L. V. Kalia and A. E. Lang, Parkinson's disease, The Lancet, vol.386, issue.9996, pp.896-912, 2015.
DOI : 10.1016/S0140-6736(14)61393-3

M. K. Lin and M. J. Farrer, Genetics and genomics of Parkinson???s disease, Genome Medicine, vol.6, issue.6, p.48, 2014.
DOI : 10.1186/gm566

W. Poewe, Parkinson disease, Nature Reviews Disease Primers, vol.28, p.17013, 2017.
DOI : 10.1002/mds.26651

URL : https://hal.archives-ouvertes.fr/inserm-00391622

S. Paillusson, There's Something Wrong with my MAM; the ER???Mitochondria Axis and Neurodegenerative Diseases, Trends in Neurosciences, vol.39, issue.3, pp.146-157, 2016.
DOI : 10.1016/j.tins.2016.01.008

M. Rodriguez-arribas, Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson???s Disease, Molecular Neurobiology, vol.9, issue.11, pp.6287-6303, 2016.
DOI : 10.3389/fnana.2015.00017

G. Csordas, Structural and functional features and significance of the physical linkage between ER and mitochondria, The Journal of Cell Biology, vol.646, issue.7, pp.915-921, 2006.
DOI : 10.1074/jbc.274.1.316

D. E. Copeland and A. J. Dalton, An Association between Mitochondria and the Endoplasmic Reticulum in Cells of the Pseudobranch Gland of a Teleost, The Journal of Cell Biology, vol.5, issue.3, pp.393-396, 1959.
DOI : 10.1083/jcb.5.3.393

R. Rizzuto, Close Contacts with the Endoplasmic Reticulum as Determinants of Mitochondrial Ca2+ Responses, Science, vol.280, issue.5370, pp.1763-1766, 1998.
DOI : 10.1126/science.280.5370.1763

J. Vance, Phospholipid synthesis in a membrane fraction associated with mitochondria, J. Biol. Chem, vol.265, pp.7248-7256, 1990.

R. Stoica, ER???mitochondria associations are regulated by the VAPB???PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43, Nature Communications, vol.150, p.3996, 2014.
DOI : 10.1083/jcb.150.1.165

J. R. Friedman, ER Tubules Mark Sites of Mitochondrial Division, Science, vol.2, issue.84, pp.358-362, 2011.
DOI : 10.1126/scisignal.2000287

R. Stoica, ALS/FTD???associated FUS activates GSK???3?? to disrupt the VAPB???PTPIP51 interaction and ER???mitochondria associations, EMBO reports, vol.17, issue.9, pp.1326-1342, 2016.
DOI : 10.15252/embr.201541726

R. Galmes, ORP5/ORP8 localize to endoplasmic reticulum???mitochondria contacts and are involved in mitochondrial function, EMBO reports, vol.17, issue.6, pp.800-810, 2016.
DOI : 10.15252/embr.201541108

URL : https://hal.archives-ouvertes.fr/hal-01401452

G. Achleitner, Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact, European Journal of Biochemistry, vol.142, issue.2, pp.545-553, 1999.
DOI : 10.1074/jbc.273.6.3327

B. Kornmann, An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen, Science, vol.163, issue.3, pp.477-481, 2009.
DOI : 10.1083/jcb.200304040

A. A. Rowland and G. Voeltz, Endoplasmic reticulum???mitochondria contacts: function of the junction, Nature Reviews Molecular Cell Biology, vol.20, issue.10, pp.607-625, 2012.
DOI : 10.3233/JAD-2010-100495

G. Szabadkai, channels, The Journal of Cell Biology, vol.297, issue.257, pp.901-911, 2006.
DOI : 10.1091/mbc.E05-08-0740

T. Simmen, PACS-2 controls endoplasmic reticulum???mitochondria communication and Bid-mediated apoptosis, The EMBO Journal, vol.75, issue.4, pp.717-729, 2005.
DOI : 10.1016/S0092-8674(03)00802-X

