftd ∈ C −→

receive ftd from q
if leaving then // Leave 5 received, p may exit

right = ⊥
left = ⊥

else
busy := false // Join 5 received

Fig. 2. Algorithm CL for process p.
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Request handling is illustrated in Figure 3. It is similar for join and leave and is divided
into five stages. The first two stages are setup stages: they set up the channels for the links
of the the joining process or for the processes that are the neighbors of the leaving process.
The third and forth stages are teardown stages: they remove the channels of the links being
replaced. The last stage informs either the leaving process that it may exit, or the joining
process that it may start coordinating its own churn requests. In the case of join, links
between two pairs of neighbors need to be set up, hence the setup stages are divided into
two substages 1.1, 1.2, 2.1 and 2.2, and links between one pair of neighbors are tore down in
stages 3 and 4. Similarly, in the case of leave, link setup stages 1 and 2 establish links between
a pair of neighbors, followed by the teardown stages substages 3.1, 3.2, 4.1 and 4.2 to tear
down links between two pairs of neighbors, then stage 5. We include the stage and substage
numbers in the comments of Figure 2. The messages transmitted during corresponding stages
are 1. set up A sua, 2. set up B sub, 3. tear down A tda, 4. tear down B tdb and 5. finish
teardown ftd.

 

a.   join(y) 

x 
y 

z 

3. tda 

1.1 sua(z) 

4. tdb 

1.2 sua 

2.2 sub 2.1 sub 

5. ftd 

b.   leave(y, z) 

x y z 

1. sua 

3.1 tda 

2. sub 

3.2 tda 

4.2 tdb 

5. ftd 

4.1 tdb 

Fig. 3. CL join and leave request handling.

CL correctness proof. We denote message tda or tdb as td*. Similarly, su* is sua or
sub. Intuitively, the CL correctness proof shows that in CL, a teardown td* message is the
last in the channel being torn down. Similar su* is the first message in a channel to be set
up. The processes locally handle churn request sequentially. Thus, no regular messages are
lost in the transition process. Moreover, the messages are eventually received and forwarded
correctly, which leads to some churn request eventually being handled. Thus, Theorem 3
follows.

Lemmas 1 and 2 follow immediately from the operation of the algorithm.
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Lemma 1. Message td* is the last message in the channel in every teardown stage. Message
su* is the first message in a channel in every set up stage.

Lemma 2. The two links of a churning process transition through stages 1 through 5. No
link participates in concurrent transitions.

The below corollary follows from Lemma 2.

Corollary 1. Every transitional link is eventually stable.

Note that after the link is stable, it may transition again.

Lemma 3. No message in a transitional link is lost.

Proof: Observe that according to Lemma 1, in a teardown stage, the last message in
the channel is a td*. By Lemma 2, each stage, including the teardown stages, eventually
completes. By the design of the algorithm, a teardown stage completes when a td* message
is received. Since each channel is FIFO, this teardown message is received only after all other
messages in the channel are received. That is, after the teardown stage completes, there are
no messages in the channel that is torn down. According to Lemma 2, every channel in a
transitional link is eventually torn down. Hence the lemma. �

Lemma 4. Unless the link starts transitioning, a message in a stable link is either eventually
delivered or forwarded to a process closer to the destination.

Proof: Consider a message in a channel of a stable link. We assume fair channel message
receipt. This means, unless the channel is altered due to transitioning, the message is even-
tually processed by the recipient process. If this process is the destination, the message is
delivered; if not, the recipient forwards it closer to the destination. �

Lemma 5. If there is a churn request in the overlay network, some churn request is even-
tually satisfied.

Proof: Consider state s1 of the computation where there is a churn request message m
in a channel of the overlay network. In this state, some other churn request processing may
be under way. According to Lemma 1, the processing of all these requests eventually ends.
Let s2 be the state of the computation where all requests under way in s1 are done. If a new
request processing has started in s2, then by applying Lemma 1 to it, we obtain the claim
of this lemma.

Let us consider the case where no request processing has occurred between s1 and s2.
According to Lemma 3, message m is still in some channel of s2. Since no requests are
processed in s2, there are no transitional links. That is, m is in a stable link. According

12



to Lemma 4, m is forwarded towards its destination. Continuing this way, we observe that
either m encounters a transitional link or arrives at a process p that handles this request. If
m encounters a transitional link, this transition started after s1 and the claim of the lemma
follows. If m arrives at p, p may either be busy or not. If p is busy, it is handling a request
that started after s2. If p is not busy, it starts processing m. Hence the lemma. �

Only processes to the immediate right and left of the churning process are involved in
the processing of the churn request. Hence the following lemma.

Lemma 6. The locality of CL is 1.

Theorem 3. CL is a local Unfair Churn Algorithm that handles infinite unlimited churn
and maintains the linear topology.

Proof: Theorem 3 follows from Corollary 1 and Lemmas 1, 3, 4, 5 and 6. �

Since finite churn limits the number of requests in a computation, Corollary 2 follows
directly from Theorem 3.

