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Summary

Simulating thin structures implies solving non-linear partial differential equations
defined on manifolds, which can include higher-order derivatives and/or stiff terms.
Implementing effective locking-free discretisation techniques for nonlinear plates
and shells is a challenging and highly technical task. We present FENICS-SHELLS,
an open-source library for simulating thin structures using the finite element method,
based on the FENICS PROJECT. Leveraging the high-level symbolic capabilities of
the Unified Form Language (UFL) and the automatic code generation facilities of the
FENICS FormCompiler (FFC), FENICS-SHELLS allows for the concise formulation
of discretisations of various thin-structural theories, including linear and nonlinear
geometrically exact Naghdi shell models, the Marguerre-von Kármán shallow shell
model, and the Reissner-Mindlin plate model. Mixed Interpolation of Tensorial Com-
ponent (MITC) and Partial Selective Reduced Integration (PSRI) numerical methods
are used to alleviate shear- and membrane-locking issues. The effectiveness of these
approaches and the ease of writing solvers for non-linear shell models is illustrated
through a large set of verification tests and demo codes. FENICS-SHELLS can run
without modification on high-performance computing (HPC) architectures.
KEYWORDS:
thin structures, plates, shells, finite element methods, domain specific language, FEniCS.

1 INTRODUCTION

Plates and shells are solids characterised by occupying a spatial domain with one dimension, the thickness, much smaller than the
others. Their small thickness implies the possibility of experiencing large changes of shape even with small material deformations
and an approximately linear elastic material behaviour.
Thin structures are ubiquitous in Nature and engineering systems. Their study has received renewed attention in the last

decade because of their unique nonlinear behaviour, mainly caused by geometric effects1, leading to d-cone singularities and
crumpling2, fracture3, or multistability4,5. Examples of modern application fields in engineering include shape control through
active materials6,7, stretchable electronics8, soft robotics9, and thin nano-structures e.g. graphene sheets and nanotubes10.

Effective models for plates and shells are two-dimensional, the through-the-thickness kinematics being described by including
a suitable microstructure in the model. Their mathematical modelling leads to possibly nonlinear complex partial differential
equations (PDEs) defined on two-dimensional manifolds embedded in the three-dimensional space. The resulting PDEs can
be discretised using a variety of numerical techniques, e.g. finite element methods (FEM)11,12, isogeometric analysis13,14, and
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meshfree methods15. FEM-based discretisations of the plate and shell models are available in both commercial (see e.g. ABAQUS 16,
ACEFEM 17 and ADINA 18,) and open-source (e.g. GETFEM++ 19, IGAFEM 20, CODE_ASTER 21, MAT-FEM 22 and ELMER 23)
software packages. However, formulating the mathematical models and implementing efficient and accurate finite element solvers
for plates and shells remain complex, highly technical, and time-consuming tasks, requiring advanced knowledge in differential
geometry, numerical analysis, and mechanics. Shell and plate finite element models are always regarded as very advanced topics
in structural engineering and applied mathematics curricula, and very rarely are graduate students trained in their implementation.

The goal of this work is to present a Python library, FENICS-SHELLS, providing simple and extensible techniques and examples
for implementing plate and shell models. FENICS-SHELLS 24 is a unified and extensible open-source (LGPLv3) software package
for simulating a variety of thin structures using the finite element method. It leverages the finite element library, FENICS
PROJECT 25, in particular its Unified Form Language (UFL)26 and the associated Fenics Form Compiler (FFC)27, to allow users
to straightforwardly formulate complex custom nonlinear shell models with less than one hundred lines of Python code and
syntax that closely mirrors the mathematical abstractions of the variational formulations. We believe that our work can be useful
to researchers, students, and practitioners, providing simple tools to develop in-house finite-element codes to solve classical and
novel physical problems involving plates and shells.

The unique aspects of our approach are as follows; using UFL, FENICS-SHELLS allows the straightforward expression of the
potential energy functionals of various thin structural models and their finite element discretisation. The differential geometry
concepts28 can be expressed directly in UFL, which we believe is of great pedagogical value. Consistent linearisation of the
potential energy functional is performed automatically using the symbolic tools in UFL26. These symbolic expressions are
compiled automatically to finite element code using FFC 27. FENICS-SHELLS places particular emphasis on the shearable
plate and shell models, which require particular attention to the discretisation to ensure that there are no shear- or membrane-
locking issues. The library currently includes documented demos for the numerical solution of linear and nonlinear shells
(Nagdhi model29,30), weakly non-linear shallow shells (Marguerre-von Kármán model31), and linear plate (Reissner-Mindlin
model32,33). For the discretisation, FENICS-SHELLS provides both the popular Mixed Interpolation of Tensorial Components
(MITC) approach11,34,35 and a high polynomial-order Partial Selective Reduced Integration (PSRI) approach36, both of which can
be applied in a uniform manner across user-defined models. While the library includes also a documented demo implementing
a discontinuous Galerkin discretization technique37,38 for unshearable plates, the present paper focuses only on the shearable
models.

Both the MITC and PSRI approches presented here include some original aspects with respect to the formulations previously
introduced in the literature. In order to fit with the syntax of UFL and the associated code generation tools, MITC is reformulated
as a mixed hybridisable variational form with element-wise local projection. The PRSI technique proposed in36 is extended to
nonlinear shells with a modified reduced integration rule and optimised weighting factor for the energy splitting. To provide an
efficient parallel implementation of the MITC technique, we also extended the FEniCS automatic assembly tools to include the
possibility of eliminating local degrees of freedom through static condensation, a feature that could be potentially ported to the
FENICS library itself in the near future.

The effectiveness of our MITC and PSRI techniques is discussed through a large set of numerical verification tests. Aside many
classical examples, we propose a novel numerical verification test based on the exact solution of Mansfield39 for the thermal
buckling of a lenticular plate. We believe that this latter example can usefully complement the traditional gallery of verification
tests for plates and shells.

The models can run without modification on high-performance computing architectures using MPI and PETSC 40. This re-use
of existing functionality from FENICS makes FENICS-SHELLS very compact; the entire package is a few thousand lines of code
and over half of that is documentation. These aspects sum up to a unique approach that we believe will be of value to those
working on frontier problems in the mechanics of thin structures.