R. Iwasawa, A. L. Mahul-mellier, C. Datler, E. Pazarentzos, and S. Grimm, Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction, The EMBO Journal, vol.279, issue.3, pp.556-568, 2011.
DOI : 10.1074/jbc.M402115200

O. M. De-brito and L. Scorrano, Mitofusin 2 tethers endoplasmic reticulum to mitochondria, Nature, vol.2, issue.7222, pp.605-610, 2008.
DOI : 10.1091/mbc.11.7.2445

P. Cosson, A. Marchetti, M. Ravazzola, and L. Orci, Mitofusin-2 Independent Juxtaposition of Endoplasmic Reticulum and Mitochondria: An Ultrastructural Study, PLoS ONE, vol.7, issue.9, p.46293, 2012.
DOI : 10.1371/journal.pone.0046293.t005

R. Filadi, Mitofusin 2 ablation increases endoplasmic reticulum???mitochondria coupling, Proc. Natl Acad. Sci. USA, pp.2174-2181, 2015.
DOI : 10.1126/science.1099793

URL : http://www.pnas.org/content/112/17/E2174.full.pdf

P. T. Wang, Distinct mechanisms controlling rough and smooth endoplasmic reticulum contacts with mitochondria, Journal of Cell Science, vol.128, issue.15, pp.2759-2765, 2015.
DOI : 10.1242/jcs.171132

URL : http://jcs.biologists.org/content/joces/128/15/2759.full.pdf

N. S. Leal, Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid ??-peptide production, Journal of Cellular and Molecular Medicine, vol.1841, issue.Suppl., pp.1686-1695, 2016.
DOI : 10.1016/j.bbalip.2013.11.014

URL : http://onlinelibrary.wiley.com/doi/10.1111/jcmm.12863/pdf

W. A. Prinz, Bridging the gap: Membrane contact sites in signaling, metabolism, and organelle dynamics, The Journal of Cell Biology, vol.245, issue.6, pp.759-769, 2014.
DOI : 10.1038/nchembio.796

D. Peretti, N. Dahan, E. Shimoni, K. Hirschberg, and S. Lev, Coordinated Lipid Transfer between the Endoplasmic Reticulum and the Golgi Complex Requires the VAP Proteins and Is Essential for Golgi-mediated Transport, Molecular Biology of the Cell, vol.19, issue.9, pp.3871-3884, 2008.
DOI : 10.1091/mbc.E08-05-0498

S. Tavassoli, Plasma membrane???endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis, EMBO reports, vol.191, issue.5, pp.434-440, 2013.
DOI : 10.1128/JB.01183-08

R. Dong, Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P, Cell, vol.166, issue.2, pp.408-423, 2016.
DOI : 10.1016/j.cell.2016.06.037

J. L. Costello, ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER, The Journal of Cell Biology, vol.3, issue.2, pp.331-342, 2017.
DOI : 10.1016/0005-2736(87)90321-X

R. Hua, VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis, The Journal of Cell Biology, vol.216, issue.2, pp.367-377, 2017.
DOI : 10.1091/mbc.E07-10-1042

T. Levine and C. Loewen, Inter-organelle membrane contact sites: through a glass, darkly, Current Opinion in Cell Biology, vol.18, issue.4, pp.371-378, 2006.
DOI : 10.1016/j.ceb.2006.06.011

D. Vos and K. J. , VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis, Human Molecular Genetics, vol.124, issue.6, pp.1299-1311, 2012.
DOI : 10.1242/jcs.075168

P. Gomez-suaga, The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy, Current Biology, vol.27, issue.3, pp.371-385, 2017.
DOI : 10.1016/j.cub.2016.12.038

S. Paillusson, ??-Synuclein binds to the ER???mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production, Acta Neuropathologica, vol.55, issue.Suppl 1, pp.129-149, 2017.
DOI : 10.1002/ana.10795

