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ABSTRACT
The generation of turbulence at magnetized shocks and its subsequent interaction with the
latter is a key question of plasma- and high-energy astrophysics. This paper presents two-
dimensional magnetohydrodynamic simulations of a fast shock front interacting with incoming
upstream perturbations, described as harmonic entropy or fast magnetosonic waves, both in the
relativistic and the sub-relativistic regimes. We discuss how the disturbances are transmitted
into downstream turbulence and we compare the observed response for small amplitude waves
to a recent linear calculation. In particular, we demonstrate the existence of a resonant response
of the corrugation amplitude when the group velocity of the outgoing downstream fast mode
matches the velocity of the shock front. We also present simulations of large amplitude waves
to probe the non-linear regime.

Key words: MHD – shock waves – turbulence – methods: numerical.

1 IN T RO D U C T I O N

Collisionless shock waves are encountered in a wide variety of
astrophysical environments, on a wide range of flow velocities, and
energy output, from our own Solar system to supernova remnants
and to more extreme sources such as gamma-ray bursts. In recent
decades, these phenomena have been receiving increasing attention,
both from an observational and from a theoretical perspective, all
the more so with the prospect of generating such shocks in the
laboratory using giant laser facilities (e.g. Drake & Gregori 2012;
Schaeffer et al. 2017).

Collisionless shock waves appear as outstanding dissipation
agents and, near ubiquitously, as the sources of high-energy par-
ticles and non-thermal radiation. Although a detailed theoretical
model of these complex phenomena is still missing, our under-
standing has made significant advances, thanks to the development
of high performance numerical simulations, in particular; see no-
tably Bykov & Treumann (2011) and Marcowith et al. (2016) for
recent reviews.

Magnetohydrodynamical (MHD) turbulence proves to be an in-
separable feature of collisionless shock waves. It has long been
recognized that the generation of magnetized turbulence on plasma
length-scales is a key element to structure the collisionless shock
through collective electromagnetic interactions (e.g. Moiseev &
Sagdeev 1963) and to sustain the dissipation into a power-law of
supra-thermal particles (e.g. Blandford & Eichler 1987, and refer-
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ences therein). How the turbulence is generated and how it influ-
ences the shock physics are thus two essential questions in this field
of research.

This paper is connected to the latter question, and more partic-
ularly to how MHD perturbations interact with a shock front, a
topic which itself possesses a rich literature, starting with D’Iakov
(1958) and Kontorovich (1958). McKenzie & Westphal (1970), for
instance, have been interested in the possible amplification of tur-
bulence through shock crossing and on its phenomenological con-
sequences for the physics of the bow shock and the magnetopause;
ripples have indeed been observed in the Earth’s bow shock, see
Moullard et al. (2006) and more recently Johlander et al. (2016).
The possible amplification of turbulence in spherical blast waves
has also been suggested as a possible cause of the ripples observed
in some supernovae remnants – see for instance Bykov, Uvarov &
Ellison (2008), Bykov et al. (2011) and Zankovich & Kovalenko
(2015) – and how a shock, rippled by turbulence, influences the
physics of these objects has been discussed in a number of stud-
ies, e.g. Achterberg & Blandford (1986), Balsara, Benjamin & Cox
(2001), Giacalone & Jokipii (2007), Guo & Giacalone (2010) or
Guo et al. (2012). More recently, such interests have extended to
the realm of relativistic collisionless shock waves: Lyutikov, Bal-
sara & Matthews (2012), Lemoine (2016), and Zrake (2016) have
pointed out the possible phenomenological consequences of the
interaction of turbulence with the termination shock of a pulsar
wind, whereas Sironi & Goodman (2007) and Inoue, Asano &
Ioka (2011) have been interested in the relativistic generalization
of the Richtmyer–Meshkov instability (RMI) at a corrugated shock
front.

In this general context, Lemoine, Ramos & Gremillet
(2016, hereafter LRG16) studied, in the framework of linear
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perturbation theory, the stationary response of a fast relativistic
shock interacting with upstream or downstream perturbations de-
scribed as MHD harmonic waves (reminder in Appendix A). This
paper uncovered a resonant response of the shock corrugation, i.e. a
large or even formally infinite deformation and transmission coef-
ficient, for specific characteristics of the incoming upstream wave.
This process appears reminiscent of the ‘spontaneous emission of
acoustic modes’ introduced by D’Iakov (1958) and Kontorovich
(1958), but LRG16 observed more precisely that the resonance
occurs when the outgoing fast magnetosonic mode – namely, that
transmitted in the downstream plasma – propagates with a group ve-
locity that equals the shock velocity; at such a resonance, the trans-
mitted mode surfs on, and communicates its energy to the shock
front.

This work proposes to study this resonance through dedicated
MHD numerical simulations of the interaction of a harmonic mode
with a shock front. For a direct comparison to the results of the
previous study LRG16, we pay special attention to the case of
relativistic shock waves and conduct our simulations in special-
relativistic MHD (SRMHD); however, we will also show that these
results apply equally well to sub-relativistic shock waves so that
this resonance appears to be a universal phenomenon. Our MHD
simulations also allow us to study how this resonance evolves in
the non-linear regime, i.e. when perturbations of large amplitude
interact with the shock front.

