
HAL Id: hal-01762962
https://hal.sorbonne-universite.fr/hal-01762962v1

Submitted on 10 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous vs. Discrete Asynchronous Moves: a
Certified Approach for Mobile Robots

Thibaut Balabonski, Pierre Courtieu, Robin Pelle, Lionel Rieg, Sébastien
Tixeuil, Xavier Urbain

To cite this version:
Thibaut Balabonski, Pierre Courtieu, Robin Pelle, Lionel Rieg, Sébastien Tixeuil, et al.. Continuous
vs. Discrete Asynchronous Moves: a Certified Approach for Mobile Robots. [Research Report] Sor-
bonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France. 2018,
pp.1-12. �hal-01762962�

https://hal.sorbonne-universite.fr/hal-01762962v1
https://hal.archives-ouvertes.fr


Continuous vs. Discrete Asynchronous Moves:
a Certified Approach for Mobile Robots

Thibaut Balabonski,1 Pierre Courtieu,2 Robin Pelle,1 Lionel Rieg,3 Sébastien Tixeuil,4,5 and
Xavier Urbain6

1 LRI, CNRS UMR 8623, Université Paris-Sud, Université Paris-Saclay
2 CÉDRIC – Conservatoire national des arts et métiers

3 Yale University, New Haven, CT, USA
4 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, FR-75005, France

5 Institut Universitaire de France
6 Université Claude Bernard Lyon-1, LIRIS CNRS UMR 5205, Université de Lyon

7 Contact author: Xavier.Urbain@lri.fr

Abstract Oblivious Mobile Robots have been studied both in continuous Euclidean spaces, and discrete spaces
(that is, graphs). However the obtained literature forms distinct sets of results for the two settings.
In this paper, we explore the possibility of transforming results obtained in one model into results for the other one.
Our approach focuses on certified results using the COQ proof assistant.

1 Introduction

Networks of mobile robots captured the attention of the distributed computing community, as they promise
new application (rescue, exploration, surveillance) in potentially harmful environments. Originally intro-
duced in 1999 by Suzuki and Yamashita [39], the model has been refined since by many authors while
growing in popularity (see [27] for a comprehensive textbook). From a theoretical point of view, the interest
lies in characterising, for each of these various refinements, the exact conditions under which a particular
task can be solved or not.

In the model we consider, all robots are anonymous and operate using the same embedded program
through repeated Look-Compute-Move cycles. In each cycle, a robot first “looks” at its environment and
obtains a snapshot containing some information about the locations of all robots, expressed in the robot’s
own self-centred coordinate system, whose scale and orientation might not be consistent with the other
robot’s coordinate systems (or even with the same robot’s coordinate system from a previous cycle). Then
the robot “computes” a destination, still in its own coordinate system, based only on the snapshot it just
obtained (which means the robot is oblivious, in the sense that its behaviour is independent of the past
history of execution). Finally the robot “moves” towards the computed destination.

Different levels of synchronisation between robots have been considered. The weakest [27] (and most
realistic) is the asynchronous model (ASYNC), where each robot performs its Look, Compute and Move
actions at its own pace, which may not be consistent with that of other robots. The strongest [39] is the fully
synchronous model (FSYNC), where all robots perform simultaneously and atomically all of these three
steps. An intermediate level [39] is called semi-synchronous (SSYNC), where the computation is organised
in rounds and only a subset of the robots are active at any given round; the active robots in a round performing
exactly one atomic Look-Compute-Move cycle.

The general model is agnostic to the shape of the space where the robots evolve, which can be the real
line, a two dimensional Euclidean space, a discrete space (a.k.a. a graph), or even another space with a more
intricate topology. To date, two independent lines of research focused on (i) continuous Euclidean spaces,
and (ii) graphs, studying different sets of problems and using distinct algorithmic techniques.

Xavier.Urbain@lri.fr


Continuous vs. discrete spaces The core problem to solve in the context of mobile robot networks that evolve
in bidimensional continuous spaces is pattern formation, where robots starting from distinct initial positions
have to form a given geometric pattern. Arbitrary patterns can be formed when robots have memory [39,12]
or common knowledge [28], otherwise only a subset of patterns can be achieved [41,29,44]. Forming a point
as the target pattern is known as gathering [39,16,36,2,15], where robots have to meet at a single point in
space in finite time, not known beforehand. The problem is generally impossible to solve [39,16,36] unless
the setting is fully synchronous [2] or robots are endowed with multiplicity detection [15]. Recently, re-
searchers considered tridimensional Euclidean spaces [43,42,40], where robots must solve plane formation,
that is, land on a common plane (not determined beforehand) in finite time. It turns out that robots cannot
form a plane from most of the semi-regular polyhedra, while they can form a plane from every regular
polyhedron (except a regular icosahedron). In the context of robots evolving on graphs, typical problems
are terminating exploration [14,34,20,22,25,26,21], where robots must explore all nodes of a given graph
and then stop moving forever, exclusive perpetual exploration [4,19,8,10,9], where robots must explore all
nodes of a graph forever without ever colliding, exclusive searching [18,19,7], where robots must capture an
intruder in the graph without colliding, and gathering [19,31,32,33,11], where robots must meet at a given
node in finite time, not determined beforehand.