Related work using FENICS considered solving PDEs on manifolds41, e.g. the Laplace-Beltrami equation. Thin-structural
models of the type considered in this paper were not considered in41. The manifold functionality presented in41 is not used in
FENICS-SHELLS, instead, we mimic the geometrically-exact shell model approach formalised in the seminal works of Ciarlet28
where the reference configuration is described by a mapping from ℝ2 to a surface embedded in Euclidean space.

The purpose of this paper is to outline the structural models available in FENICS-SHELLS (Section 2), the mathematics behind
their finite element discretisation (Section 3), and finally show some comprehensive examples demonstrating what is possible
with FENICS-SHELLS and the performance of the proposed methods (Section 4). Three detailed documented demos are included
as supplementary material and several more are available online. We have opted not to include these documented demos directly
in the article, firstly for brevity, and because they are likely to change with time as FENICS evolves, making them less useful
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for future readers. Instead, a permanent DOI24 has been created with links to the latest code and documentation. These demos
should be considered as an integral part of the present work. We suggest the reader refers to the the demos to have an overview
of the main capabilities and features of the library, and in particular to the Clamped Reissner-Mindlin plate under uniform
load demo for linear plates, the Buckling of a heated von-Kármán plate for weakly nonlinear plate models, and the Clamped
semi-cylindrical Naghdi shell under point load demo for fully nonlinear shells, which constitutes the three documents formally
included as supplementary material to this paper. Table 1 summarises the mathematical models and the numerical methods
presented in each of the documented demos currently available online. Finally, we have followed the Best Practices for Scientific
Computing42 as closely as possible, including using version control, continuous integration and testing, repeatable computing
environments43 and providing thorough documentation.

Title Model Discretisation technique
Clamped Reissner-Mindlin plate under uniform load Linear shearable plate MITC
Simply supported Reissner-Mindlin plate Linear shearable plate MITC
Clamped Reissner-Mindlin plate with MITC7 Linear shearable plate MITC
Clamped Kirchhoff-Love plate Linear unshearable plate Discontinuous Galerkin
Buckling of a heated von Kármán plate Shearable weakly nonlinear plate PSRI
Non-linear Naghdi roll-up cantilever Nonlinear shearable shell MITC
Clamped semi-cylindrical Naghdi shell under point load Nonlinear shearable shell PSRI
Partly Clamped Hyperbolic Paraboloid Linear shearable shell PSRI

TABLE 1 Structural models and discretisations techniques presented in main documented demos provided in FENICS-SHELLS.

2 STRUCTURAL MODELS

This section presents the basic plate and shell models considered in the library. We present them through an energetic variational
formulation, starting from the most general, the nonlinear Naghdi shell model30. The linear Reissner-Mindlin plate model32,33 is
obtained as a special case of the the linear Naghdi shell model29. In passing, we present also the so-calledMarguerre-von Kármán
shallow shell model31, because (in its unshearable version) it is extensively used in the literature to study nonlinear phenomena
in plates and shallow shells44,45,1. The models are presented in their shareable version, used for the numerical implementation,
detailing in the comments how the corresponding unshearable models (e.g. Koiter shell, Föppl-von Kármán, or Kirchhoff-Love
plate theories) are recovered. We start by reviewing the basic notations used in this work.
Notation
We equip the Euclidean space with a Cartesian frame {O; a1,… , an} with orthogonal unit basis vector ai ∈ n, n being the
translation space. Let x = X − O ∈ n denote the position vector of the point X whose rectangular Cartesian coordinates are
(X1,… , Xn) ∈ ℝn. We denote by ℝm×n the space of m × n matrices and by Sn = {S ∈ ℝn×n ∶ S = ST } the space of symmetric
n × n matrices, Sn+ its subset of positive definite matrices. With a notational abuse, for any tensor field T ∈ n ⊗⋯⊗ n, let
T ∈ ℝn×⋯×n denote also the collection of its Cartesian components. The same applies to vectors and tensors on manifolds. We
denote by a ⋅ the inner product between two tensors. In particular if T is a tensor of order 2n and v a tensor of order n, we denote
by T v the application of the tensor T on v and by T v ⋅ v the quadratic form on the space of v having T as metric. For v ∈ ℝn

and x ∈ ℝm, ∇v ∈ ℝn×m denotes the linear operator such that dv = ∇v dx + o(|dx|2). We often use also index notation, where
Latin indices (e.g. i, j) are assumed to take the values 1, 2, 3, whilst Greek indices (e.g. �, �) take the values 1, 2. For the partial
derivatives of a function f we use the abridged notation f,� = )f∕)x� . We define the space L2(!) as the usual Sobolev space of
square-integrable functions on the domain ! with respect to the Lebesgue measure dx. ThenHs(!) is the usual Sobolev spaces
of L2(!) functions whose weak derivatives of order s ∈ ℕ are also in L2(!). We use the notation f ∈ Hs(!;ℝn) to denote a
vector-valued function whose components (f1,⋯ , fn) are each functions inHs(!).
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FIGURE 1 Kinematics of the nonlinear Naghdi shell model.

2.1 Non-linear Naghdi shell model
Kinematics
We describe the reference configuration of shell-like bodies as:

p0(x� , x3) = �0(x�) + x3 n0(x�) , x� ∈ ! ⊂ ℝ2, x3 ∈ [−t∕2, t∕2],

where (x� , x3) are curvilinear coordinates, �0 ∶ !→ ℝ3 is a (piece of) regular surface, and n0 = ()1�0×)2�0)∕ ||)1�0 × )2�0|| (×
refers to the vector cross-product in only this context) is a continuous unit vector field normal to the middle surface �0(!), Fig. 1 a.
The vectors g0,� = )��0 define a covariant basis on the tangent plane at each point of the reference configuration. The

slenderness condition requires the thickness t to be much smaller that the diameter of the middle surface !. The geometry of the
middle surface is completely described by the metric and curvature tensors, a0 and b0 respectively, whose covariant components
are computed as:

a0 = ∇�T0∇�0, b0 = −
1
2
(

∇�T0∇n0 + ∇n
T
0∇�0

)

, a0 ∈ S2+, b0 ∈ S2,

where ∇�0 = [g0,1, g0,2]. Whenever the reference configuration is chosen to be flat, that is when �0(!) is a planar surface, n0 ≡ a3
(and x3 ≡ X3) and b0 = 0. In such a case a body is said plate-like.