In principle, corrugation can be induced by downstream fast
MHD modes outrunning the shock or by any kind of mode in-
coming from the upstream. However, modes issued from far down-
stream can interact with the shock front only if their group velocity
exceeds that of the shock, as viewed from the downstream rest
frame. In this case, we further observe that the resonance takes
place when the group velocity of the incoming downstream mode
is very close to that of the shock front, so that (1) it formally takes
a very long time for the incoming mode to catch up with the shock
front, given that their relative velocity is small; (2) this resonance
only appears on the boundary of the physical domain, i.e. the do-
main in which the incoming mode is able to catch up the shock front.
We thus restrict our present analysis to the case of modes incom-
ing from upstream. We further limit the study to entropy and fast
magnetosonic modes, without loss of generality, as the resonance
phenomenon does not depend fundamentally on the nature of the in-
cident wave; we will provide more comments on this issue in the fol-
lowing. Finally, we treat only 2D configurations, which are far less
computationally expensive but still capture the essence of resonant
corrugation.

This paper is organized as follows: Section 2 briefly presents the
MPI-AMRVAC code and our numerical setups, whereas our results are
reported in Section 3: the transfer functions of an incoming entropy
wave and a fast magnetosonic wave interacting with a relativistic
shock can be found in Section 3.1, whereas Section 3.2 treats a sub-
relativistic case. Section 4 outlines the main results and provides
some possible astrophysical implications.

2 R E L AT I V I S T I C P L A NA R M H D SH O C K
FRONTS

This section is devoted to the presentation of the physical framework
used in our simulations. After briefly presenting the equations gov-
erning such a formalism, we describe both the numerical methods
as well as the setups used in our simulations.

2.1 SRMHD framework

In this paper, we look at the temporal evolution of relativistic mag-
netized shock waves using a fluid approach, namely SRMHD. The
governing equations of such description express the conservation of
mass, momentum, and energy density of the fluid. Simultaneously,
it also provides the temporal evolution of the large-scale magnetic
field including its interaction with the perfectly conducting fluid.
Conservative equations read in CGS units as

∂tD + c∂j

(
Dβj

) = 0 , (1)

∂t S
i+c∂j

{
Siβj− 1

4π

[
Bi

�2
+ (βkB

k)βi

]
Bj+Ptotδ

ij

}
=0 , (2)

∂t τ + c∂j

[
(τ + Ptot)β

j − 1

4π
(βkB

k)Bj

]
= 0 , (3)

where the indices (i, j, k) stand as (x, y, z) components using the
Einstein notation. The induction equation can be expressed, thanks
to the Ohm’s law assuming a perfectly conducting fluid, as

∂tB
i + c∂j

(
βiBj − Biβj

) = 0 . (4)

In the previous set of equations, β i = vi/c is the component
of the velocity along the i direction normalized to the speed
of light c. The associated Lorentz factor of the fluid is then
� = (1 − β2)−1/2, where β2 = βkβ

k. The mass energy density
is D = �ρc2, where ρ is the proper mass density of the fluid. The
relativistic momentum density along the i direction is defined as
Si = (�2w + B2/4π)βi − (βkB

k)Bi/4π, whereas the total energy
density of the fluid is denoted as τ = �2w + B2/4π − Ptot and the
magnetic field component along the i-direction as Bi. Finally, the
quantity w stands for the proper enthalpy density of the plasma and
Ptot = pth + [

B2/�2 + (βkB
k)2

]
/8π is the total pressure associ-

ated with the thermal pressure pth and the electromagnetic pressure.
In order to close the set of SRMHD equations, an equation of state

(EOS) linking the thermal pressure to the enthalpy of the plasma
has to be included. Following Meliani et al. (2004) and Mignone
& McKinney (2007), we can derive such a relation by considering
the properties of the distribution function of a relativistic gas (Taub
1948; Mathews 1971). This leads to the following expression for
the enthalpy:

w = 5

2
pth +

√
9

4
p2

th + ρ2c4 .

Or, equivalently, introducing the internal energy density u, so that
w = ρc2 + u + pth,

pth = u + 2ρc2

u + ρc2

u

3
. (5)

It is noteworthy that the equivalent adiabatic index γ eq ≡ pth/u + 1
obtained with this EOS only differs by a few percents from that of
the theoretical Synge equation (Synge 1957; Mathews 1971).

2.2 Numerical methods

MPI-AMRVAC(MPI-parallelized, Adaptive Mesh Refinement Versatile
Advection Code) is a multi-dimensional numerical tool devoted to
solve conservative equations using finite volume techniques and
a dynamically refined grid (van der Holst, Keppens & Meliani
2008; Keppens et al. 2012). The MPI-AMRVAC package handles hy-
drodynamical or MHD equations either in a classical or relativistic

MNRAS 475, 2713–2723 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/475/2/2713/4788805
by BIUS Jussieu user
on 03 April 2018



Resonant corrugation of a fast shock front 2715

Table 1. Initial setup and nature of the incoming mode (entropy or fast mode) of our main simulations; indices 1 (respectively 2) correspond to pre-shock
(respectively post-shock) quantities. σ1 ≡ B1

2/
(
4π�2

1w1
)

represents the degree of magnetization of the upstream plasma, see text; we also indicate the plasma
beta parameter βpl,1 ≡ 8π�1

2pth,1/B1
2 of the upstream medium. The velocity and magnetic fields are evaluated in the shock rest frame.

setup σ 1 βpl,1 pth,1/ρ1c2 β1 �1 ρ2/ρ1 pth,2/ρ2c2 β2 �2 B2/B1 mode

1 0.0996 0.02 0.001 −0.9995 31.31 67.5 5.90 −0.4206 1.102 2.38 E
2 0.1 1.59 0.100 −0.9995 31.80 66.1 7.84 −0.4334 1.110 2.31 F
3 1.0 × 10−4 0.2 1.0 × 10−5 −0.1868 1.018 3.98 6.58 × 10−3 −0.0477 1.001 3.92 F

framework. For the simulations displayed in this paper, we used a
second-order total vanishing diminishing Lax–Friedrichs (TVDLF)
solver linked to a minmod slope limiter to make sure we employ
a robust scheme preventing any overestimate of the corrugation of
the shock front.