Although some of the studied problems overlap (e.g. gathering), the algorithmic techniques that enable
solving problems are substantially different. On the one hand, robots evolving in continuous spaces may
typically use fractional distance moves to another robot, or non-straight moves in order to make the algorithm
progress, two options that are not possible in the discrete model. On the other hand, in the asynchronous
continuous setting, a robot may be seen by another robot as it is moving, hence at some arbitrary position
between its source and destination point within a cycle, something that is impossible to observe in the
discrete setting. Indeed, all aforementioned works for robots on graph consider that their moves are atomic,
even in the ASYNC setting, which may seem unrealistic to a practitioner.

Related works Designing and proving mobile robot protocols is notoriously difficult. Formal methods
encompass a long-lasting path of research that is meant to overcome errors of human origin. Unsurpris-
ingly, this mechanised approach to protocol correctness was successively used in the context of mobile
robots [9,20,6,1,35,16,5,37,2,38,3].

In the discrete setting, model-checking proved useful to find bugs (usually in the ASYNC setting) in
existing literature [6,23,24] and formally check the correctness of published algorithms [20,6,37]. Auto-
matic program synthesis [9,35] can be used to obtain automatically algorithms that are “correct-by-design”.
However, those approaches are limited to small instances with few robots. Generalising to an arbitrary num-
ber of robots with similar approaches is doubtful as Sangnier et al. [38] proved that safety and reachability
problems become undecidable in the parameterised case.

When robots move freely in a continuous bidimensional Euclidean space, to the best of our knowledge
the only formal framework available is the Pactole framework.1 Pactole enabled the use of higher-order logic
to certify impossibility results [1,16,3] as well as certifying the correctness of algorithms [17,2], possibly for
an arbitrary number of robots (hence in a scalable manner). Pactole was recently extended by Balabonski et
al. [3] to handle discrete spaces as well as continuous spaces, thanks to its modular design. However, to this
paper, Pactole only allowed one to express specifications and proofs with the FSYNC and SSYNC models.

Our contribution In this paper, we explore the possibility of establishing a first bridge between the con-
tinuous model and the discrete model in the context of autonomous mobile robots. Our position is that the

1 http://pactole.lri.fr

2

http://pactole.lri.fr


continuous model reflects well the physicality of robots evolving in some environment, while the discrete
model reflects well the digital nature of autonomous robots, whose sensors and computing capabilities are
inherently finite. For this purpose, we consider that robots make continuous, non atomic moves, but only
sense in a discrete manner the position of robots. Our approach is certified using the COQ proof assistant
and the Pactole framework.

In more details, we first extend the Pactole framework to handle the ASYNC model, preserving its
modularity by keeping the evolving space and the robots algorithm both abstract. This permits to retain the
same formal framework for both continuous and discrete spaces, and the possibility for mobile robots to be
faulty (even possibly malicious a.k.a. Byzantine). Then, as an application of the new framework, we formally
prove the equivalence between atomic moves in a discrete space (the classical model for robots evolving on
graphs) and non-atomic moves in a continuous space when robot vision sensors are discrete (that is, robots
are only able to see another robot on a node when they perform the Look phase), irrespective of the problem
being solved. Our effort consolidates the integration between the model, the problem specification, and its
proof that is advocated by the Pactole framework.

Pactole and the formal developments of this work are available at http://pactole.lri.fr.

2 The asynchronous Look-Compute-Move model

The complete lack of synchronisation makes reasoning in the ASYNC model particularly error prone. Nev-
ertheless, being the most realistic model, it is widely used in the literature. In this section, we describe how
to include the ASYNC model in the Pactole framework.

The formalisation of the Look-Compute-Move model in Pactole for FSYNC and SSYNC has been
described in [1,17,2]. We briefly recall what we need here, and emphasise what characterises the ASYNC
model.

2.1 Configurations

Locations. The notion of location is a parameter of the Pactole framework and is left abstract in this section,
as it depends on the nature of the space in which the robots evolve. In Section 3, we present two different
spaces based on graphs, one in which the robots are only located on vertices of the graph, and the other in
which the robots can also be located on edges.

Configurations associate a conformation to a robot. In the original Pactole model, robots were mapped to
locations only. To reflect in ASYNC the lack of synchronisation and of uniformity of robots’ actions, and
to add generality to the model, we enrich configurations to map robots’ id to a conformation (RobotConf)
consisting of the current location, and information about movement: namely source and target locations.
This allows for some robots to move while others are looking or computing.

Record Info : Type := { source: Location ; target: Location}.
Record RobotConf := { loc :> Location; robot_info: Info }.
Definition configuration := identifier→ RobotConf.