In the nonlinear Naghdi shell model the current configuration of the shell is written as a sum of the placement of the middle
surface � ∶ !→ ℝ3 (or alternatively the displacement field u = � − �0) and of the director field d ∶ !→ ℝ3 (see Fig. 1 a):

p(x� , x3) = �(x�) + x3 d(x�).

In general, |d| ≠ 1 and d ⋅ n ≠ 0, where n = ()1� × )2�)∕ ||)1� × )2�|| is the unit normal to the current surface and the vectors
g� = )�� define a covariant basis on the tangent plane at each point of the deformed configuration. When the normal fibres
are assumed to be unstretchable, |d| = 1 and the director can be parametrised by two angles � = (�1, �2) ∶ ! → ℝ2, e.g.,
d(�) = (cos �1 sin �2,− sin �1, cos �1 cos �2), giving rise the so-called five-parameter shell model46 (the three-components of the
displacement field and the two angles (�1, �2)), Fig. 1 b.
In a Lagrangian description, we use the following measures of deformation for the shell30,47:
eN (u) =

1
2
(

∇�(u)T∇�(u) − a0
)

, kN (u, �) = −
1
2
[

∇�(u)T∇d(�) + ∇d(�)T∇�(u)
]

− b0, 
N (u, �) = ∇�(u)T d(�), (1)
representing the stretching of the middle plane (a second order tensor), the bending curvature (a second order tensor), and the
shear strain vector, respectively. The shear strain vanishes if and only if the director d coincides with the unit normal to the surface.
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Strain energy and constitutive equations
We consider elastic shells characterised by an elastic strain energy per unit of surface in the reference configuration  ̂(e, k, 
), a
scalar function of the deformations. The stress measures are the membrane stress resultantN = )e ̂ , a second order tensor, the
couple stress resultantM = )k ̂ a second order tensor, and the vector T = )
  ̂ representing the transverse shear stress. We will
focus in our examples on linearly elastic constitutive behaviour for which the strain energy density is a quadratic function of the
strain measures. Thus, using standard notation:

 ̂(e, k, 
) = 1
2
A(e − ē) ⋅ (e − ē) + B(e − ē) ⋅ (k − k̄) + 1

2
D(k − k̄) ⋅ (k − k̄) + 1

2
S
 ⋅ 
,

where A,D are fourth-order and positive-definite tensors providing the membrane and bending stiffness, B is a fourth order
tensor providing the membrane-to-bending constitutive coupling, S is a second order tensor providing the shear stiffness and ē, k̄
are symmetric second order tensor fields representing inelastic stretching and bending strains. In what follows, unless otherwise
stated, ē, k̄ = 0. This leads to the following linear constitutive laws:

N = A(e − ē) + B(k − k̄), M = B(e − ē) +D(k − k̄), T = S
.

The stored energy density turns out to be the sum of membrane,  ̂m, bending,  ̂b, and shearing,  ̂s, contributions:
 ̂(e, k, 
) =  ̂m +  ̂b +  ̂s =

1
2
N ⋅ (e − ē) + 1

2
M ⋅ (k − k̄) + 1

2
T ⋅ 
.

For a shell made of a single homogeneous layer of St. Venant-Kirchhoff isotropic material the contravariant components of the
elastic tensors are:

A����

t
= 12D

����

t3
=

2��
� + 2�

a��0 a
��
0 + �

(

a��0 a
��
0 + a��0 a

��
0

)

, B���� = 0, S�� = �a��0 ,

where a��0 are the contravariant components of the metric tensor a0 and �, � the Lamé constants. Denoting by � = t∕L the small
thinness parameter, |A|, |S| ∝ �, while |B| ∝ �2 and |D| ∝ �3. Pure bending deformations (e = 0, 
 = 0) are energetically
cheaper and, whenever possible, they are preferred.
Variational formulation of the equilibrium condition
We focus here on the solution of quasi-static problems under the action of conservative loads, although this is not a limitation of
the FENICS-SHELLS library. The equilibrium configurations are found by solving for the stationary points of the potential energy:

�N (u, �) = ∫
!

 ̂(eN (u), kN (u, �), 
N (u, �))
√

j0 dx −Wext, (2)

whereWext is the external work of the conservative forces and j0 = det a0. Considering as Dirichlet boundary conditions imposed
displacements ū on the part of the boundary 
u and on the rotation �̄ on 
� , the space of admissible displacements and rotations
are, respectively:

 ≡ {u ∈ H1(!,ℝ3) | u = ū on 
u},  ≡ {� ∈ H1(!,ℝ2) | � = �̄ on 
�}. (3)
The variational formulation of the equilibrium equation is then given by:

Find (u, �) ∈  × | Dũ
[

�N (u, �)
]

= 0, D�̃
[

�N (u, �)
]

= 0, ∀(ũ, �̃) ∈ 0 ×0, (4)
where 0 and0 are the vector spaces associated to  and, obtained by setting ū = 0 and �̄ = 0 in (3). The stability of an
equilibrium can by assessed by studying the sign of the second derivative of the energy, a quadratic form of the variations ũ, �̃.
Remark 1. Shell models with energy in the form (2) are shearable, since flexure is due to both bending and shearing. However,
for very thin shells and plates the shearing strains turn out to be negligible. These structures are quite naturally modelled by
means of unshearable or pure bending theories obtained by imposing the inner constraint 
 = 0. Such theories can usually be
recovered as limit models of shearable theories when the thinness parameter goes to zero, � → 0. In what follows the shell models
in the library are introduced in their ‘shearable version’; their unshearable counterpart can be easily derived. We remark that the
distinction between shearable and unshearable theories is of paramount importance, since the numerical solution procedures
exhibit quite different challenges.
Remark 2. By assuming the inner constraint 
N = 0, from Eq. (1)3 d = n ∈ ker ∇�T (u). Moreover, from Eq. (1)2, the
change of curvature can be written as k(u) = b(u) − b0, b(u) being the curvature tensor of the current surface. In such a
way the nonlinear Koiter shell model48 is recovered as the unshearable counterpart of the Naghdi’s one for thin shells. Since
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b�� = ni,� (�0 + u),� = ni (�0 + u),�� , (i = 1, 2, 3), the displacement u must be sought in a space  ⊆ H2(!,ℝ3). This high
regularity requirement is a common feature of the unshearable theories.