The base level of the computational domain is filled with blocks of
equal size, which can be divided into 2D child grids having the same
amount of grid cells than the parent grid (D being the dimension of
the grid). The structure of the grid will then be similar to an octree for
three dimensional calculations. The AMR refinement strategy can
be controlled by several means within the MPI-AMRVAC framework,
such as by Richardson extrapolation to future solutions or using
instantaneous quantifications of the normalized second derivatives,
or by a user controlled criterion or actually both (Keppens et al.
2012). For the purpose of our simulations, we simply choose to
enforce the maximal refinement around the shock front and in the
upstream in order to accurately describe the incoming wave and the
corrugation of the shock front.

A potential downside of the finite-volume approach is that it
does not guarantee that the magnetic field remains divergence free.
This is of particular concern when considering highly magnetized
relativistic shocks, and, indeed, we observe that without a method
to correct the magnetic monopoles, unphysical errors (such as ve-
locities larger than c) occur shortly after the incoming wave has
encountered the shock. In order to overcome this problem, we have
implemented within the MPI-AMRVAC code a constrained transport
(CT) algorithm based on Balsara & Spicer (1999). In such approach,
numerical fluxes provided by the SRMHD solver are used to enforce
the solenoidal nature of the magnetic field (see Appendix B for a
comparison of the CT method we used and the GLM divergence
cleaning method, tested against the Orszag–Tang vortex problem).

2.3 Initial set up and boundary conditions

We initialize our simulations with the physical configuration of a
stationary relativistic perpendicular shock exhibiting a background
magnetic field oriented along the y-direction, whereas the upstream
plasma is flowing along the x-direction. The simulations are 2D in
the (x-y) plane, set in the shock rest frame and we express physical
quantities in this frame, unless stated otherwise. The initial set up
then corresponds to the exact solution of the Rankine–Hugoniot
jump relations in the shock frame (see Goedbloed, Keppens &
Poedts 2010, e.g), namely

ρ1�1β1 = ρ2�2β2 , (6)

B1β1 = B2β2 , (7)

W1�1
2β1

2 + Ptot,1 = W2�2
2β2

2 + Ptot,2 , (8)

W1�1
2β1 = W2�2

2β2 , (9)

where upstream and downstream quantities are referred to with
the index 1 and 2, respectively. Again, Ptot represents the gener-
alized pressure, which now reads Ptot = pth + B2/(8π�2) and W
the generalized proper enthalpy density, W = w + B2/(4π�2). We
quantify the degree of magnetization of the upstream through the
magnetization parameter: σ1 ≡ B2

1 /
(
4π�1

2w1

)
, which is equiva-

lently related to the proper Alfvén 3-velocity βA,1 of the upstream
plasma through β2

A,1 = σ1/(1 + σ1) since B1/�1 corresponds to the
magnetic field strength in the proper upstream frame. The initial
setup and the nature of the mode imposed at the inflow boundary
of the simulations that we discuss in this paper are summarized
in Table 1. For convenience, we also indicate there the plasma
beta parameter βpl,1 ≡ 8π�1

2pth,1/B1
2. The value of the adiabatic

index is not crucial for the problem at hand, but we adopted an
EOS in agreement with equation (5), which gives, for both sides of
the rippling shock, values more realistic and closer to the analytic
study we compare our results with for the relativistic simulations:
≈5/3 and ≈4/3 in the upstream and downstream medium, respec-
tively, and ≈5/3 in the entire simulation box for sub-relativistic
simulations.1

At the beginning of the simulation, we launch an incoming wave,
whose characteristics match the relevant analytical expressions of
the desired linear MHD mode (see Appendix A), from the right-
hand side (upstream) x-boundary of the computational domain, then
study the reaction of the shock front over a time-scale sufficient to
see a stationary regime establishing itself. The incoming wave is
harmonic, either an entropy or a fast magnetosonic mode, with a
wavevector lying in the (x, y) plane, so that the problem remains
2D. As discussed in the following, such simulations are rather time
consuming because they require a high resolution in order to observe
the corrugation in the linear limit; we thus restrict our study to a
range of wavenumbers around the resonance brought forward by
the study of LRG16.

Although LRG16 contains some discussion about how the res-
onance arises, it will prove useful to explain this point in some
detail. We determine this resonance through a numerical computa-
tion of the longitudinal wavenumber kx of the incident mode, which
is such that the velocity of the outgoing fast magnetosonic mode
matches the shock front velocity, as follows. In a linearized analy-
sis, the incoming upstream perturbation is transmitted through the
corrugated shock front as a set of downstream MHD modes, which
pulsate at the same frequency ω as the incoming mode and the
corrugated shock front (in the shock rest frame). In the rest frame
of the downstream plasma, the frequency of these outgoing modes
is Doppler boosted to ω2, according to ω = �2(ω2 + β2ckx,2),
where kx,2 corresponds to the (mode-dependent) x-wavenumber of

1 In practice, the relative variations of the index, δγ eq/γ eq, are (at most) of
the order of the percent. Simulations of setup 1 were run with a constant
polytropic index of 4/3 and show no noticeable difference with simulations
run with a varying index, aside from the slightly different initial conditions.
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the outgoing wave in the downstream rest frame. The value of
this wavenumber is determined by the dispersion relation of the
corresponding MHD mode, which relates ω2 to kx,2, hence ω to
kx,2 through the previous frequency matching; all modes share of
course the same perpendicular wavenumber ky. In turn, ω is directly
related to the x-wavenumber of the incoming mode through its own
dispersion relation, therefore once the perpendicular wavenumber
is fixed, the longitudinal wavenumbers of the outgoing modes are
direct functions of the longitudinal wavenumber of the incoming
mode.