J. Moser-von-filseck, Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate, Science, vol.283, issue.11, pp.432-436, 2015.
DOI : 10.1074/jbc.M705195200

J. Chung, PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts, Science, vol.55, issue.7, pp.428-432, 2015.
DOI : 10.1194/jlr.M049148

X. Qiao, PTPIP51 regulates mouse cardiac ischemia/reperfusion through mediating the mitochondria-SR junction, Scientific Reports, vol.13, p.45379, 2017.
DOI : 10.1038/cdd.2016.52

P. J. Meier, M. A. Spycher, and U. A. Meyer, Isolation and characterization of rough endoplasmic reticulum associated with mitochondria from normal rat liver, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.646, issue.2, pp.283-297, 1981.
DOI : 10.1016/0005-2736(81)90335-7

D. F. Montisano, J. Cascarano, C. B. Pickett, and T. W. James, Association between mitochondria and rough endoplasmic reticulum in rat liver, The Anatomical Record, vol.85, issue.4, pp.441-450, 1982.
DOI : 10.1016/0304-4165(71)90027-4

M. Giacomello and L. Pellegrini, The coming of age of the mitochondria???ER contact: a matter of thickness, Cell Death & Differentiation, vol.43, issue.9, pp.1417-1427, 2016.
DOI : 10.1016/j.cell.2014.11.034

V. Hung, Author response, eLife, vol.10, p.24463, 2017.
DOI : 10.7554/eLife.24463.019

J. R. Friedman, B. M. Webster, D. N. Mastronarde, K. J. Verhey, and G. K. Voeltz, ER sliding dynamics and ER???mitochondrial contacts occur on acetylated microtubules, The Journal of Cell Biology, vol.23, issue.3, pp.363-375, 2010.
DOI : 10.1242/jcs.041962

B. Kornmann, C. Osman, and P. Walter, The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections, Proc. Natl Acad. Sci. USA, pp.14151-14156, 2011.
DOI : 10.1073/pnas.1004037107

M. Hamasaki, Autophagosomes form at ER???mitochondria contact sites, Nature, vol.13, issue.7441, pp.389-393, 2013.
DOI : 10.1016/j.media.2008.06.017

A. Raturi and T. Simmen, Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (MAM), Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1833, issue.1
DOI : 10.1016/j.bbamcr.2012.04.013

A. R. Van-vliet, T. Verfaillie, and P. Agostinis, New functions of mitochondria associated membranes in cellular signaling, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.10, pp.2253-2262, 2014.
DOI : 10.1016/j.bbamcr.2014.03.009

V. V. Flis and G. Daum, Lipid Transport between the Endoplasmic Reticulum and Mitochondria, Cold Spring Harbor Perspectives in Biology, vol.5, issue.6, p.13235, 2013.
DOI : 10.1101/cshperspect.a013235

R. Steenbergen, Disruption of the Phosphatidylserine Decarboxylase Gene in Mice Causes Embryonic Lethality and Mitochondrial Defects, Journal of Biological Chemistry, vol.266, issue.48, pp.40032-40040, 2005.
DOI : 10.1042/0264-6021:3420057

K. Schroder, R. Zhou, and J. Tschopp, The NLRP3 Inflammasome: A Sensor for Metabolic Danger?, Science, vol.284, issue.31, pp.296-300, 2010.
DOI : 10.1074/jbc.M109.023689

R. Zhou, A. S. Yazdi, P. Menu, and J. Tschopp, A role for mitochondria in NLRP3 inflammasome activation, Nature, vol.14, issue.7329, pp.221-225, 2011.
DOI : 10.1038/sj.cdd.4402142

G. Szabadkai, A. M. Simoni, and R. Rizzuto, Release from the Endoplasmic Reticulum, Journal of Biological Chemistry, vol.490, issue.17, pp.15153-15161, 2003.
DOI : 10.1093/emboj/19.18.4926