2.2 Marguerre-von Kármán shallow shell model
Some widely studied and used weakly non-linear versions of the Naghdi shell equations are the Föppl-von Kármán plate
model49,50 and theMarguerre shallow shell model31. They can be seen as the simplest nonlinear models able to properly describe
the moderately large deflections of thin shallow shells or plates, since they retain a minimal geometrical coupling between the
membrane and flexural behaviour. Here, we introduce them in their shearable version51.

Consider a shell with a shallow initial configuration �0(x�) = x� a� + � (x�)a3, with the shallowness assumption |∇� | ∼ � ≪ 1
and let be �(x�) = x�a� + v(x�) + w(x�)a3 the current configuration, where e3 of the middle plane with respect to a flat
configuration x = x�e� ∈ !, and decompose the v ⟂ ! is the in-plane component and w on the a1 − a2 plane, with v ⋅ a3 = 0,
and the transverse component wa3. Similarly, we denote by � the (small) rotations of the fibres orthogonal to the middle-plane,
with � ⋅ a3 = 0.

The displacement of an arbitrary point of the three-dimensional body can be represented as:
UM (x� , x3) = v(x�) +w(x�)a3 − x3 �(x�). (5)

The Marguerre-von Kármán shallow shell model can be derived from the nonlinear Naghdi model by assuming |v|∕L ∼ �2,
|w|∕L ∼ � and |�| ∼ �, so that d(x�) − n0(x�) = �(x�) + h.o.t., where �(x�) = �(x�) × a3. Then, the Marguerre-von Kármán
strain measures are obtained as the leading order terms of the Naghdi strain measures, Eqs. 1,

eM (v,w) =
∇v + ∇vT

2
+ ∇w⊗ ∇w

2
−
∇� ⊗ ∇�

2
, kM (�) =

∇� + ∇�T
2

− ∇∇�, 
M (w, �) = ∇w − �. (6)
Then, solutions are found as the minimisers over a smooth set of vector fields v ∈  ⊆ H1(!,ℝ2), w ∈  ⊆ H1(!),

� ∈  ⊆ H1(!,ℝ2) satisfying appropriate boundary conditions, of the nonlinear Marguerre-von Kármán energy functional:
�M (v,w, �) =

1
2 ∫
!

NM (v,w) ⋅
(

eM (v,w) − ē
)

dx

+ 1
2 ∫
!

MM (w, �) ⋅
(

kM (w, �) − k̄
)

dx + 1
2 ∫
!

TM (w, �) ⋅ 
M (w, �) dx −Wext.
(7)

Remark 3. By assuming the inner constraint 
M = 0, from Eq. (6)3, � = ∇w. Moreover, from Eq. (6)2, k(w) = ∇∇w. In such
a way the classical (unshearable) Marguerre-von Kármán shallow shell model is recovered. As for the Koiter model48, the
transverse displacement w must be sought in a space ⊆ H2(!).

2.3 Linear Naghdi shell model
Consider a shell body with reference surface �0(!). Again, let UÑ (x� , x3) = u(x�)a3 − x3 �(x�) be the representation formula
for the displacement vector field, with � ∈ TP �0(x�), TP �0(x�) being the tangent plane to the reference surface at the point
�0(x�); u represents an (infinitesimal) displacement from the reference surface, � denotes the (infinitesimal) rotation of the fibers
orthogonal to the middle surface. The linear Naghdi strain measures are then obtained by linearisation from Eqs. (1),

eÑ (u) =
1
2
(

∇�T0∇u + ∇u
T∇�0

)

,

kÑ (u, �) = −
1
2
(

∇�0T∇� + ∇�T∇�0
)

− 1
2
(

∇n0T∇u + ∇uT∇n0
)

,


Ñ (u, �) = ∇�0T � + ∇uT n0.

(8)

Then, solutions are found as the minimisers over a smooth set of vector fields u ∈  ⊆ H1(!,ℝ3), � ∈  ⊆ H1(!,ℝ2)
satisfying appropriate boundary conditions, of the linear Naghdi energy functional:

�Ñ (u, �) =
1
2 ∫
!

NÑ (u) ⋅ eÑ (u) dx +
1
2 ∫
!

MÑ (u, �) ⋅ kÑ (u, �) dx +
1
2 ∫
!

TÑ (u, �) ⋅ 
Ñ (u, �) dx −Wext. (9)
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Remark 4. For a plate-like body, Eqs. (8) reduce to:
eRM (v) =

1
2
(

∇v + ∇vT
)

, kRM (v, �) =
1
2
(

∇� + ∇�T
)

, 
RM (w, �) = ∇w − �, (10)
where u(x�) = v(x�) +w(x�) a3. In such a case the membrane and flexural problem are geometrically decoupled and a linear
coupling turns out to be possible only at the constitutive level. Eqs. (10)2,3 are the Reissner-Mindlin plate strain measures,
depending only by the transverse displacement w and the rotation �. Again, solutions are found as the minimisers over a smooth
set of vector fields w ∈ ⊆ H1(!), � ∈  ⊆ H1(!,ℝ2), satisfying appropriate boundary conditions, of the Reissner-Mindlin
energy functional:

�RM (w, �) =
1
2 ∫
!

MRM (w, �) ⋅ kRM (w, �) dx +
1
2 ∫
!

TRM (w, �) ⋅ 
RM (w, �) dx −Wext. (11)

Remark 5. By assuming the inner constraints 
Ñ = 0 and 
RM = 0, the linear Koiter shell model52 and the Kirchhoff-Love53,54
plate model are recovered, respectively. Solutions of such unshearable models must be sought in spaces  ⊆ H2(!,ℝ3),
 ⊆ H2(!), respectively.

3 FINITE ELEMENT FORMULATIONS AND IMPLEMENTATION DETAILS

Notation
We use nomenclature from55 related to finite element methods. We let ℎ (the mesh) be a partition of the domain ! into a finite
set of triangular cells ℎ = {T } with disjoint interiors:

∪T∈ℎT = !.

Each triangular cell T has circumradius ℎT , then ℎ ∶= maxT∈ℎ ℎT . We then denote the set of edges of Tℎ as  = {E}.  intℎ ⊂ ℎ
is the subset of edges on the interior of the mesh (i.e. not on the boundary). Normals to the edges of each cell are denoted
n. Functions u evaluated on opposite sides of an edge E are indicated by the subscripts + and −, giving the jump operator
JuK = u+ ⋅ n+ + u− ⋅ n−. We denote CGp ⊂ H1(!) the standard continuous Lagrangian finite element space of polynomial order
o constructed on the mesh ℎ. The notation f ∈ [CGp]n ⊂ Hs(!;ℝn) denotes a vector-valued function whose components
(f1,⋯ , fn) are each a member of CGp.