We may now consider robots to be in two possible states summarized in Fig. 1: (1) an Idle state, and (2) a
Moving state. An idle robot is ready to start a new cycle with a simple Look/Compute action performing
the usual Look and Compute phases. Merging these two actions is justified by the fact that the computation
is based on the snapshot taken during the Look action only, thus its result cannot be changed by any other
event taking place after the Look action. A robot is considered to be moving whenever its current and target
locations are different, and becomes idle again when it reaches its target location (thus an idle robot that
decides not to move stays idle).

3

http://pactole.lri.fr


Idle Moving

Look/Compute

Move

MoveLook/Compute

Figure 1. States and actions of the robots

Spectra and Robograms. We call the embedded program the robots use to define their moves a robogram. It
consists of a function pgm that simply returns a destination location when given a perception (spectrum) of
the environment and the robot’s perception of its current location. Spectra inhabit an arbitrary type that is part
of the description of the model and contributes to its genericity. Indeed, depending on the robots’ capabilities,
the perception may not be as accurate as the complete configuration: anonymous robots cannot see names,
they may lack detection of multiplicity, frames of reference may not be shared, vision can be limited, etc.
The forbidden information is pruned from the configuration, using the function Spect.from_config which
returns a spectrum, the first input of the robogram’s pgm.

Depending on the space considered, the destination returned may be restricted, for instance to locations
that are close enough to the starting location. The pack of theses possible constraints with the declaration of
the function pgm constitutes what we call a robogram.

Record robogram := { pgm: Spect.t → Location.t → Location.t;(* + constraints *)}.

2.2 ASYNC executions

For all synchronisation models, an execution is a sequence of configurations, each of which is deduced from
the previous one, based on the robogram and on a scheduler (called a demon) that assigns a change (or
not) of conformation to each robot and which is considered as an adversary. To mimic this behaviour, our
formal model does not introduce any extra information: execution steps are completely characterised through
a transition function by: (1) the current configuration, (2) the demon’s choices for the step (a demonic
action), and (3) the considered protocol. Executions are simply streams of consecutive configurations for
that function.

Demonic actions. Formally, each demonic action can request a moving robot to travel further towards its
target, or an idle robot to initiate a new move. In each of these cases the demon provides its choices through
the action: either the distance travelled along an ongoing move for a Move action, or a frame of reference
for the perception of a robot for a Look/Compute action.

Inductive action {A} := Move (dist: A) (* moving distance *)
| LookCompute (Location.t → Iso.t). (* change of frame of ref *)

This choice (Move or LookCompute) is performed by the function step. When relevant, demonic actions also
relocate Byzantine robots in an arbitrary way (the regular states and actions being per se irrelevant for these
robots).

We have no control on the choices made by the demon, which is why we call it an adversary. It must
nonetheless still make meaningful choices, which we model by the following constraint: only idle robots
(that is, robots that are at their target location) may receive an order to look and compute.

4



step_LookCompute : ∀ robot robot_conf ref_change,
step robot robot_conf = LookCompute ref_change
→ robot_conf.loc = robot_conf.robot_info.target

Transition function. One obtains successive configurations by running the robogram according the cur-
rent demonic action and configuration. This is done by function round computing new conformations
(RobotConf) in a configuration, for each robot identifier r, according to a demonic action da:

1. If r is Byzantine, it is relocated directly by da on LookCompute actions, and ignores Move ones.
2. Else, if r carries further its ongoing move (Move action), its current location is updated to the location

it reached during this move (the way this reached location is computed may depend on the underlying
space). In the diagram in Fig. 1, this corresponds to:

– the Move transition from Moving to Idle when r reaches its target location,
– the Move loop around Moving when r does not reach its target location,
– a Move loop (not shown) around Idle if r was already at its target location.

3. Else, a new target location is defined as follows:
(a) The local frame of reference provided by da is used to convert the configuration according to the

relevant local point of view,
(b) The resulting local configuration is transformed into a spectrum using from_config,
(c) The obtained spectrum is passed as a parameter to the robogram, which returns the target location.
(d) The target location is converted from the local frame to the global one.
The robot’s conformation is updated with the obtained location as new target, and with the current
location as new source. In the diagram in Fig. 1, this corresponds to:

– the Look/Compute transition from Idle to Moving when r’s current and target locations are different,
– the Look/Compute loop around Idle when r’s current and target location are equal.

To define a full execution, the function execute rbg d config iterates round starting from configura-
tion config, using robogram rbg and demon d. Note that a step in an ASYNC execution does not always
imply a change in the multiset of inhabited locations, as some robots may undergo a change of state only.

3 Application: formal equivalence between discrete and continuous models

In a discrete setting, the simplest possible location type is discrete graphs where robots can only be located
on vertices. A robogram takes as parameters a spectrum (perception) and a current location based on robots
located on vertices, and returns a vertex as destination location. Travel along an edge is unnoticed as the
target vertex is supposed to be reached instantaneously. Particularly simple, this model is convenient for
reasoning; it may however be considered as rather artificial.

A more realistic point of view is given by continuous models, which take into account the continuous
movements of the robots. We nevertheless restrict ourselves to discrete observations: each robot is only
perceived as being close to some reference point. As a consequence, the space can still be seen as a graph
(the graph of the chosen reference points) and the robots are always observed on the vertices. The movement
of a robot between two vertices however is now continuous. The corresponding edge is parameterised by
a travel ratio called threshold, which is compared to the position of a robot along the edge to determine
whether the robot is perceived at the source or target vertex. Computed destinations are still vertices.