Corollary 2. CL is a local Unfair Churn Algorithm that handles finite unlimited churn and
maintains the linear topology.

5 Skip List Churn Handling

In this section, we describe the algorithm CSL that handles unlimited infinite churn to
maintain a deterministic 1-2 skip list. The advantage of a skip list over linear topology is
that data search and churn request processing takes O(logN) steps compared to the linear
search complexity. A skip list [31] consists of n levels with each level sorted in ascending order.
The bottom level 0 contains all processes in the overlay network. In a 1-2 deterministic skip
list, processes at level i + 1 > 0 skip over one or two processes at level i. Algorithm CSL
derives from CL. Therefore, instead of presenting the code for the algorithm, we describe its
operation. We use the same system model defined in Section 2.

Variables. Similar to the CL algorithm, variable leaving indicates if a process wishes to
leave. At every level i, each process uses the busy variable to block itself at that level. Also,
at every level i, each process x stores 1-hop and 2-hop neighbor identifiers. The first hop are
conversational links that are used to exchange messages. The variables x.i.l and x.i.r store
1-hop left and right conversational neighbors. The second hop are informational links that
do not contain messages but are used by the algorithm to make decisions. Variables x.i.2l
and x.i.2r store 2-hop informational neighbors. Boolean variable x.i.up indicates whether
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the process x exists at level i + 1. If x.i.up = true, process x is up at level i, it is down
otherwise. The smallest and largest id processes never leave and are present at every level
of the skip list. The smallest process stores negative infinity in its i.l and i.2l variables. The
largest process stores positive infinity in its i.r and i.2r variables.

Phases of operation. We use two phases to construct a 1-2 skip list: permission and
construction. The permission phase gathers all necessary permissions and blocks all processes
involved in a particular churn request from accepting additional churn requests. Once all
permissions are gathered and the required processes are blocked by setting busy to true at
each required level, the construction phase carries out the topology modification related to
the churn request.

Permission phase. The permission phase proceeds recursively from level 0. At each level i,
the handler considers the churn request. If it is not busy handling another churn request or
wishing to leave, it blocks itself from considering any other requests, gathers the necessary
permissions for the request at this level and, if necessary, submits the request to level i + 1
and awaits level i + 1’s permission. Once level i is secured, the permission is submitted to
the lower level handler. If permission is not secured, a rejection is sent to the lower level
handler.

 

z y x w u v 

level i+1 
level i 

z y x w u v z y v’ v x w u y x v z w x w z y u 

(a) no rise, x gets  
w’s permission at level i 

(b) no rise, x gets  
w’s permission at level i 

(c) y rises, x gets w’s  
permission at level i, w  
gets level i+1 permissions 

(d) z rises, x gets  
w’s permission at level i, 
x gets u’s permission at  
level i+1 

(e) x rises, x gets  
w’s permission at level i, 
w gets u’s permission for 
level i+1 

Fig. 4. The cases of process x coordinating y’s joining.

To determine the necessary permissions required for the join request from process y
at level i, the handler process x considers the five cases shown in Figure 4. Similarly, for
leaving, x considers the eight cases in Figure 5. For all cases, handler x at level i requests
permission from its left neighbor w. Once x gets the permission from w, if necessary, x
requests permission from its left neighbor at level i + 1. Before w replies to x, it may need
to get permission from its left neighbor at level i, if further necessary, w requests permission
from level i + 1 becoming the handler at level i + 1.

To determine the processes that must rise or descend, handler x requires 2-hop informa-
tion, as opposed to only 1-hop information per the CL algorithm. Let’s consider join Case
e in Figure 4 in more detail. Process x is the handler and y is requesting to join. A hollow

14
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level i+1 
level i 

z y x w u v 

z y v’ v x w u 

(a) no rise, no descend  
x’s gets w’s permission at level i 

(b) no rise, no descend  
x gets w’s permission at level i 

(d) z rises, y descends, x gets w’s  
permission at level i, w  
gets level i+1 permissions for y 
to leave then z to join 

(f) no rise, x descends, x gets 
w’s permission at level i, 
x gets u’s permission at  
level i+1 

y x v z w 

(c) no rise, y descends, x gets 
 w’s permission at level i, w 
gets level i+1 permissions 

y x v z w v’ 

(e) x rises, y descends, x gets 
w’s permission at level i, 
w gets u’s permission at  
level i+1 

z y v’ v x w u 

(g) x rises, y descends, x gets 
w’s permission at level i, 
w gets u’s permission for y  
to leave then x to join level i+1 

z y v x w u 

(h) w rises, x descends, x gets 
w’s permission at level i, 
x gets t’s permission for x to 
leave then w to join level i+1 

y x z w u t 

Fig. 5. The cases of process x coordinating y’s leaving.

circle indicates a process whose status is changing at the corresponding level. At level i, w
and x are down while u and z are up. When handler x accepts y’s join request at level i, x
examines its 2-hop neighborhood status and determines that it must rise and join level i+ 1
and that y’s status must change to be down. Process x first requests w’s permission at level
i. If w is not blocked handling another request, w blocks itself. Then, w sends to u a request
for x to join level i + 1. Process u becomes the handler of the request at level i + 1. If the
necessary permissions are obtained at this and higher levels, w sends the permission to x
and x sends it further downward. If the request is rejected, the process unblocks itself and
sends the rejection downward.