3.1 Background
As pointed out in the previous section, shearable models give rise to weak formulations with solution inH1 while unshearable
models give rise to weak formulations with solution inH2. It is well-known that producing conforming finite element method
discretisations ofH2 is not straightforward, although several elegant solutions are possible56,38,14,15. To bypass this issue, one
can choose to use shearable models even for very thin structures, even though in such cases shear strains are negligible. Shearable
models only requiresH1-conforming finite element methods which are significantly easier to implement than either discontinuous
Galerkin orH2-conforming finite element methods.
Unfortunately it is also the case that applying standardH1 conforming finite element methods leads to shear-locking in the

thin limit, since the finite element spaces are unable to properly represent the zero shear-strain 
 = 0 constraint asymptotically
enforced within the mathematical model as the thinness parameter goes to zero. A similar problem arises in shell problems
whenever pure bending displacements are non-inhibited:H1 conforming finite element methods for such bending-dominated
shells suffer of membrane-locking57,58,59. In other words, the discrete spaces are incompatible with the structural models.
A wide variety of locking-free numerical methods exist, including the methods of assumed natural strains34,60,61, enhanced

assumed strains62,63, discrete shear gap64, partial selective reduced integration36 and mixed variational15 approaches have been
developed to overcome this problem. Implementing these locking-free approaches is more complex than implementing the
standardH1-conforming finite element method as they require mixed formulations and special finite element function spaces.
Making these methods easier to code, use and adapt is one of the main goals of FENICS-SHELLS.
For alleviating shear-locking in the Reissner-Mindlin and Marguerre-von Kármán models we have chosen to implement a

Mixed Interpolation Tensorial Components (MITC) reduction operator. The MITC approach was introduced in the paper of
Bathe and Dvorkin11 for curing shear-locking in the finite element discretisation of the Reissner-Mindlin model. Other notable
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contributions along the same lines include the Durán-Liberman35 and the MITC7 and MITC934 elements. The success of the
various MITC elements for the Reissner-Mindlin problem rests on solid results in numerical analysis, e.g.34,65 . It has also been
shown numerically that MITC approach can be successful in solving membrane and shear locking issues in the linear and non-
linear Naghdi shell models61, although without rigorous mathematical justification. A fully general shell element with guaranteed
mathematical and numerical behaviour in membrane and bending-dominated regimes is still out of reach and mathematically
robust finite element design for shells can be considered an active research topic. We have chosen to implement a high-order
partial selective reduced integration (PSRI) method which was analysed for the linear Naghdi model in36.

3.2 The shear and membrane-locking issues
For notational convenience we drop the explicit RM suffix relating to the Reissner-Mindlin model in what follows. Informally,
when considering the Reissner-Mindlin plate model, shear-locking is the result of the Kirchhoff constraint (vanishing shear strain

)66:


 = ∇w − � = 0, (12)
being enforced on the discrete finite element spaces wℎ ∈ℎ ⊂ and �ℎ ∈ ℎ ⊂  for as the small thinness parameter � → 0.
The approximation power in the discrete finite element basis is inadequate to simultaneously represent the Kirchhoff (bending)
dominated mode and also provide a uniformly convergent approximation to the problem with respect to �.
More formally, denoting the continuous space of pure bending displacements (� = 0) as:

0 = {(w, �) ∈ × | ∇w − � = 0} , (13)
and the discrete solution (wℎ, �ℎ) ∈ ℎ ∶=ℎ ×ℎ, we seek solutions in a subspace ℎ0 ⊂ (ℎ ∩ 0) containing discrete pure
bending displacements:

ℎ0 =
{

(wℎ, �ℎ) ∈ℎ ×ℎ | ∇wℎ − �ℎ = 0
}

. (14)
It is not so hard to construct discretisations in which this requirement is quite catastrophic. Consider using standard H1(!)-
conforming linear Lagrangian elements for both fields,ℎ ∶= CG1 andℎ ∶= [CG1]2, and suppose fully clamped Dirichlet
conditions on all of the boundary, that is ℎ ⊂ H1

0 (!) and ℎ ⊂ H1
0 (!,ℝ

2). With piecewise linear functions for wℎ, ∇wℎ then
consists of piecewise constant functions. Furthermore, as �ℎ must be zero on the boundary, and we are searching for solutions in
the space ℎ0 where ∇wℎ = �ℎ, the only possible solution that our discrete space can represent is wℎ = 0 and �ℎ = 0. The finite
element model is overly stiff, hence the term ‘locking’.

The membrane-locking issue arises in the linear and non-linear Naghdi shell models and the Marguerre-von Kármán shallow
shell model. The locking issue can be motivated by a similar argument to the shear-locking issue and causes similarly poor results.
However, the precise circumstances under which membrane-locking can appear is a more subtle matter, and can depend on a
combination of geometry, boundary conditions and loading. We refer the reader to57 for an excellent discussion of locking in shell
finite element models. Here, we limit ourselves to remarks we consider strictly necessary to make our exposé understandable.
For the sake of brevity, we refer to the Naghdi shell model. In this case, the continuous space of pure bending displacements

(no membrane or shear strains) reads as:
0 = {(u, �) ∈  × | eN (u) = 0 and 
N (u, �) = 0}. (15)

When the thinness parameter goes to zero two distinct asymptotic behaviours emerge, depending on whether 0 is empty or not,
and thus on the shape of the shell and the Dirichlet boundary conditions applied on it. If 0 = ∅, pure bending is inhibited and
the shell carries the load mainly by membrane actions; this is the so called membrane-dominated regime. Conversely, whenever
0 ≠ ∅, pure bending is non-inhibited, the membrane and shearing contribution to the elastic energy vanish and the shell carries
the load by bending actions; this is the so called bending-dominated regime. When considering finite element discretisations,
this latter case is likely to suffer both membrane and shear locking, unless the discrete space ℎ0 is chosen so as to properly
approximate the space 0 of pure bending displacements. In any case, since a finite element formulation should perform well
regardless the asymptotic regimes, benchmark tests have to be provided for both membrane- and bending-dominated shells.