T. Hayashi, R. Rizzuto, G. Hajnoczky, and T. P. Su, MAM: more than just a housekeeper, Trends in Cell Biology, vol.19, issue.2, pp.81-88, 2009.
DOI : 10.1016/j.tcb.2008.12.002

P. Pinton, C. Giorgi, R. Siviero, E. Zecchini, and R. Rizzuto, Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis, Oncogene, vol.276, issue.50, pp.6407-6418, 2008.
DOI : 10.1073/pnas.93.11.5325

E. J. Griffiths and G. A. Rutter, Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1787, issue.11, pp.1324-1333, 2009.
DOI : 10.1016/j.bbabio.2009.01.019

A. Bononi, Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner, Cell Death & Differentiation, vol.224, issue.12, pp.1631-1643, 2013.
DOI : 10.1111/j.1365-2818.2006.01706.x

C. Cardenas, Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria, Cell, vol.142, issue.2, pp.270-283, 2010.
DOI : 10.1016/j.cell.2010.06.007

URL : https://hal.archives-ouvertes.fr/hal-00506136

A. Wong, D. R. Grubb, N. Cooley, J. Luo, and E. A. Woodcock, Regulation of autophagy in cardiomyocytes by Ins(1,4,5)P3 and IP3-receptors, Journal of Molecular and Cellular Cardiology, vol.54, pp.19-24, 2013.
DOI : 10.1016/j.yjmcc.2012.10.014

K. Mallilankaraman, MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism, Nature Cell Biology, vol.95, issue.12, pp.1336-1343, 2012.
DOI : 10.1073/pnas.95.12.6739

URL : https://hal.archives-ouvertes.fr/hal-00781179

N. Mizushima, Autophagy: process and function, Genes & Development, vol.21, issue.22, pp.2861-2873, 2007.
DOI : 10.1101/gad.1599207

URL : http://genesdev.cshlp.org/content/21/22/2861.full.pdf

S. A. Tooze, Current views on the source of the autophagosome membrane, Essays In Biochemistry, vol.3, pp.29-38, 2013.
DOI : 10.1038/nature11910

V. Gelmetti, PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation, Autophagy, vol.118, issue.14, pp.654-669, 2017.
DOI : 10.1073/pnas.1504880112

URL : http://europepmc.org/articles/pmc5388214

T. Garofalo, Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation, Autophagy, vol.265, issue.6, pp.917-935, 2016.
DOI : 10.1038/nprot.2009.151

W. Wu, FUNDC1 regulates mitochondrial dynamics at the ER???mitochondrial contact site under hypoxic??conditions, The EMBO Journal, vol.35, issue.13, pp.1368-1384, 2016.
DOI : 10.15252/embj.201593102

C. M. Waterman-storer and E. D. Salmon, Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms, Current Biology, vol.8, issue.14, pp.798-806, 1998.
DOI : 10.1016/S0960-9822(98)70321-5

V. Anesti and L. Scorrano, The relationship between mitochondrial shape and function and the cytoskeleton, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.5-6, pp.692-699, 2006.
DOI : 10.1016/j.bbabio.2006.04.013

D. W. Jung, P. C. Bradshaw, M. Litsky, and D. Pfeiffer, Ca2+ transport in mitochondria from yeast expressing recombinant aequorin, Analytical Biochemistry, vol.324, issue.2, pp.258-268, 2004.
DOI : 10.1016/j.ab.2003.10.029

M. Yi, D. Weaver, and G. Hajnoczky, Control of mitochondrial motility and distribution by the calcium signal, The Journal of Cell Biology, vol.61, issue.4, pp.661-672, 2004.
DOI : 10.1038/14101

H. J. Wang, G. Guay, L. Pogan, R. Sauve, and I. R. Nabi, Calcium Regulates the Association between Mitochondria and a Smooth Subdomain of the Endoplasmic Reticulum, The Journal of Cell Biology, vol.110, issue.6, pp.1489-1498, 2000.
DOI : 10.1073/pnas.85.4.1091