Regarding the entropy mode, which is generically excited by
the corrugation of the shock front, its dispersion relation in the
downstream rest frame is ω2,E = 0, so that its x-wavenumber is
kx,2,E = ω/(�2β2c).

For the outgoing magnetosonic modes, the dispersion relation in
the downstream rest frame takes the form of a quartic equation:

ω4
2 − [

β2
F,2

(
k2

x,2 + k2
y

) + β2
A,2β

2
s,2k

2
y

]
c2ω2

2

+β2
A,2β

2
s,2c

4
(
k2

x,2 + k2
y

)
k2

y = 0 , (10)

where βA,2 and βs,2, respectively, denote the Alfvén and sound
velocities of the shocked plasma, whereas β2

F,2 ≡ β2
A,2 + β2

s,2 −
β2

A,2β
2
s,2. Solving this dispersion relation, one obtains four outgoing

magnetosonic modes. For each mode, one can compute the group
velocity cβg,2 ≡ dω2/dk2 (as defined in the downstream plasma
rest frame). One then finds that there are always two outgoing
slow modes propagating slower than the shock front, relative to
the downstream plasma, as they should indeed for a fast shock.
The two remaining solutions are either fast modes, one of which
can be discarded as it outruns the shock, i.e. |βg,2, x| > |β2| and
βg,2,xβ2 < 0 (since −β2 corresponds to the shock velocity relative
to the downstream) or two waves with complex wavenumbers, one
of which is unphysical, as it diverges far from the shock, whereas the
other describes a surface wave on the front (see LRG16 for further
discussion on the number of degrees of freedom of the outgoing
modes, see also Lubchich & Despirak 2005 for a detailed discussion
on the nature of the modes). The resonance emerges at the transition
between these two cases, when the velocity of the outgoing mode
nearly coincides with the shock velocity in the downstream plasma
frame.

We used a fixed grid, uniform for simulations of large amplitude
incoming waves and refined in the upstream and close post-shock
regions for low amplitude waves. The resolution is mainly con-
strained by the amplitude of the corrugation in the x-direction. The
simulations with the lowest number of cells were run on a uniform
1920 × 120 grid, whereas the simulations with the highest number
of cells were run on a 10560 × 72 base grid with 3 levels of re-
finement i.e. a local resolution in the upstream and shock regions
16 times larger.

The upper and lower y-boundaries were periodic and the left x-
boundary ensured continuous fields and corresponded to the down-
stream outflow. For the least corrugated shocks, the deformation
could only be resolved over a few cells, which entails some errors
in the measurement of the corrugation amplitude, but the incident
wave was always largely sampled (about a thousand cells per x-
wavelength). We checked that, at least for small amplitude waves –
i.e. perturbations of the order of the percent, δρ/ρ ∼ 1 per cent – the
polarization of the wave when it reaches the shock coincides to that
we input at the border of the simulation box. For larger amplitude
(δρ/ρ ∼ 1) magnetosonic waves, some mode conversion occurs
during the propagation resulting into amplitude changes of a few
percents.

We do not observe any major influence of the resolution on
the results of Section 3: For increasing resolution, the measured
amplitudes remain compatible with each other inside error bars
of decreasing magnitude and the small-scale structures are less
dissipated. The size of the box in the x-direction does not affect the
results either, as long as it is larger than a few transverse wavelengths
of the incident perturbation λy. In practice, we set the simulation
box size so that the downstream length is a few x-wavelengths
of the largest scale outgoing mode. The upstream extension has no
influence, but the larger it is, the more mode conversion can develop
for large amplitude waves, and the more the wave is damped before
reaching the shock due to numerical dissipation. Regarding the size
of the box in the y-direction, as long as it spans n λy, the same
pattern is simply repeated n times along the vertical.

3 R ESULTS

The typical timeline of a simulation is the following: As the incident
wave impinges the shock front, corrugation develops and down-
stream modes are generated, then propagate away from the shock
at their own group velocities. Close to the resonance, for small am-
plitude incoming waves, the amplitude of the corrugation increases
slowly until it eventually reaches a stationary state, typically over
a time-scale of a few hundreds of ω−1. For non-resonant and/or
large amplitude incoming waves, the final corrugation amplitude
is reached on time-scales of a few ∼ω−1, with some fluctuations
though, for large amplitude incoming waves with a wavevector close
to the resonance.

Once the source is shut off, the shock slowly regains planarity.
In the following, we first discuss the case of relativistic magne-

tized shock fronts, to make contact with the linear theory developed
in LRG16, then we analyse the corrugation of sub-relativistic shock
waves.

3.1 Interaction of an upstream mode with a relativistic shock
front

We consider here the case of a relativistic shock wave (setups 1 and
2 of Table 1) for which �1 ≈ 30.

3.1.1 Incoming entropy modes – setup 1

Fig. 1 presents a snapshot of a simulation corresponding to setup 1,
for an incoming entropy wave, i.e. density perturbations, with δρ/ρ

≈ 0.13 and a wavevector close to the resonance.
For small amplitude waves, corresponding to the linear interac-

tion regime, the downstream medium can be described as a super-
position of MHD modes, namely an entropy mode and two slow
magnetosonic modes, plus a fast magnetosonic mode for wavevec-
tors larger than the resonant one. As expected, we observed no
downstream Alfvén waves since the specific geometry of these
simulations is 2D. Indeed, setting the magnetic field in the plane of
the simulation eliminates transverse waves (unless kx = 0, which
would lead to degenerate Alfvén modes). This is not a strong re-
striction, since the linear theoretical analysis indicates that incoming
compressible modes with a wavevector lying in the (x, y) plane are
converted into outgoing compressible modes. To confirm this, we
carried out dedicated 2.5D simulations, in which the spatial de-
pendence of the physical fields is still 2D but where magnetic and
velocity vectors can have arbitrary orientations in 3D. Such config-
uration hence allows transverse modes, but we did not find any trace
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Resonant corrugation of a fast shock front 2717

Figure 1. Ratios of the density and magnetic field components to their initial values for an incident entropy wave of amplitude δρ/ρ ≈ 0.13 and wavevector
close to the resonance, interacting with the shock of setup 1, in a stationary regime. The transverse size of one panel is λy ≡ 2π/ky .