3.3 Mixed Interpolation of Tensorial Components (MITC) method
We use the MITC approach to deal with the shear-locking issue. The MITC approach is based on an underlying mixed variational
method, where the Reissner-Mindlin shear strains 
 are considered as an independent variable. One of the most attractive aspect
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FIGURE 2 Finite element spaces making up the Durán-Liberman element. Circles denote point evaluations for degrees of
freedom. Arrows denote point evaluations of tangential component for degrees of freedom. The Durán-Liberman has a total
of 21 degrees of freedom: 3 for the displacement wℎ, 12 for the rotations �ℎ, 3 for the shear strain 
ℎ, and 3 for the Lagrange
multiplier pℎ. Thanks to the static condensation at the cell level, the latter 6 degrees of freedom for 
ℎ and pℎ can be eliminated
during the assembling process, reducing the number of effective degree of freedom per element to 15.

of the MITC approach is that the final linear system of equations only contains the original primal unknown fields (wℎ, �ℎ)
despite the consideration of the shear strain field 
ℎ in the formulation.
The first step in constructing an MITC-type element is the correct identification of the function space (!;ℝ2) in which the

shear strain 
 lives. For any scalar field w ∈ H1(!) it holds that ∇w ∈ H(rot;!) where H(rot;!) is the Sobolev space of
square-integrable vector-valued functions with square-integrable rot:

H(rot;!) ∶=
{


 ∈ L2(!;ℝ2) | rot 
 ∶= )1
2 − )2
1 ∈ L2(!)
}

. (16)
Furthermore, for � ∈ H1(!;ℝ2) we have rot � ∈ L2(!) and thus it follows that


 = ∇w − � ∈  ≡ H(rot;!). (17)
Note that operator rot is synonymous with the operator curl in ℝ2.
Finite element approximation spaces that satisfy ℎ ⊂  consist of the well-known ‘curl/rot-conforming’ elements, namely

the Nédélec67 (or rotated Raviart-Thomas elements68 in ℝ2) of the first NEDn1 and second kind NEDn2, and the Brezzi-Douglas-
Fortin-Marini (BDFMn) elements69, where n is the element (polynomial) order. All of these finite element spaces are available
for use in FENICS 25,70,26. We refer the reader to55 for a full description of the mathematical construction of these elements,
and71 as a reference for the issues surrounding their implementation in FENICS.

For brevity, we shown only the development of the Durán-Liberman element35. This element can be considered the lowest order
MITC-type element with rigorous analytical convergence proofs. There is also an implementation ofMITC734 in FENICS-SHELLS
but do not show the development in this paper.
The starting point is the discrete counterpart of eq. (11):
�(wℎ, �ℎ) = �b(wℎ, �ℎ) +

1
2 ∫
!

T (wℎ, �ℎ) ⋅ 
(wℎ, �ℎ) dx −Wext, �b(wℎ, �ℎ) ∶=
1
2 ∫
!

M(wℎ, �ℎ) ⋅ k(wℎ, �ℎ) dx. (18)

The finite element spaces used in the construction of the Durán-Liberman element are continuous piecewise-linear Lagrangian
elements for the transverse displacementswℎ ∈ℎ ∶= CG1, continuous piecewise-quadratic vector-valued Lagrangian elements
for the rotations �ℎ ∈ ℎ ∶= [CG2]2 and, finally, the lowest-order Nédélec elements of the first kind for the shear strain

ℎ ∈  ∶= NED11. The product of these spaces then makes up the Durán-Liberman element, see Figure 2 .
The element NED1 is defined55 by the Ciarlet triple (T , ,) (cell, polynomial space, degrees of freedom):

T = triangle,  = [0(T )]2 + 1(T ),  = ∫
E

v ⋅ t p ds, for p ∈ 0(E), ∀ edge E ⊂ T , (19a)

1The original element construction of Durán and Liberman uses a slightly smaller quadratic space constructed as a sum of linear polynomials and quadratic bubbles. As
this space is not available in FENICS we use the full quadratic space instead.
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where T is the reference triangle with edges E with measure ds, 0 is the set of constant polynomial functions on the triangle T
or edge E, and 1(T ) is the polynomial space:

1(T ) =
{

s ∈ [1(T )]2 | s(x) ⋅ x = 0 ∀x ∈ T
}

. (20)
The ‘trick’ of the MITC approach is recognising that by modifying the shear strain field at the discrete level by applying a special
operator Rℎ that takes the primal to the conforming spaceH(rot;!) for the shear strains

Rℎ ∶
[

CG1 × [CG2]2
]

→ NED1 (21)
the element can be ‘unlocked’. For the Durán-Liberman element, the operator Rℎ can be defined by the following condition for
each cell T in the mesh ℎ:

∫
E

[(Rℎ[
(wℎ, �ℎ)] − 
ℎ) ⋅ t] p ds = 0,∀p ∈ 0(E), for each edge E. (22)

Note that (22) is very similar to the degree of freedom definition  in (19a). In effect, Rℎ ‘ties’ the degrees of freedom of the
transverse displacement and rotation space CG1 × [CG2]2 to an underlying NED1 space. Then, applying the operator Rℎ to (18)
gives:

�(wℎ, �ℎ) = �b(wℎ, �ℎ) +
1
2 ∫
!

T (Rℎ
(wℎ, �ℎ)) ⋅ Rℎ
(wℎ, �ℎ) dx −Wext. (23)

Remark 6. For the Reissner-Mindlin strain measure it holds thatRℎ
[


(wℎ, �ℎ)
]

= ∇wℎ−Rℎ�ℎ becauseRℎwℎ = wℎ by definition.
This application of the reduction operator to the rotation field is often found in the literature. However, in FENICS-SHELLS we
always apply the reduction operator to the complete shear-strain variable 
 .

The formulation and implementation of MITC in FENICS-SHELLS is slightly different to the standard approach. In our view it
is simpler to understand as it is purely variational and extends the MITC shear-locking cure quite naturally to the non-linear
models. Another key advantage is that it can be concisely expressed in UFL 26.
Starting with (18) and this time directly substituting in the conforming strain field 
ℎ ∈ ℎ gives:

�(wℎ, �ℎ, 
ℎ) = �b(wℎ, �ℎ) + ∫
!