D. Brough, M. J. Schell, and R. F. Irvine, Agonist-induced regulation of mitochondrial and endoplasmic reticulum motility, Biochemical Journal, vol.392, issue.2, pp.291-297, 2005.
DOI : 10.1042/BJ20050738

D. C. Chan, Mitochondrial Fusion and Fission in Mammals, Annual Review of Cell and Developmental Biology, vol.22, issue.1, pp.79-99, 2006.
DOI : 10.1146/annurev.cellbio.22.010305.104638

E. A. Schon and E. Area-gomez, Mitochondria-associated ER membranes in Alzheimer disease, Molecular and Cellular Neuroscience, vol.55, pp.26-36, 2013.
DOI : 10.1016/j.mcn.2012.07.011

E. Ingerman, Dnm1 forms spirals that are structurally tailored to fit mitochondria, The Journal of Cell Biology, vol.259, issue.7, pp.1021-1027, 2005.
DOI : 10.1074/jbc.M404105200

S. Bockler and B. Westermann, ER-mitochondria contacts as sites of mitophagosome formation, Autophagy, vol.10, issue.7, pp.1346-1347, 2014.
DOI : 10.4161/auto.28981

G. Mercado, P. Valdes, and C. Hetz, An ERcentric view of Parkinson's disease, Trends in Molecular Medicine, vol.19, issue.3, pp.165-175, 2013.
DOI : 10.1016/j.molmed.2012.12.005

G. A. Ngoh, K. N. Papanicolaou, and K. Walsh, Loss of Mitofusin 2 Promotes Endoplasmic Reticulum Stress, Journal of Biological Chemistry, vol.21, issue.24, pp.20321-20332, 2012.
DOI : 10.1084/jem.192.7.1001

J. P. Munoz, Mfn2 modulates the UPR and mitochondrial function via repression of PERK, The EMBO Journal, vol.114, issue.17, pp.2348-2361, 2013.
DOI : 10.1074/jbc.M112.379164

C. Gkogkas, VAPB interacts with and modulates the activity of ATF6, Human Molecular Genetics, vol.17, issue.11, pp.1517-1526, 2008.
DOI : 10.1093/hmg/ddn040

K. Kanekura, I. Nishimoto, S. Aiso, and M. Matsuoka, Characterization of Amyotrophic Lateral Sclerosis-linked P56S Mutation of Vesicle-associated Membrane Protein-associated Protein B (VAPB/ALS8), Journal of Biological Chemistry, vol.2, issue.40, pp.30223-30233, 2006.
DOI : 10.1021/bi036159g

A. Danese, Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs), Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1858, issue.8, pp.615-627, 2017.
DOI : 10.1016/j.bbabio.2017.01.003

S. Marchi, Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death, Cell Calcium, vol.69, 2017.
DOI : 10.1016/j.ceca.2017.05.003

C. Giorgi, Mitochondria-Associated Membranes: Composition, Molecular Mechanisms, and Physiopathological Implications, Antioxidants & Redox Signaling, vol.22, issue.12, pp.995-1019, 2015.
DOI : 10.1089/ars.2014.6223

K. F. Winklhofer and C. Haass, Mitochondrial dysfunction in Parkinson's disease, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.1, pp.29-44, 2010.
DOI : 10.1016/j.bbadis.2009.08.013

P. I. Moreira, C. Carvalho, X. Zhu, M. A. Smith, and G. Perry, Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.1, pp.2-10, 2010.
DOI : 10.1016/j.bbadis.2009.10.006

M. Cozzolino and M. T. Carri, Mitochondrial dysfunction in ALS, Progress in Neurobiology, vol.97, issue.2, pp.54-66, 2012.
DOI : 10.1016/j.pneurobio.2011.06.003