Figure 2. Snapshot from a simulation with the same parameters as in Fig. 1 but for an incident wave of larger amplitude δρ/ρ ≈ 0.8.

of Alfvén waves. Therefore, these waves are likely to play a role only
in full 3D configurations or for the case of incoming Alfvén waves.
Incidentally, we also note that taking the background magnetic field
along z out of the simulation plane makes very little difference: The
downstream turbulence structure appears somewhat simpler since
for k ⊥ B, only fast magnetosonic modes can propagate.

Fig. 2 shows a snapshot from a simulation with the same phys-
ical parameters and numerical resolution as in Fig. 1, but for a
larger amplitude of the incoming wave, δρ/ρ ≈ 0.8. The various
flow quantities in the downstream medium are perturbed well into
the non-linear regime, which leads to non-linear interactions re-
modelling the flow away from the shock and to the dissipation of
small-scale structures.

3.1.2 Incoming fast magnetosonic modes – setup 2

We consider here a similar set-up as in the previous case, but for an
incoming magnetosonic mode; in this case, all flow quantities of the
upstream medium are perturbed (see Appendix A). The simulations
show qualitatively the same features as for entropy waves, with the
same turbulence pattern at similar wavelengths. Fig. 3 shows an
example in the non-linear regime, δρ/ρ ≈ 0.45, away from the res-
onance (with kx smaller than the one giving rise to resonance). The
initial perturbation is not visible as we expressed the density in units
of the initial downstream density and the scale of the colour map
was truncated to enhance the downstream structures. Here as well,
we observe non-linear turbulence, with typical mildly relativistic

Figure 3. Downstream density and velocity profiles for an incoming mag-
netosonic wave of amplitude in density δρ/ρ ≈ 0.45 interacting with the
shock of setup 2, at late times. ρ0 = ρ2 is the initial downstream proper
density and the colour map was truncated to enhance the downstream struc-
tures.

velocities, on the downstream side, which is remodelled through
non-linear interactions in time, i.e. away from the shock. The dissi-
pation we observe is mainly of numerical nature but could also be
partly accounted for by destructive interference and by the surface
mode with complex kx mentioned in Section 2.3.

3.1.3 Transfer function

The induced corrugation can be quantified through a transfer func-
tion,

TX,k ≡ ky

�Xk

δψ
, (11)
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which relates the amplitude δψ of the incoming wave displaying a
wavevector k = (kx, ky), and the corrugation amplitude �Xk (see
Appendix A for the definition of δψ). The ky factor ensures that
TX,k is a dimensionless quantity; if the transverse wavelength is
increased, �Xk will increase as much and TX,k will remain un-
changed.

The corrugation amplitude, �Xk, is the amplitude along the x-
direction of the rippled shock. In a fluid approach, the shock theo-
retically corresponds to a discontinuity appearing in some physical
quantities. In our simulations, however, its width is finite because of
numerical diffusion, but is still much smaller than the corrugation
scale, provided the resolution is high enough. We can then, quite
arbitrarily, materialize the shock location as the line of cells where
one of these fields (the density or the Lorentz factor, for instance)
is the average of the background upstream and downstream values.
The corrugation amplitude is then simply half of the peak-to-peak
amplitude of the deformation of this line.

The definition of an amplitude δψ for the incoming wave is also
somewhat arbitrary, because although the various flow variables all
scale linearly with δψ (see Appendix A), they do so differently in
terms of kx and ky. This simultaneous dependence on δψ and kx no-
tably implies that, at fixed δψ , the perturbations of the components
of the energy-momentum tensor evolve in non-trivial (and different)
ways in terms of kx. It is thus possible, in principle, to send in a
wave with δψ � 1, which corresponds to a large perturbation of
the energy or momentum flux along the shock normal, and which
leads to a large response of the shock front. In order to distinguish
such a response from a resonant response, we also keep track of the
following quantity:

Q ≡ 1√
2δψ

[(
δT tx

T tx

)2

+
(

δT xx

T xx

)2
]1/2

, (12)

where δTμν and Tμν are the perturbed and unperturbed energy-
momentum tensors of the upstream plasma. Q thus provides a mea-
sure of the perturbation in the incoming energy-momentum flux in
units of δψ and the resonant response we are looking for is such
that TX,k

2 > Q2.
We compare here the transfer functions, obtained by solving

numerically the shock crossing conditions perturbed at the first order
as presented in LRG16 (black curve) and by measuring the shock
deformation in the simulations (data points). Fig. 4 corresponds to
the entropy wave of Section 3.1 (setup 1) and Fig. 5 to the fast
magnetosonic mode of Section 3.2 (setup 2). The error bars give
the measurement uncertainty on the corrugation amplitude due to
the finite resolution and to some non-stationary features close to the
resonance for large amplitude waves. The dotted lines shown in the
upper panels of these figures give the value of Q2, for comparison
to TX,k

2 as discussed above. In Fig. 4, this dependence is trivial,
Q ≈ 1, since for entropy modes, the perturbations are independent
of the wavevector, but in Fig. 5, Q depends somewhat on kx; such a
dependence will be exacerbated in the sub-relativistic case of setup
3 that we study next.