T (
ℎ) ⋅ 
ℎ dx −Wext. (24)

We then ‘tie’ the tangential component of the conforming strain field 
ℎ ⋅ t to its counterpart calculated using the primal unknowns

 ⋅ t ≡ (∇w − �) ⋅ t using a Lagrange multiplier field pℎ ∈ NED1 that lives on all edges E ∈ ℎ of the mesh ℎ:

�(wℎ, �ℎ, 
ℎ, pℎ) = �b(wℎ, �ℎ) + ∫
!

T (
ℎ) ⋅ 
ℎ dx +
∑

E∈ℎ
∫
E

(
(wℎ, �ℎ) ⋅ t − 
ℎ ⋅ t) ⋅ (pℎ ⋅ t) ds −Wext. (25)

It is possible to implement the Durán-Liberman element in FENICS by directly expressing (25) using UFL. However, this comes
at the expense of two extra fields 
ℎ and pℎ over the standard MITC implementation.
Fortunately it is possible to eliminate both 
ℎ and pℎ at the cell-local level. To this end, we begin by defining the residual

F (q; q̃) = 0 as the usual Gâteaux derivative of (25) at a point qℎ ∶= (wℎ, �ℎ, 
ℎ, pℎ) in the direction of test functions q̃ ∶=
(w̃, �̃, 
̃ , p̃):

F (qℎ; q̃) ∶= Dq̃
[

�(qℎ)
]

= 0, ∀q̃ ∈ CG1 × [CG2]2 × NED1 × NED1, (26)
which gives:

F (qℎ; q̃) = ab(wℎ, �ℎ; w̃, �̃) + as(
ℎ; 
̃) + aΠℎ(wℎ, �ℎ, pℎ; 
̃) + aΠℎ(
ℎ; w̃, �̃, p̃) −Wext(q̃) = 0, (27a)
where:

ab(wℎ, �ℎ; w̃, �̃) = ∫
!

M(wℎ, �ℎ) ⋅ k(w̃, �̃) dx, (27b)

as(
ℎ; 
̃) = ∫
!

T (
ℎ) ⋅ 
̃ dx, (27c)

aΠℎ(wℎ, �ℎ, 
ℎ; p̃) =
∑

E∈ℎ
∫
E

(
(wℎ, �ℎ) ⋅ t − 
ℎ ⋅ t) ⋅ (p̃ ⋅ t) ds. (27d)
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Deriving the Jacobian involves taking the Gâteaux derivative again, this time at a point qℎ in the direction of trial functions
q ∶= (w, �, 
, p):

J (qℎ; q; q̃) = Dq
[

F (qℎ; q̃)
]

. (28)
Because the Reissner-Mindlin equations are linear, this operation is trivial, giving:

J (qℎ; q; q̃) = ab(w, �; w̃, �̃) + as(
; 
̃) + aΠℎ(w, �, p; 
̃) + aΠℎ(
; w̃, �̃, p̃). (29)
Using a standard Newton method, given an initial guess q0 we seek for k = 0,… , n solutions �q ∶= (�w, ��, �
, �p) to the linear
systems:

J (qk; q; q̃) �q = −F (qk; q̃), (30)
qk+1 = qk + �q. (31)

The left and right-hand side of the discrete Newton linear system corresponding to (29) and (27) respectively, has the following
block structure:

⎡

⎢

⎢

⎣

A 0 C
0 B D
CT D 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�z
�

�p

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

bz
b

bp

⎤

⎥

⎥

⎦

, (32)

where �z ∶= (�w, ��) and A, B correspond to the matrices associated with bilinear forms ab and as in (29), respectively. The
matrix D is a diagonal-form edge mass matrix arising from the bilinear form:

−
∑

E∈ℎ
∫
E

(
 ⋅ t) ⋅ (p̃ ⋅ t) ds, (33)

and C arises from the bilinear form:
∑

E∈ℎ
∫
E

(
(wℎ, �ℎ) ⋅ t) ⋅ (p̃ ⋅ t) ds. (34)

The notation b(⋅) corresponds to a splitting of the residual vector into its sub-blocks on the functions z, 
 and p.
Solving for �
 with row two of (32):

�p = D−1(b
 − B�
), (35)
and for �
 with row three of (32)

�
 = D−1(bp − CT �z), (36)
and then eliminating �
 from (35) using: (36) gives

�p = D−1(b
 − BD−1bp + BD−1CT �z), (37)
before finally eliminating �p from the first row of (32) using (37) and rearranging to give:

As�z = bs, (38a)
As = (A + CD−1BD−1CT ), (38b)
bs = bz + CD−1BD−1bp − CD−1b
 . (38c)

Note again thatD is diagonal and can thus be cheaply inverted at the cell-local level allowing (38) to be formed locally as well. The
above procedure is implemented at the element level using a custom assembly function written in C++. FENICS automatically
returns the dense cell-local version of the block structured system (32) corresponding to the Jacobian (29) and residual (27)
forms. We then use the Eigen dense linear algebra package72 to split up (32) into its constituent blocks before calculating As
and bs using (38). The cell-local contributions As and bs are then assembled into a sparse matrix and vector associated with
global displacement unknowns �z only. Solving for the global unknown �z, we can then reconstruct the eliminated unknowns �

and �p by post-processing at the cell-local level using (36) and (35), respectively. A Python code showing how to define the
Reissner-Mindlin problem in FENICS-SHELLS is given in Figure 3 . The special assembling procedure including the elimination
of �
 and �p at the local level is performed by the custom assembling routines included in FENICS-SHELLS (line 44 in Figure 3 ).
The above procedure applies directly to the case of models with non-linear strain measures, e.g. the non-linear Naghdi shell

model (see Section 2.1). The tying term in the Lagrangian is simply re-written using the appropriate strain measure 
N :
∑

E∈ℎ
∫
E

(
N (uℎ, �ℎ) ⋅ t − 
Nℎ ⋅ t) ⋅ (pℎ ⋅ t) ds, (39)
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1 from dolfin import *; import fenics_shells as fs; import matplotlib.pyplot as plt
2 mesh = UnitSquareMesh(32, 32)
3 # Duran-Liberman element
4 element = MixedElement([VectorElement("Lagrange", triangle, 2), # rotation (theta)
5 FiniteElement("Lagrange", triangle, 1), # displacment (w)
6 FiniteElement("N1curl", triangle, 1), # reduced shear strain (R_gamma)
7 FiniteElement("N1curl", triangle, 1)]) # Lagrange multiplier (p)
8 # Special projected Function Space (this is defined in fenics-shell)
9 Q = fs.ProjectedFunctionSpace(mesh, element, num_projected_subspaces=2)