S. Ghavami, Autophagy and apoptosis dysfunction in neurodegenerative disorders, Progress in Neurobiology, vol.112, pp.24-49, 2014.
DOI : 10.1016/j.pneurobio.2013.10.004

E. Wong and A. M. Cuervo, Autophagy gone awry in neurodegenerative diseases, Nature Neuroscience, vol.461, issue.7, pp.805-811, 2010.
DOI : 10.4161/auto.4625

S. Millecamps and J. P. Julien, Axonal transport deficits and neurodegenerative diseases, Nature Reviews Neuroscience, vol.13, issue.3, pp.161-176, 2013.
DOI : 10.1002/mus.880130206

D. J. Surmeier, Calcium and Parkinson's disease, Biochemical and Biophysical Research Communications, vol.483, issue.4, pp.1013-1019, 2017.
DOI : 10.1016/j.bbrc.2016.08.168

P. Rivero-rios, P. Gomez-suaga, E. Fdez, and S. Hilfiker, Upstream deregulation of calcium signaling in Parkinson's disease, Front. Mol. Neurosci, vol.7, p.53, 2014.

D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Selective neuronal vulnerability in Parkinson disease, Nature Reviews Neuroscience, vol.24, issue.2, pp.101-113, 2017.
DOI : 10.1016/S0197-4580(02)00065-9

A. A. Grace and B. S. Bunney, Intracellular and extracellular electrophysiology of nigral dopaminergic neurons???3. Evidence for electrotonic coupling, Neuroscience, vol.10, issue.2, pp.333-348, 1983.
DOI : 10.1016/0306-4522(83)90137-9

K. M. Guzman, L. Jing, and A. Patwardhan, Effects of Changes in the L-Type Calcium Current on Hysteresis in Restitution of Action Potential Duration, Pacing and Clinical Electrophysiology, vol.24, issue.4, pp.451-459, 2010.
DOI : 10.1161/01.CIR.89.1.206

M. Puopolo, E. Raviola, and B. P. Bean, Roles of Subthreshold Calcium Current and Sodium Current in Spontaneous Firing of Mouse Midbrain Dopamine Neurons, Journal of Neuroscience, vol.27, issue.3, pp.645-656, 2007.
DOI : 10.1523/JNEUROSCI.4341-06.2007

H. Q. Wang and R. Takahashi, Expanding Insights on the Involvement of Endoplasmic Reticulum Stress in Parkinson's Disease, Antioxidants & Redox Signaling, vol.9, issue.5, pp.553-561, 2007.
DOI : 10.1089/ars.2006.1524

M. Vila, D. Ramonet, and C. Perier, Mitochondrial alterations in Parkinson???s disease: new clues, Journal of Neurochemistry, vol.36, issue.Suppl, pp.317-328, 2008.
DOI : 10.1016/S0002-9440(10)65396-5

R. A. Nixon, The role of autophagy in neurodegenerative disease, Nature Medicine, vol.5, issue.8, pp.983-997, 2013.
DOI : 10.1371/journal.pone.0015054

E. J. Ryu, Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease, J. Neurosci, vol.22, pp.10690-10698, 2002.

W. Matsuda, Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal Arborizations in the Neostriatum, Journal of Neuroscience, vol.29, issue.2, pp.444-453, 2009.
DOI : 10.1523/JNEUROSCI.4029-08.2009

B. Wang, N. Abraham, G. Gao, and Q. Yang, Dysregulation of autophagy and mitochondrial function in Parkinson???s disease, Translational Neurodegeneration, vol.21, issue.1, p.19, 2016.
DOI : 10.1093/hmg/ddr618

T. Cali, D. Ottolini, A. Negro, and M. Brini, ??-Synuclein Controls Mitochondrial Calcium Homeostasis by Enhancing Endoplasmic Reticulum-Mitochondria Interactions, Journal of Biological Chemistry, vol.1782, issue.22, pp.17914-17929, 2012.
DOI : 10.1038/mt.2010.115