Once the permission phase for a certain churning process y ends, the appropriate 2-hop
neighbors are not able to join or leave. Indeed, if y is leaving, y, x and w are blocked. Process
y rejects all requests from z, so z cannot leave. Moreover, since z forwards to y for (i) its
right neighbor v to leave or (ii) a new neighbor z′ to join, where z < z′ < v, y’s 2-hop right
neighborhood is precluded from joining or leaving. The situation is similar if y is leaving.

Construction Phase. The construction phase proceeds from the top level down. At each
level, the construction phase operates similar to CL algorithm. See Figure 6. The setup and
tear down messages, sua, sub, tda and tdb, setup and tear down 1-hop conversational
links. The informational messages, ia and ib, are added to maintain the informational 2-hop
right and 2-hop left neighbor links and status, and to unblock y’s 2-hop left neighborhood.

Correctness proof. Intuitively, the CSL correctness proof shows the basic operation of
the algorithm is similar to that of CL, the major additions are the multi-level permission
and construction phases. We show that for each request, the phases eventually end. Indeed,
since the difference between the number of join and leave requests is bounded, the number
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Fig. 6. CSL join and leave request handling.

of levels in a skip list is bounded also. The number of steps at each level is finite. Hence,
eventually, the permission phase either returns the permission or rejection. The only way it
can return a rejection is if some other request succeeds. Once all permissions are gathered,
the construction phase proceeds in a similar manner. Thus, Theorem 4 follows.

Lemma 7. For each processed request, permission and construction phases eventually end.

Proof: Let us consider the permission phase first. By the design of the algorithm, there
is a finite number of steps in each level of the skip list. Each request is either escalated to a
higher level or returns as a permission or rejection to the lower level. Since we assume that
the difference between join and leave requests in a computation is bounded, the number of
levels of the skip list is bounded also. This means that the request is guaranteed to traverse
all levels up and down and eventually end.

Let us now address the construction phase. Similarly, by the design of the algorithm,
there is a finite number of steps in this phase on each level. The construction starts from
the top level and proceeds down. Since there is a finite number of levels in the skip list, this
phase eventually ends as well. �

Lemma 8. If the computation contains a churn request, some churn request is eventually
satisfied.

Proof: Due to Lemma 7, the permission phase of the request is guaranteed to end. It
may end with a rejection or permission. Note that the request may be rejected only if a
process whose permission is requested is blocked processing another request at any level
of the skip list. Thus, the permission phase of at least one request is guaranteed to end
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with a permission granted. Once all permissions are gathered, the construction phase starts.
According to Lemma 7, this phase is guaranteed to end. This results in eventually satisfying
a churn request. �

Lemma 9. Eventually, every transitional link becomes stable.

Proof: This concerns the construction phase of the algorithm. The construction phase
operates sequentially on each level of the algorithm. At each level, CSL transitions through
9 steps (Figure 6), similar to the 5 steps of CL (Figure 3). Hence, eventually all transitional
links become stable. �

The proofs of Lemmas 10 and 11 are similar to the proofs of Lemma 3 and 4, respectively.

Lemma 10. A message in a transitional link is not lost.

Lemma 11. A message in a stable link is either delivered or forwarded closer to the desti-
nation.

Lemma 12. The locality of CSL is 1.

Theorem 4. CSL is a local Unfair Churn Algorithm that handles infinite unlimited churn
and maintains a 1-2 skip list.

Proof: Lemmas 8, 9, 10 and 11 show that CSL satisfies all the properties of the Fair
Churn Algorithm. Lemma 12 establishes the locality of the algorithm. Hence, the Theorem
follows. �

Since finite churn limits the number of requests in a computation, Corollary 3 follows
directly from Theorem 4.

Corollary 3. CSL is a local Unfair Churn Algorithm that handles finite unlimited churn
and maintains a 1-2 skip list.

6 Extensions and Future Work

Our solution for a 1-2 skip list can be extended to generalized skip lists and skip graphs.
Notice, the locality of a 1-2 skip list is 2 and the permission phase blocked, whether explicitly
or implicitly, the 2-hop neighborhood of the churning process. For a 2-3 skip list, the locality is
3, and the permission phase should block the 3-hop neighborhood. In general, the permission
phase should block the specific neighborhood of the churning process. The construction phase
should be modified to include the serialization of additional information messages, ia* and
ib*, to reach the specific neighborhood. For a 2-3 skip list, the informational messages are
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sent to the 2-hop and 3-hop neighbors of the churning process. The set up and tear down
message patterns remain the same for the 1-hop neighborhood covering the conversational
links.

As further research, it is interesting to consider extensions of CL to ring structures such
as Chord [36] or Hyperring [5]. Another important area of inquiry is addition of limited
adversarial churn.
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