We propose formalisations for these two models in our formal framework, and prove formally their
equivalence in the context of oblivious robots endowed with global strong multiplicity detection.

5



3.1 Discrete graphs

A formal model for graphs has been provided, and illustrated for SSYNC in [3] to which we refer for further
details. Briefly, a graph is defined as a pair (V, E) of two sets, the vertices and the edges. Each edge has
a source vertex and a target vertex, given by functions src and tgt respectively. A change of frame of
reference is supported by a graph isomorphism (the type of which is written Iso.t in the formalisation). We
want to extend this model by combining it with the ASYNC aspects presented above.

A graph Graph and a set Names of robots of some size N being given, we provide a model DGF in which
the ASYNC notions described above are blended.

Module DGF (Graph : GraphDef)(N : Size)(Names : Robots(N)).

The locations are given by the set V of vertices of the graph.
Given a spectrum, a robogram computes as destination a location that must be reachable from (i.e.,

adjacent to) the current location of the robot. It is thus required that the target is linked through an edge to
the current location. This is simply an additional constraint pgm_range to the definition of a robogram.

A moving robot travelling instantaneously between its source and target locations, the notion of travel
distance degenerates into a Boolean choice: the robot either jumps to its destination, or stays at its current
location. Hence the only effort in defining an ASYNC discrete graph in our formal model is to instantiate
the parameter A in the definition of the demonic action with bool.

Further note that for technical reasons we will use, in our case study, a version of these discrete graphs
enriched with a field threshold that will remain unused in the discrete case. This way both kinds of graphs
will inhabit the same datatype, thus easing comparisons.

3.2 Continuous graphs with discrete observations

As in the discrete model, a graph and a set of robots being given, we provide a model CGF in which both
ASYNC and continuous moves are embedded.

Module CGF (Graph : GraphDef)(N : Size)(Names : Robots(N)).

The type of locations is richer, and distinguishes two cases: a robot is either on a vertex of the graph
(OnVertex) or at some position along an edge other than its source or target (OnEdge). A position along an
edge is given by a position ratio p of its length such that 0 < p < 1 (thus making actual lengths unnecessary
in the model). We represent these ratios using arbitrary reals and a continuous bijection between reals and
the interval ]0, 1[.
Inductive location := OnVertex (l : Graph.V)

| OnEdge (e : Graph.E) (p : R).

Discrete observation is understood as a limitation (capability) of the robots’ sensors. As such, it is
naturally included in the spectrum. For example, with anonymous robots enjoying multiplicity detection,
the spectrum of a configuration is based on multisets of locations, however it does not show robots locations
with accuracy. Instead, each robot is seen at the “nearest” vertex: a robot located at some position ratio p
along an edge is perceived at its source if p is less than the edge’s threshold, and at its target otherwise.
For this, it is sufficient to use the following projection function in the construction of a spectrum from a
configuration whenever the position of a robot is looked up.

Definition LocC2D (locC : CGF.Location.t) : DGF.Location.t :=
match locC with CGF.OnVertex l ⇒ l

| CGF.OnEdge e p ⇒ if Rle_dec p (Graph.threshold e)
then Graph.src e else Graph.tgt e

end.

6



Thus the type of spectra is exactlty the same as in the discrete model. Note that we also require the returned
destination to be a vertex in the additional constraints embedded in the definition of a robogram.

The parameter provided by the demonic action in a Move transition is more precise than in the discrete
setting: it can be any moving ratio m in the interval [0, 1]. The transition function then interprets this moving
ratio the following way:

– If the robot is on the source vertex of its ongoing move, m = 0 means staying there, m = 1 means going
directly to the destination vertex, and 0 < m < 1 means going at the corresponding position along the
edge between the current vertex and the destination vertex.

– If the robot is at some position p on an edge, then it goes to the position m+p on the same edge. In case
m+ p ≥ 1 the robot goes to the target vertex.

– If the robot is already on the destination vertex, then it stays there.

For this model to make sense, the configurations must satisfy the following properties:

– The source and target locations of robots are vertices, with an edge going from the source to the target.
– If a robot is on a vertex, it is either its source or its target vertex.
– If a robot is on an edge, the latter has the same source and target vertices as the robot.

These properties are collected in a good_conf property, which is shown to be preserved by the transition
function round.

Lemma good_conf_round: ∀ (config: CGF.Config.t) (rbg: robogram) (da: DGF.demonic_action),
good_conf config→ good_conf (round rbg da config).

Hence we restrict our initial configurations to configurations in which these properties hold, and this ensures
that the configurations will remain well-formed in any execution.

3.3 Simulation of the discrete model in the continuous model

To prove that the discrete model and the continuous model with discrete observation are equivalent for obli-
vious robots with strong global multiplicity, we show that any given robogram produces the same executions
in both models. We firstly establish in Theorem graph_equivD2C that for any “discrete” execution, there is
a demon such that this execution can take place in the continuous with discrete observation context.