Both figures clearly reveal a resonant response of the shock cor-
rugation to the incoming perturbation, in good agreement with the
prediction of the linear theory. In each figure, the lower panel plots
the group velocity along x of the outgoing fast magnetosonic mode
as a function of the incoming longitudinal wavenumber. These pan-
els confirm that the resonance occurs when the outgoing mode
travels at a velocity close to that of the shock front. For values
of kx smaller than the resonant one, the group velocity becomes

Figure 4. Top panel: squared modulus of the transfer function TX,k for an
incoming entropy wave as a function of kx, for setup 1 and ky = 1 in arbitrary
units. The transverse size of the box is 2πin these units. The solid black curve
plots the prediction of the linear analysis of LRG16; the symbols correspond
to the results of our MHD simulations, in triangles for a small-amplitude
wave, δρ/ρ ≈ 0.01, and in circles for a large-amplitude wave, δρ/ρ ≈
0.45. The error bars give the measurement uncertainty on the corrugation
amplitude �Xk due to the finite resolution or to small non-stationarity for
resonant large amplitude waves. The dotted line indicates the measure Q2 of
the perturbation of the upstream energy momentum tensor in units of δψ . In
the bottom panel, we plot the corresponding (analytically computed) group
velocity along x of the outgoing downstream fast magnetosonic mode; it
intersects the shock speed line at the resonant kx, which confirms the origin
of the resonance seen in the upper panel. All quantities are evaluated in the
downstream rest frame.

Figure 5. Same as Fig. 4 for an incoming fast magnetosonic mode corre-
sponding to setup 2 with ky = 1 (arbitrary units) and wave amplitudes as
indicated. All quantities are evaluated in the downstream rest frame.
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Figure 6. k�Xk/δψ measured in the simulations of setup 1 close to the
resonance for incoming entropy waves of increasing amplitudes δψ = δρ/ρ.

complex, as the mode then turns into a surface wave located on the
shock front, see the discussion above.

As an order of magnitude, for the small amplitude entropy wave
simulations, for which δψ = δρ/ρ, k�Xk ≈ 3.8δψ close to the res-
onance, whereas k�Xk ≈ 0.5δψ at large kx. Linear theory predicts
a more pronounced resonance with k�Xk � 10δψ .

Figs 4 and 5 also plot the response of the shock to perturbations of
significant amplitude, δρ/ρ ≈ 0.45, beyond the reach of linear the-
ory. We observe that the resonance remains, but that it is smoothed
out with a typical response k�Xk ≈ 1, as anticipated in Lemoine
(2016). The observed smoothing is rather evocative of a non-linear
resonance broadening effect; it likely results from the non-linear
couplings of the MHD equations, which become sizable at large
amplitude, and which imply that the eigenmodes of linear MHD
have a finite lifetime against conversion. This scaling k�Xk ≈ 1
is compared in Fig. 6 against the simulations of setup 1 at various
wave amplitudes.

3.2 Interaction with a sub-relativistic shock front

The analytical study of LRG16 was conducted in the ultra-
relativistic limit, to simplify the algebra, but there is no obvious
physical reason why resonant corrugation should be a feature of
relativistic shocks alone. In this section, we are thus interested in
sub-relativistic shock velocities and present the results of simula-
tions run for setup 3; whose parameters are close to what one can
encounter in supernovae remnants (see Table 1).

Fig. 7 presents a snapshot from such simulations and is rather
similar to Figs 1, 2, and 3, with the transmission of modes and their
subsequent evolution downstream of the shock.

Fig. 8 presents the corresponding transfer function. As in Figs 4
and 5, the solid curve indicates the predictions of linear theory,
borrowed from LRG16 and adapted to the conditions of a sub-
relativistic shock. The theory still predicts a resonant response when
the outgoing fast magnetosonic mode surfs on the shock, as indi-
cated by the lower panel. This resonance is clearly recovered in the
MHD simulations, at least for small amplitude waves.

Note the dotted line in the upper panel: As before, it represents
the quantity Q2, which is related to the perturbation of the incoming
energy-momentum in units of the perturbation amplitude δψ . In the
present case, however, this value depends strongly on the incoming
wavenumber, in particular, Q 	 1 for kx � ky. This behaviour

leads to a large perturbation of the incoming energy-momentum
even though δρ/ρ � 1, hence to a large corrugation at small kx.
This peculiar kx-dependence of the perturbation appears to be a
feature of fast modes at a low beta-parameter of the plasma rather
than a feature of the sub-relativistic regime.

4 SU M M A RY A N D D I S C U S S I O N

In this paper, we have discussed 2D SRMHD simulations of a fast
perpendicular shock corrugated by upstream sinusoidal entropy or
magnetosonic waves, in both the relativistic and sub-relativistic flow
velocity regimes. We have measured the transfer function that re-
lates the amplitude of the corrugation �Xk to that of the incoming
wave δψ and compared it to the predictions of the recent linear
model described in LRG16. The main result of the present study is
that we confirm the existence of a resonant response of the corruga-
tion, in both the relativistic and the sub-relativistic regimes, when
the fast magnetosonic mode that is produced downstream of the
shock travels at a velocity comparable to that of the shock front.
The interpretation of this resonance is as follows (see LRG16):
As the incoming upstream mode interacts with the shock, it is
transmitted into downstream MHD modes, including one fast mag-
netosonic mode that travels possibly as fast as the shock; if this
resonance is satisfied, this mode surfs on and communicates its en-
ergy to the shock front, leading to a large – possibly formally infinite
in the linear theory – response of the corrugation pattern. This res-
onance appears universal in the sense that, for any setup, for any
incoming perturbation, at any perpendicular wavenumber, there ex-
ists at least one value of the longitudinal wavenumber that satisfies
the resonance criterion.

