, Dynamic categorization of clinical research eligibility criteria by hierarchical clustering, Journal of Biomedical Informatics, vol.44, pp.927-935, 2011.

A. Ben-abacha and P. Zweigenbaum, MEANS: A medical questionanswering system combining NLP techniques and semantic Web technologies. Information processing & management, vol.51, pp.570-594, 2015.

D. Chen, A. Fisch, J. Weston, and A. Bordes, Reading Wikipedia to Answer Open-Domain Questions, Proceedings of ACL 2017, pp.1870-1879, 2017.

J. Chu-carroll, J. Fan, D. Boguraev, D. Carmel, C. Sheinwald et al., Finding needles in the haystack: Search and candidate generation, IBM Journal of Research and Development, vol.56, issue.4, pp.6-7, 2012.

A. Grappy and B. Grau, Answer type validation in question answering systems, RIAO 2010, 9th International Conference, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02282099

A. Grappy, B. Grau, M. Falco, and A. Ligozat, Selecting answers to questions from Web documents by a robust validation process, Isabelle Robba, and Anne Vilnat, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02282060

D. Hewlett, A. Lacoste, L. Jones, I. Polosukhin, A. Fandrianto et al., Wikireading: A novel large-scale language understanding task over wikipedia, 2016.

S. Kamath, B. Grau, and Y. Ma, A Study of Word Embeddings for Biomedical Question Answering, SIIM'17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01704570

T. Kobayashi and C. Shyu, Representing clinical questions by semantic type for better classification, AMIA Annual Symposium Proceedings. 987â??987, 2006.

O. Kolomiyets and M. Moens, A survey on question answering technology from an information retrieval perspective, Information Sciences, vol.181, pp.5412-5434, 2011.

X. Li and D. Roth, Learning question classifiers: the role of semantic information, Natural Language Engineering, vol.12, issue.3, pp.229-249, 2006.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, Advances in neural information processing systems, pp.3111-3119, 2013.

A. Nentidis, K. Bougiatiotis, and A. Krithara, Results of the fifth edition of the BioASQ Challenge, Georgios Paliouras, and Ioannis Kakadiaris, pp.48-57, 2017.

M. Neves and M. Kraus, BioMedLAT corpus: Annotation of the lexical answer type for biomedical questions, Proceedings of the Open Knowledge Base and Question Answering Workshop, pp.49-58, 2016.

T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary et al., MS MARCO: A human generated machine reading comprehension dataset, 2016.

A. Petrova, Y. Ma, G. Tsatsaronis, M. Kissa, F. Distel et al., Formalizing biomedical concepts from textual definitions, J. Biomedical Semantics, vol.6, p.22, 2015.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, Squad: 100,000+ questions for machine comprehension of text, 2016.

G. Tsatsaronis, G. Balikas, and P. Malakasiotis, An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition, BMC Bioinformatics, vol.16, issue.1, p.138, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01156600

D. Weissenborn, G. Wiese, and L. Seiffe, Making neural qa as simple as possible but not simpler, Proceedings of the 21st Conference on Computational Natural Language Learning, pp.271-280, 2017.

G. Wiese, D. Weissenborn, and M. Neves, Neural Domain Adaptation for Biomedical Question Answering, Proceedings of CoNLL 2017, pp.281-289, 2017.

G. Wiese, D. Weissenborn, and M. Neves, Neural question answering at bioasq 5b, 2017.

Z. Yang, Y. Zhou, and E. Nyberg, Learning to answer biomedical questions: Oaqa at bioasq 4b, Proceedings of the Fourth BioASQ workshop, pp.23-37, 2016.

, First International Workshop on Hybrid Question Answering with Structured and Unstructured Knowledge (HQA'18) WWW 2018, 2018.