First remark that any robogram in one of the models can also be read as a robogram of the other model,
thanks to the following facts:

– the first parameter of a robogram is a spectrum, and the types of spectra are the same in both models,
– the current position of the robot is always a vertex since the general model assumes that the robogram is

applied only for idle robots, which are located on vertices,
– the destination returned by a robogram is a vertex.

Technically the types are different and a translation has to be applied to see a discrete robogram as continuous
or a continuous robogram as discrete, but the translation is little more than just a cast.

We define a translation ConfigD2C from discrete to continuous configurations, and show that this trans-
lation relates any execution step in the discrete model with an execution step of the same robogram in the
continuous model. Since for any given underlying graph the locations of the discrete model are a subset of
the locations of the continuous model, the translation of the configurations is straightforward.

The property then reads as follows: for any robogram rbg, demonic action da and configuration c1 in
the discrete model, there is a demonic action da’ in the continuous model such that the diagram in Fig. 2 is
satisfied.

7



c1 c2

c′1 c′2

DGF.round rbg da

ConfigD2CConfigC2D

CGF.round rbg da’

ConfigD2CConfigC2D

Figure 2. Bisimulation

Theorem graph_equivD2C: ∀ (c: DGF.Config.t)(rbg: DGF.robogram)(da: DGF.demonic_action),
∃ (da’: CGF.demonic_action),
ConfigD2C (DGF.round rbg da c) ≡CGF CGF.round (rbgD2C rbg) da’ (ConfigD2C c).

The proof of this lemma requires to provide a demonic action da’ in the continuous model, which is
again obtained by quite a simple translation of the discrete action da. In particular, the boolean parameter
associated to a move action is canonically translated to either 0 or 1, and the conversion to the local frame
of reference needs not be translated (since both models have the same underlying graph). Note that, since
demonic actions are associated to constraints (namely step_LookCompute), the definition of a new demonic
action requires a proof that these constraints are satisfied. Once this witness is provided, the proof amounts
to reasoning by cases on the various parameters of the transition function: is the robot Byzantine or not? is
the scheduled action a move or a new activation? is the parameter of the move true of false?

From this we deduce that any execution in the discrete model can be simulated in the continuous model.
The reciprocal property, which is more complex, is detailed in the next section.

3.4 Simulation of the continuous model in the discrete model

Configurations in the continuous model can also be translated to configurations in the discrete model. The
translation ConfigC2D uses the location projection function LocC2D already defined in the description of
spectra in the continuous model.

This translation allows us to state a second simulation result, similar to the previous one but relating
continuous executions steps to discrete ones (that is, reading the diagram in Fig. 2 from bottom to top).

Theorem graph_equivC2D: ∀(c’: CGF.Config.t)(rbg: CGF.robogram)(da’: CGF.demonic_action),
CGF.good_conf c’→
∃da, ConfigC2D (CGF.round rbg da’ c’) ≡DGF DGF.round (rbgC2D rbg) da (ConfigC2D c’).

The definition of the witness da is subtler than in the previous lemma. The case where an idle robot
is activated and computes a new destination (LookCompute action) is straightforward, since again we can
use the same isomorphism. The Move case however cannot be treated using only the information in the
continuous action da’: when a continuous demonic action provides a move ratio, we have to translate it into
a boolean choice describing whether the move will end in the region of the source vertex or in the region
of the target vertex. That is, we have to know whether the movement will pass the threshold or not. This
requires knowing not only the demonic action da’, but also the configuration c’. The full definition then
takes the following form:

Definition daC2D (daC: CGF.demonic_action) (confC: CGF.Config.t): DGF.demonic_action :=
{| DGF.relocate_byz := fun b ⇒ LocC2D (daC.relocate_byz b);

DGF.step := fun robot robot_conf ⇒

8



(* Here we assume that {robot_conf} is the projection of {confC robot} *)
(* Consider the action given by the continuous demon... *)
match daC.step robot (confC robot) with

(* a Look/Compute action is preserved, *)
| CGF.LookCompute ref_change ⇒ DGF.LookCompute ref_change
(* a Move action requires checking the current location of the robot. *)
| CGF.Move m ⇒
match (confC robot).loc with
(* If the robot is on a vertex, then compare {m} to the threshold

of the edge to the target vertex {e}. *)
| CGF.OnVertex _ ⇒
match (Graph.find_edge robot_conf.robot_info.source

robot_conf.robot_info.target) with
| Some e ⇒ if Rle_dec m (Graph.threshold e) then DGF.Move false

else DGF.Move true
| None ⇒ DGF.Move false

end
(* If the robot is on an edge do the same after adding the current

position ratio to {m}. *)
| CGF.OnEdge e p ⇒ if Rle_dec p (Graph.threshold e)

then if Rle_dec (m + p) (Graph.threshold e)
then DGF.Move false else DGF.Move true

else DGF.Move false
end

end |}.