It may be worth noting that the problem that we discuss here
differs from the RMI (Richtmyer 1960; Meshkov 1969; Brouillette
2002; Delmont, Keppens & van der Holst 2009; Nishihara et al.
2010). The standard RMI corresponds to the growth of the pertur-
bation on an oblique or corrugated interface separating two fluids
after it has encountered a planar shock wave, whereas we have
studied the response of a flat shock front to its interaction with a
compressive perturbation described by a plane wave. Some authors
have recently extended the study of the RMI to the case in which the
shock interacts with a continuous interface separating states of dif-
ferent densities with a given contrast A = (ρ2 − ρ1)/(ρ2 + ρ1) over
a finite length-scale λ, see e.g. Brouillette & Sturtevant (1994). The
problem that we have addressed then resembles somewhat this latter
configuration, since the entropy mode induces a change in density,
from ρ1 = ρ − δρ to ρ2 = ρ + δρ over a length-scale π/kx , although
it repeats this inversion an indefinite amount of time, whereas in the
above problem, there is only one interface. The previous authors
observe that the growth rate of the RMI falls with increasing λ, and
decreases with decreasing A as the original RMI. Zou et al. (2017),
on the other hand, examined the case of a rippled shock interacting
with a flat interface and found growth rates much smaller than those
of the ‘standard’ RMI. Both studies however report hydrodynamic
experiments only and the picture probably depends on the orienta-
tion and strength of the magnetic field in the MHD case; parallel
shocks, for example, prevent the deposition of vorticity at the in-
terface (Sano, Inoue & Nishihara 2013, e.g.). In brief, the situation
we simulated is quite different, we considered waves instead of a
unique interface and even if triggered, it would seem that the growth
rate of the instability is too small to be observed within the crossing
time of the simulated downstream medium [see Fig. 9 for the rela-
tivistic vorticity field (Sironi & Goodman 2007, e.g.) corresponding
to the snapshot of Fig. 2].

MNRAS 475, 2713–2723 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/475/2/2713/4788805
by BIUS Jussieu user
on 03 April 2018



2720 C. Demidem, M. Lemoine and F. Casse

Figure 7. Downstream transverse magnetic field (in units of the initial downstream magnetic field B0 = B2) of a simulation of setup 3, corresponding to
the interaction of a fast magnetosonic mode with a sub-relativistic shock front, at small wave amplitude δρ/ρ = 3 per cent with a wavevector close to the
resonance, at late times. The colour map was truncated to enhance the downstream structures.

Figure 8. Transfer function and group velocity of the outgoing fast mode
for an incoming fast wave of setup 3 for ky = 1. Notations similar to Figs 4
and 5.

The resonance that we observe is more evocative of the ‘spon-
taneous emission of acoustic modes’ described by D’Iakov (1958).
This author considered the interaction of a mode originating from
downstream and interacting with a purely hydrodynamic shock; he
showed that this mode was reflected into the downstream medium
with a reflection coefficient that could formally become infinite,
whence the possibility of mode emission in the absence of a pertur-
bation. This spontaneous emission has been discussed by a number
of authors since then, see in particular Kontorovich (1958, 1959),
Landau & Lifshitz (1987) for more qualitative explanations, see

Bates & Montgomery (2000) and Stone & Edelman (1995) for nu-
merical illustrations. In our framework, the incoming mode from
upstream is transmitted through the shock into downstream outgo-
ing modes; the amplitude of these modes, just as the amplitude of
the shock corrugation, can be obtained through the inversion of the
response matrix of the linear system. Zeros in the determinant of this
system then lead to infinitely large responses, or spontaneous emis-
sion. We observe here that this spontaneous emission can (at least)
take place for some specific values of the longitudinal wavenumber,
when the outgoing mode surfs on the shock; to our knowledge, this
had not been noticed before.

For simulations of large amplitude incident waves, the resonance
is partly smoothed out due to some non-linear resonance broad-
ening. At wave amplitudes outside the realm of linear theory, i.e.
δψ ∼ O(1), we observe kδXk ≈ 1, whereas k�Xk/δψ > 1 at δψ �
1. One caveat is that we have modelled the large amplitude waves
with linear eigenmodes, which are no longer true eigenmodes of
the system of MHD equations; these waves thus tend to decay into
other modes before they enter the shock. It would prove interesting
to conduct simulations with exact non-linear (simple wave) solu-
tions of the MHD equations.

In principle, the above resonant response of shock corrugation to
incoming perturbations may find various astrophysical applications,
since the resulting turbulence may have a number of phenomeno-
logical consequences, see e.g. the discussion in Section 1. As a next
step in such direction, it would prove useful to conduct large-scale,
high resolution simulations of the interaction of a shock front with a
well-developed spectrum of turbulence (as compared to the present
case of a harmonic wave), making sure that the resolution in k-
space is sufficient to probe the effect of the resonance. It would also
be highly beneficial to conduct test-particle simulations, or even
hybrid Particle-in-Cell/MHD simulations, in order to study how
the corrugation pattern influences the acceleration process at shock
waves, and how the accelerated particles themselves can induce
corrugation through the instabilities that they develop in the shock
precursor. Incidentally, we note that in a recent paper, van Marle,
Casse & Marcowith (2017) precisely observe the development of
an unstable corrugated configuration, triggered by the interplay of

Figure 9. Non-vanishing component of the relativistic vorticity field �i = ε
ij
k∂j (w�βk/ρ) in units of c2ky for the same snapshot as in Fig. 2 (incoming

entropy wave of amplitude δρ/ρ ≈ 0.8.)
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the injection mechanism with the seeding of turbulence upstream
of a corrugated shock.
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A P P E N D I X A : L I N E A R SR M H D E I G E N M O D E S

In MHD, an infinite homogeneous system initially at stationary
equilibrium can develop seven linearly independent wave modes:

(i) one entropy wave (index E): perturbation in the density field
only;

(ii) two Alfvén waves: incompressible and transverse modes;
(iii) two slow magnetosonic modes;
(iv) two fast magnetosonic modes (index F).