T. Cali, D. Ottolini, A. Negro, and M. Brini, Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1832, issue.4, pp.495-508, 2013.
DOI : 10.1016/j.bbadis.2013.01.004

C. Guardia-laguarta, ??-Synuclein Is Localized to Mitochondria-Associated ER Membranes, Journal of Neuroscience, vol.34, issue.1, pp.249-259, 2014.
DOI : 10.1523/JNEUROSCI.2507-13.2014

V. S. Van-laar, Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy, Neurobiology of Disease, vol.74, pp.180-193, 2015.
DOI : 10.1016/j.nbd.2014.11.015

C. A. Gautier, The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations, Human Molecular Genetics, vol.10, pp.2972-2984, 2016.
DOI : 10.1126/science.1175145

URL : https://hal.archives-ouvertes.fr/hal-01484564

D. Ottolini, T. Cali, A. Negro, and M. Brini, The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering, Human Molecular Genetics, vol.169, issue.44, pp.2152-2168, 2013.
DOI : 10.1111/j.1365-2818.1993.tb03313.x

S. L. Mironov and N. Symonchuk, ER vesicles and mitochondria move and communicate at synapses, Journal of Cell Science, vol.119, issue.23, pp.4926-4934, 2006.
DOI : 10.1242/jcs.03254

L. Hedskog, Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models, Proc. Natl Acad. Sci. USA, pp.7916-7921, 2013.
DOI : 10.1111/j.1582-4934.2009.00755.x

N. Bernard-marissal, J. J. Medard, H. Azzedine, and R. Chrast, Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration, Brain, vol.1549, issue.Pt 8, pp.875-890, 2015.
DOI : 10.1016/j.brainres.2014.01.003

Y. Wu, Contacts between the endoplasmic reticulum and other membranes in neurons, Proc. Natl Acad. Sci. USA, pp.4859-4867, 2017.
DOI : 10.1007/BF01178223

V. Rangaraju, N. Calloway, and T. A. Ryan, Activity-Driven Local ATP Synthesis Is Required for Synaptic Function, Cell, vol.156, issue.4, pp.825-835, 2014.
DOI : 10.1016/j.cell.2013.12.042

M. R. Cookson, J. Hardy, and P. A. Lewis, Genetic neuropathology of Parkinson's disease, Int. J. Clin. Exp. Pathol, vol.1, pp.217-231, 2008.

L. Stefanis, ?-Synuclein in Parkinson's disease. Cold Spring Harb, Perspect. Med, vol.2, p.9399, 2012.

C. Guardia-laguarta, E. Area-gomez, E. A. Schon, and S. Przedborski, Novel subcellular localization for alpha-synuclein: possible functional consequences, Front. Neuroanat, vol.9, p.17, 2015.

W. Xu, L. Tan, and J. T. Yu, The link between the SNCA gene and parkinsonism, Neurobiology of Aging, vol.36, issue.3, pp.1505-1518, 2015.
DOI : 10.1016/j.neurobiolaging.2014.10.042

D. L. Fortin, Lipid Rafts Mediate the Synaptic Localization of ??-Synuclein, Journal of Neuroscience, vol.24, issue.30, pp.6715-6723, 2004.
DOI : 10.1523/JNEUROSCI.1594-04.2004

C. N. Poston, S. C. Krishnan, and C. R. Bazemore-walker, In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM), Journal of Proteomics, vol.79, pp.219-230, 2013.
DOI : 10.1016/j.jprot.2012.12.018

J. Burre, ??-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro, Science, vol.295, issue.5556, pp.1663-1667, 2010.
DOI : 10.1126/science.1067389

J. Burre, The Synaptic Function of ??-Synuclein, Journal of Parkinson's Disease, vol.72, issue.Suppl 1, pp.699-713, 2015.
DOI : 10.1016/j.neuron.2011.08.033