Again, the proof is by cases on all the parameters of the transition function, which are more numerous
than in the previous case since the definition of the demonic action da’ itself distinguishes many more cases.

These two simulation results, taken together, mean that any execution in any of the two models (discrete
or continuous) can be related to an equivalent execution in the other model.

4 Concluding Remarks

Our work established the first formal bridge between two previously distinct models for oblivious mobile
robots. From a practical point of view, the formal equivavence we provide between the discrete model
and the continous model with discrete sensors sheds new light about what is actually computable in real
environments by limited capabilities robots. Furthermore, our work hints at possible new paths for future
research:

– The first issue we plan to tackle is that of realistic sensing models for mobile robots. Actual robots
endowed with omnidirectional 3D visibility sensors typically use a digital camera with a set of parabolic
mirrors [13], which implies that the accuracy of the localization of a robot varies with the distance to
its target robot. In our modeling, the treshold for a given edge e is the same for all participating
robots, while a treshold that varies according to the distance of the observing robot to e would be
more realistic. Adding this possibility to our framework is not difficult thanks to its modularity, but the
equivalence proof is then likely to fail in the extended model.

– Another important long-term open question raised by our work is that of model equivalence beyond
oblivious mobile robots. Our approach considers the equivalence of the executions and is hence agnostic
of the actual problem being solved; it also enables Byzantine robots. It would be interesting to consider
model equivalences with other classical distributed computing models (e.g. Problem A in robot model m
with f faulty robots is equivalent to problem B in asynchronous shared memory model m′ with f ′ faulty
processes). A natural candidate case study would be the Consensus vs. Robot Gathering problem [30].

9



References

1. C. Auger, Z. Bouzid, P. Courtieu, S. Tixeuil, and X. Urbain. Certified Impossibility Results for Byzantine-Tolerant Mobile
Robots. In T. Higashino, Y. Katayama, T. Masuzawa, M. Potop-Butucaru, and M. Yamashita, editors, Stabilization, Safety,
and Security of Distributed Systems - 15th International Symposium (SSS 2013), volume 8255 of Lecture Notes in Computer
Science, pages 178–186, Osaka, Japan, Nov. 2013. Springer-Verlag.

2. T. Balabonski, A. Delga, L. Rieg, S. Tixeuil, and X. Urbain. Synchronous Gathering Without Multiplicity Detection: A
Certified Algorithm. In B. Bonakdarpour and F. Petit, editors, Stabilization, Safety, and Security of Distributed Systems -
18th International Symposium, (SSS 2016), volume 10083 of Lecture Notes in Computer Science, Lyon, France, Nov. 2016.
Springer-Verlag.

3. T. Balabonski, R. Pelle, L. Rieg, and S. Tixeuil. A foundational framework for certified impossibility results with mobile robots
on graphs. In Proceedings of International Conference on Distributed Computing and Networking, Varanasi, India, Jan. 2018.

4. R. Baldoni, F. Bonnet, A. Milani, and M. Raynal. Anonymous graph exploration without collision by mobile robots. Informa-
tion Processing Letters, 109(2):98–103, 2008.

5. B. Bérard, P. Courtieu, L. Millet, M. Potop-Butucaru, L. Rieg, N. Sznajder, S. Tixeuil, and X. Urbain. Formal Methods for
Mobile Robots: Current Results and Open Problems. International Journal of Informatics Society, 7(3):101–114, 2015. Invited
Paper.

6. B. Bérard, P. Lafourcade, L. Millet, M. Potop-Butucaru, Y. Thierry-Mieg, and S. Tixeuil. Formal verification of mobile robot
protocols. Distributed Computing, 29(6):459–487, 2016.

7. L. Blin, J. Burman, and N. Nisse. Exclusive graph searching. Algorithmica, 77(3):942–969, 2017.
8. L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Exclusive perpetual ring exploration without chirality. In N. A. Lynch

and A. A. Shvartsman, editors, Distributed Computing, 24th International Symposium (DISC 2010), volume 6343 of Lecture
Notes in Computer Science, pages 312–327, Cambridge, MA, USA, Sept. 2010. Springer-Verlag.

9. F. Bonnet, X. Défago, F. Petit, M. Potop-Butucaru, and S. Tixeuil. Discovering and assessing fine-grained metrics in robot
networks protocols. In 33rd IEEE International Symposium on Reliable Distributed Systems Workshops, SRDS Workshops
2014, Nara, Japan, October 6-9, 2014, pages 50–59. IEEE, 2014.

10. F. Bonnet, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Asynchronous exclusive perpetual grid exploration without sense
of direction. In A. F. Anta, G. Lipari, and M. Roy, editors, Principles of Distributed Systems - 15th International Conference,
OPODIS 2011, Toulouse, France, December 13-16, 2011. Proceedings, volume 7109 of Lecture Notes in Computer Science,
pages 251–265. Springer-Verlag, 2011.

11. F. Bonnet, M. Potop-Butucaru, and S. Tixeuil. Asynchronous gathering in rings with four robots. In Ad-hoc, Mobile, and
Wireless Networks - 15th International Conference, ADHOC-NOW 2015, Lille, France, 2016, Lecture Notes in Computer
Science. Springer-Verlag, 2016.