For our purposes, the structure of the perturbations δξ k ≡
(δρ, δpth, δβx, δβy, δBx, δBy) of entropy and fast magnetosonic
modes in a plasma drifting at velocity β0 = −(1 − 1/�0

2)1/2 in
the x-direction, initially characterized by the equilibrium (ρ0, pth, 0,
β0, 0, 0, B0), read:

δξ k,E = (ρ0, 0, 0, 0, 0, 0) δψk,E, (A1)
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(
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where δψk,E/F ≡ δψ cos(k · x − ωE/Ft) is the harmonic amplitude
and primes denote proper quantities measured in the rest frame
of the plasma. Naturally, the velocity/magnetic perturbations in
the lab-frame are just the Lorentz-transformed plasma rest-frame
perturbations. ω′ is linked to k′ through the dispersion relation

ω′
E = 0, (A3)
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, (A4)

which involves the characteristic speeds, namely: the sound speed,
βs ≡ (γ eqpth, 0/w0)1/2, the Alfvén speed, βA = B0/

(
4π�0

2W0

)1/2
,

and the fast speed, βF = (βA
2 + βs

2 − βA
2βs

2)1/2.
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A P P E N D I X B: EN F O R C I N G
DIVERGENCE-FREE MAG NETIC FIELD IN
S R M H D

All the simulations presented in this paper were performed using a
CT scheme on top of the MHD solver, following the approach of
Balsara & Spicer (1999). The MPI-AMRVAC code also hosts several
schemes aiming at cleaning the divergence of the magnetic field.
Among these schemes, one of the most efficient one is the hyperbolic
divergence cleaning (GLM) developed by Dedner et al. (2002). We
have decided to implement the CT method inside the MPI-AMRVAC

code since considering SRMHD waves requires to maintain the
divergence of the magnetic field to zero at machine precision. Such
statement is especially important when considering incoming waves
on to a shock discontinuity.

In order to illustrate the impact of the magnetic divergence clean-
ing methods in SRMHD simulations, we present results of simula-
tions dealing with the famous Orszag–Tang vortex test (Orszag &
Tang 1979). The relativistic version of this test has been presented
in various studies (e.g. Beckwith & Stone 2011, and references
therein). The initial conditions of the simulation are ρ = 25/9,
P = 5/3 while velocity and magnetic field stand as

βx = −βo sin(2πy),

βy = βo sin(2πx),

Bx = − sin(2πy),

By = sin(4πx),

where βo = 0.5 is the maximal velocity of the fluid. The computa-
tional domain ranges from zero to unity in both x and y directions
while having a grid resolution of 320 × 320 cells. The simulation

has been performed using a TVDLF solver coupled to a minmod
slope limiter. Let us also mention that the all boundaries are peri-
odic.

We have displayed in Fig. B1 the proper density distribution
of the plasma at identical time (t = 1) for two simulations using
different divergence cleaning methods, namely GLM and CT. The
two distributions are globally very similar apart in some regions as
for instance in the centre of the computational domain. Indeed in
this region, the GLM simulation has led to a smoother variation of
the density compared to the one obtained using the CT algorithm.
The same statement actually holds for the magnetic energy density.
We can also mention that density filaments appearing in the left-
and right-hand side low-density regions are thicker in the GLM
simulation than in the CT one. Since both simulations use the very
same setup apart from the divergence cleaning approaches, it is
likely that these (small) discrepancies stem from local non-zero
magnetic divergence. In Fig. B2, we have displayed the colour maps
of ∂iB

i for the two aforementioned simulations. We then clearly
see that large non-vanishing magnetic divergence occurs in zones
where the two simulations exhibit differences.

Relativistic simulations of astrophysical shocks deal with fluid
velocities very close to the speed of light. Applying an efficient
GLM approach to this kind of simulation may become difficult as
the relaxation velocity of magnetic monopoles may not catch up
with the fluid evolution, leading to unphysical errors. Among the
various magnetic divergence cleaning algorithms published in the
literature, we choose to employ the flux CT approach as it provides
an efficient way to get rid of magnetic monopoles while preventing
any overestimation of the corrugation of the shock (see also the
discussion in Tóth 2000).

Figure B1. Simulations of the relativistic Orszag–Tang test performed with the MPI-AMRVAC code using the exact same numerical setup apart for the magnetic
divergence cleaning method, namely the GLM (left-hand panel) and the CT (right-hand panel). The proper density of the plasma is displayed at the same point
in time, namely t = 1. The overall density distributions are nearly identical except for some regions as the centre of the computational domain or thin mass
filaments appearing near the left- and right-hand side boundaries. These regions actually correspond to areas of the computational domain where the divergence
of the magnetic field remains high when using the standard GLM method (see Fig. B2).
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Figure B2. Colour maps of the divergence of the magnetic field for two simulations considering the relativistic Orszag–Tang problem with two different
magnetic divergence cleaning approaches. The standard hyperbolic divergence cleaning (GLM) does maintain ∂iB

i to low level except in some narrow regions
whereas CT provides vanishing magnetic divergence to machine precision. The regions exhibiting large non-vanishing magnetic divergence actually correspond
to areas where the two simulations exhibit small discrepancies regarding plasma quantities.
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