N. T. Hettiarachchi, signaling in human neuroblastoma (SH-SY5Y) cells, Journal of Neurochemistry, vol.44, issue.5, pp.1192-1201, 2009.
DOI : 10.1111/j.1471-4159.2009.06411.x

A. R. Winslow, ??-Synuclein impairs macroautophagy: implications for Parkinson???s disease, The Journal of Cell Biology, vol.190, issue.6, pp.1023-1037, 2010.
DOI : 10.1083/jcb.201003122.dv

URL : http://eprints.whiterose.ac.uk/108290/1/%CE%B1-Synuclein%20impairs%20macroautophagy%3A%20implications%20for%20Parkinson%27s%20disease.pdf

S. C. Helle, Organization and function of membrane contact sites, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1833, issue.11, pp.2526-2541, 2013.
DOI : 10.1016/j.bbamcr.2013.01.028

R. Filadi, P. Theurey, and P. Pizzo, The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance, Cell Calcium, vol.62, pp.1-15, 2017.
DOI : 10.1016/j.ceca.2017.01.003

T. G. Mcwilliams and M. M. Muqit, PINK1 and Parkin: emerging themes in mitochondrial homeostasis, Current Opinion in Cell Biology, vol.45, pp.83-91, 2017.
DOI : 10.1016/j.ceb.2017.03.013

L. A. Scarffe, D. A. Stevens, V. L. Dawson, and T. M. Dawson, Parkin and PINK1: much more than mitophagy, Trends in Neurosciences, vol.37, issue.6, pp.315-324, 2014.
DOI : 10.1016/j.tins.2014.03.004

URL : http://europepmc.org/articles/pmc4075431?pdf=render

Y. Chen and G. W. Dorn, PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria, Science, vol.7, issue.9, pp.471-475, 2013.
DOI : 10.1371/journal.pone.0044296

M. E. Gegg, Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy, Human Molecular Genetics, vol.115, issue.24, pp.4861-4870, 2010.
DOI : 10.1002/jcp.20753

X. Wang, PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility, Cell, vol.147, issue.4, pp.893-906, 2011.
DOI : 10.1016/j.cell.2011.10.018

Y. C. Wong and E. L. Holzbaur, Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation, Proc. Natl Acad. Sci. USA 111, pp.4439-4448, 2014.
DOI : 10.1242/jcs.01134

S. Geisler, PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nature Cell Biology, vol.278, issue.2, pp.119-131, 2010.
DOI : 10.1038/ncb2012

J. Y. Yang and W. Yang, Bit-by-bit autophagic removal of parkin-labelled mitochondria, Nature Communications, vol.24, p.2428, 2013.
DOI : 10.1091/mbc.E12-10-0721

V. Bonifati, Autosomal recessive parkinsonism, Parkinsonism & Related Disorders, vol.18, pp.4-6, 2012.
DOI : 10.1016/S1353-8020(11)70004-9

C. Chai and K. L. Lim, Genetic Insights into Sporadic Parkinson's Disease Pathogenesis, Current Genomics, vol.14, issue.8, pp.486-501, 2013.
DOI : 10.2174/1389202914666131210195808

T. D. Papkovskaia, G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization, Human Molecular Genetics, vol.18, issue.19, pp.4201-4213, 2012.
DOI : 10.1021/tx050096g

S. J. Cherra, Mutant LRRK2 Elicits Calcium Imbalance and Depletion of Dendritic Mitochondria in Neurons, The American Journal of Pathology, vol.182, issue.2, pp.474-484, 2013.
DOI : 10.1016/j.ajpath.2012.10.027

P. Gomez-suaga and S. Hilfiker, LRRK2 as a modulator of lysosomal calcium homeostasis with downstream effects on autophagy, Autophagy, vol.8, issue.4, pp.692-693, 2012.
DOI : 10.4161/auto.19305