12. Z. Bouzid, S. Dolev, M. Potop-Butucaru, and S. Tixeuil. RoboCast: Asynchronous Communication in Robot Networks. In
C. Lu, T. Masuzawa, and M. Mosbah, editors, OPODIS, volume 6490 of Lecture Notes in Computer Science, pages 16–31,
Tozeur, Tunisia, Dec. 2010. Springer-Verlag.

13. G. Caron, E. M. Mouaddib, and É. Marchand. 3d model based tracking for omnidirectional vision: A new spherical approach.
Robotics and Autonomous Systems, 60(8):1056–1068, 2012.

14. J. Chalopin, P. Flocchini, B. Mans, and N. Santoro. Network exploration by silent and oblivious robots. In D. M. Thilikos,
editor, Graph Theoretic Concepts in Computer Science - 36th International Workshop, WG 2010, Zarós, Crete, Greece, June
28-30, 2010 Revised Papers, volume 6410 of Lecture Notes in Computer Science, pages 208–219, 2010.

15. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by mobile robots: Gathering. SIAM J. Comput.,
41(4):829–879, 2012.

16. P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Impossibility of Gathering, a Certification. Information Processing Letters,
115:447–452, 2015.

17. P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Certified universal gathering algorithm in R2 for oblivious mobile robots. In
C. Gavoille and D. Ilcinkas, editors, Distributed Computing - 30th International Symposium, (DISC 2016), volume 9888 of
Lecture Notes in Computer Science, Paris, France, Sept. 2016. Springer-Verlag.

18. G. D’Angelo, A. Navarra, and N. Nisse. A unified approach for gathering and exclusive searching on rings under weak
assumptions. Distributed Computing, 30(1):17–48, 2017.

19. G. D’Angelo, G. D. Stefano, A. Navarra, N. Nisse, and K. Suchan. Computing on rings by oblivious robots: A unified approach
for different tasks. Algorithmica, 72(4):1055–1096, 2015.

20. S. Devismes, A. Lamani, F. Petit, P. Raymond, and S. Tixeuil. Optimal Grid Exploration by Asynchronous Oblivious Ro-
bots. In A. W. Richa and C. Scheideler, editors, Stabilization, Safety, and Security of Distributed Systems - 14th Interna-
tional Symposium (SSS 2012), volume 7596 of Lecture Notes in Computer Science, pages 64–76, Toronto, Canada, Oct. 2012.
Springer-Verlag.

10



21. S. Devismes, A. Lamani, F. Petit, and S. Tixeuil. Optimal torus exploration by oblivious robots. In A. Bouajjani and H. Faucon-
nier, editors, Networked Systems - Third International Conference, NETYS 2015, Agadir, Morocco, May 13-15, 2015, Revised
Selected Papers, volume 9466 of Lecture Notes in Computer Science, pages 183–199. Springer-Verlag, 2015.

22. S. Devismes, F. Petit, and S. Tixeuil. Optimal probabilistic ring exploration by semi-synchronous oblivious robots. Theoretical
Computer Science, 498:10–27, 2013.

23. H. T. T. Doan, F. Bonnet, and K. Ogata. Model checking of a mobile robots perpetual exploration algorithm. In S. Liu, Z. Duan,
C. Tian, and F. Nagoya, editors, Structured Object-Oriented Formal Language and Method - 6th International Workshop,
SOFL+MSVL 2016, Tokyo, Japan, November 15, 2016, Revised Selected Papers, volume 10189 of Lecture Notes in Computer
Science, pages 201–219, 2016.

24. H. T. T. Doan, F. Bonnet, and K. Ogata. Model checking of robot gathering. In J. Aspnes and P. Felber, editors, Principles
of Distributed Systems - 21th International Conference (OPODIS 2017), Leibniz International Proceedings in Informatics
(LIPIcs), Lisbon, Portugal, Dec. 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

25. P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Remembering without memory: Tree exploration by asynchronous oblivious
robots. Theoretical Computer Science, 411(14-15):1583–1598, 2010.

26. P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without communicating: Ring exploration by asynchronous
oblivious robots. Algorithmica, 65(3):562–583, 2013.

27. P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distrib-
uted Computing Theory. Morgan & Claypool Publishers, 2012.

28. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Arbitrary pattern formation by asynchronous, anonymous, oblivious
robots. Theoretical Computer Science, 407(1-3):412–447, 2008.

29. N. Fujinaga, Y. Yamauchi, S. Kijima, and M. Yamashita. Asynchronous pattern formation by anonymous oblivious mobile
robots. In M. K. Aguilera, editor, Distributed Computing - 26th International Symposium, DISC 2012, Salvador, Brazil,
October 16-18, 2012. Proceedings, volume 7611 of Lecture Notes in Computer Science, pages 312–325. Springer-Verlag,
2012.

30. T. Izumi, Z. Bouzid, S. Tixeuil, and K. Wada. Brief Announcement: The BG-Simulation for Byzantine Mobile Robots. In
D. Peleg, editor, DISC, volume 6950 of Lecture Notes in Computer Science, pages 330–331. Springer-Verlag, 2011.

31. T. Izumi, T. Izumi, S. Kamei, and F. Ooshita. Mobile robots gathering algorithm with local weak multiplicity in rings. In
B. Patt-Shamir and T. Ekim, editors, Structural Information and Communication Complexity, 17th International Colloquium,
SIROCCO 2010, Sirince, Turkey, June 7-11, 2010. Proceedings, volume 6058 of Lecture Notes in Computer Science, pages
101–113. Springer-Verlag, 2010.

32. S. Kamei, A. Lamani, F. Ooshita, and S. Tixeuil. Asynchronous mobile robot gathering from symmetric configurations without
global multiplicity detection. In A. Kosowski and M. Yamashita, editors, Structural Information and Communication Com-
plexity - 18th International Colloquium, SIROCCO 2011, Gdansk, Poland, June 26-29, 2011. Proceedings, volume 6796 of
Lecture Notes in Computer Science, pages 150–161. Springer-Verlag, 2011.

33. S. Kamei, A. Lamani, F. Ooshita, and S. Tixeuil. Gathering an even number of robots in an odd ring without global multiplicity
detection. In B. Rovan, V. Sassone, and P. Widmayer, editors, Mathematical Foundations of Computer Science 2012 - 37th
International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of Lecture Notes
in Computer Science, pages 542–553. Springer-Verlag, 2012.

34. A. Lamani, M. G. Potop-Butucaru, and S. Tixeuil. Optimal deterministic ring exploration with oblivious asynchronous robots.
In B. Patt-Shamir and T. Ekim, editors, Structural Information and Communication Complexity, 17th International Colloquium,
SIROCCO 2010, Sirince, Turkey, June 7-11, 2010. Proceedings, volume 6058 of Lecture Notes in Computer Science, pages
183–196. Springer-Verlag, 2010.

35. L. Millet, M. Potop-Butucaru, N. Sznajder, and S. Tixeuil. On the synthesis of mobile robots algorithms: The case of ring
gathering. In P. Felber and V. K. Garg, editors, Stabilization, Safety, and Security of Distributed Systems - 16th International
Symposium, (SSS 2014), volume 8756 of Lecture Notes in Computer Science, pages 237–251, Paderborn, Germany, Sept. 2014.
Springer-Verlag.

36. G. Prencipe. Impossibility of gathering by a set of autonomous mobile robots. Theoretical Computer Science, 384(2-3):222–
231, 2007.

37. S. Rubin, F. Zuleger, A. Murano, and B. Aminof. Verification of asynchronous mobile-robots in partially-known environments.
In Q. Chen, P. Torroni, S. Villata, J. Y. Hsu, and A. Omicini, editors, PRIMA 2015: Principles and Practice of Multi-Agent
Systems - 18th International Conference, Bertinoro, Italy, October 26-30, 2015, Proceedings, volume 9387 of Lecture Notes
in Computer Science, pages 185–200. Springer-Verlag, 2015.

38. A. Sangnier, N. Sznajder, M. Potop-Butucaru, and S. Tixeuil. Parameterized verification of algorithms for oblivious robots on
a ring. In Formal Methods in Computer Aided Design, Vienna, Austria, Oct. 2017.

39. I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM Journal of
Computing, 28(4):1347–1363, 1999.

11



40. Y. Tomita, Y. Yamauchi, S. Kijima, and M. Yamashita. Plane formation by synchronous mobile robots without chirality. In
J. Aspnes, A. Bessani, P. Felber, and J. Leitão, editors, 21st International Conference on Principles of Distributed Systems,
OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, volume 95 of LIPIcs, pages 13:1–13:17. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017.

41. M. Yamashita and I. Suzuki. Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theoretical
Computer Science, 411(26-28):2433–2453, 2010.

42. Y. Yamauchi, T. Uehara, S. Kijima, and M. Yamashita. Plane formation by synchronous mobile robots in the three-dimensional
euclidean space. J. ACM, 64(3):16:1–16:43, 2017.

43. Y. Yamauchi, T. Uehara, and M. Yamashita. Brief announcement: Pattern formation problem for synchronous mobile robots
in the three dimensional euclidean space. In G. Giakkoupis, editor, Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 447–449. ACM, 2016.

44. Y. Yamauchi and M. Yamashita. Pattern formation by mobile robots with limited visibility. In T. Moscibroda and A. A.
Rescigno, editors, Structural Information and Communication Complexity - 20th International Colloquium, SIROCCO 2013,
Ischia, Italy, July 1-3, 2013, Revised Selected Papers, volume 8179 of Lecture Notes in Computer Science, pages 201–212.
Springer-Verlag, 2013.

12


	Continuous vs. Discrete Asynchronous Moves: a Certified Approach for Mobile Robots
	! Thibaut Balabonski,1 Pierre Courtieu,2 Robin Pelle,1 Lionel Rieg,3 Sébastien Tixeuil,4,5 and Xavier Urbain6 