10 Q_F = Q.full_space # Full function space for the mixed variational formulation
11 # Definitions for the variational formulations
12 q_, q, q_t = Function(Q_F),TrialFunction(Q_F),TestFunction(Q_F)
13 theta_, w_, R_gamma_, p_ = split(q_) # rotations, transverse displacement, shear strain, Lagrange multipliers.
14 # Material properties
15 E = Constant(10920.0); nu = Constant(0.3); kappa = Constant(5.0/6.0); t = Constant(0.001)
16 D = (E*t**3)/(24.0*(1.0 - nu**2))
17 # Deformations
18 k = sym(grad(theta_)) # Curvature
19 gamma = grad(w_) - theta_ # Shear strain
20 # Duran-Liberman tying
21 Pi_R = fs.inner_e(gamma - R_gamma_, p_) # This is defined in fenics_shells
22 # Energy densities
23 psi_b = D*((1.0 - nu)*tr(k*k) + nu*(tr(k))**2) # Bending
24 psi_s = ((E*kappa*t)/(4.0*(1.0 + nu)))*inner(R_gamma_, R_gamma_) # Shear
25 # External work
26 f = Constant(1.0)
27 W_ext = inner(f*t**3, w_)*dx
28 # Mixed variational forms
29 Pi = psi_M*dx + psi_T*dx + Pi_R - W_ext # Energy
30 F = derivative(Pi, q_, q_t) # Residual
31 J = derivative(F, q_, q) # Jacobian
32 # Assemble the linear system: the special projected assembler returns a linear system in the primal variables (theta,w)
33 # eliminating the local variables (R_gamma_, p_) at the element level
34 A, b = fs.assemble(Q, J, -F)
35 bc = DirichletBC(Q, Constant((0.0, 0.0, 0.0)), "on_boundary")
36 bc.apply(A, b)
37 # Solve the linear system in the primal space (theta, w)
38 theta_w_ = Function(Q) # (theta, w)
39 solver = LUSolver("mumps") # Use a direct solver
40 solver.solve(A, theta_w_.vector(), b)
41 # Postprocessing
42 theta_sol, w_sol = theta_w_.split(deepcopy=True) # extract rotation and displacement
43 plot(w_sol, title = "Displacement"); plt.savefig("w.png");plt.close(); plot(theta_sol, title = "Rotation"); plt.savefig("theta.png")

FIGURE 3 Complete Python code for solving clamped Reissner-Mindlin problem with uniform transverse loading.

before being consistently linearised at the symbolic level using the tools in UFL. The resulting discrete Newton system has
precisely the same block form as (32), and so the same linear algebra assembly procedure can be used to eliminate the auxiliary
unknowns 
Nℎ and pℎ. We refer the reader to the documented demo Non-linear Naghdi roll-up cantilever 24 for an exemple of
application of our MITC implementation to non-linear shells. Note, however, that we explicitly cure here only shear locking. Our
high-level approach makes it relatively straightforward to directly apply MITC to user-specified thin structural models.

3.4 Partial Selective Reduced Integration (PSRI)
We use the PSRI approach to simultaneously deal with the shear- and membrane-locking issues in the shell-like models. Our
method is inspired by, but not identical to the one shown in36, which contains convergence proofs for the linear Naghdi model.
The PSRI approach can be viewed as a reduced integration method36, a stabilised mixed method73, or an augmented Lagrangian
method74.
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Following36 we begin with the discrete linear Naghdi energy functional:
�Ñ (u, �) =

1
2 ∫
!

NÑ (uℎ) ⋅ eÑ (uℎ) dx +
1
2 ∫
!

MÑ (uℎ, �ℎ) ⋅ kÑ (uℎ, �ℎ) dx +
1
2 ∫
!

TÑ (uℎ, �ℎ) ⋅ 
Ñ (uℎ, �ℎ) dx −Wext, (40)

or in shortened form:
�Ñ (u, �) = �m(uℎ) +�b(uℎ, �ℎ) +�s(uℎ, �ℎ) −Wext, (41)

where�m(uℎ),�b(uℎ, �ℎ) and�s(uℎ, �ℎ) correspond to the membrane, bending and shear energies of the linear Naghdi model,
respectively.
The finite element spaces used in the construction of the PSRI element are second-order continuous piecewise-quadratic

cubic-bubble-enriched Lagrangian elements for the displacements uℎ ∈ ℎ ∶= [CG2 + B3]3 and second-order continuous
piecewise-quadratic Lagrangian elements for the rotations � ∈ ℎ ∶= [CG2]2. The finite element space of cubic bubbles B3 is
defined by the Ciarlet triple (T , ,):

T = triangle,  =
{

v ∈ 3(T ) | v|E = 0
}

,  = v (1∕3, 1∕3) . (42)
We then introduce a parameter � ∈ ℝ that splits the membrane and shear energy in the energy functional into a weighted sum of
two parts:

�Ñ (u, �) = ��m(uℎ) + (1 − �)�m(uℎ) +�b(uℎ, �ℎ) + ��s(uℎ, �ℎ) + (1 − �)�s(uℎ, �ℎ) −Wext, (43)
to which we apply reduced integration to the parts weighted by the factor 1 − �. PSRI is straightforward to implement in FEniCS
using UFL25. We use a fourth-order accurate quadrature scheme on the portions of the energy in eq. 3.4 weighted by � and a
second-order accurate quadrature scheme on the portion of the energy weighted by 1 − �. As discussed in36 a more refined
interpretation of PSRI is a stabilised mixed formulation where the extra stress unknowns are projected out at assembly time. The
lowest-order design in36 suggests using a zero-order accurate (one-point) quadrature scheme, however in practice we have found
this to produce spurious (zero-energy) modes.
The paper36 also suggests setting � = 1. This choice is sufficient to obtain analytical convergence results. However, for the

Reissner-Mindlin problem, this leads to suboptimal convergence rates75, and a better choice in practice is setting �T = �2∕ℎ2T for
each T ∈ ℎ. In numerical experiments we have found that the performance of the method is robust with respect to the parameter
�. The combination of a high-order polynomial space with a PSRI approach for alleviating membrane- and shear-locking seems
both simple and effective.

3.5 Curved Shells
Finally, we describe how the curved shell geometry required for the linear and non-linear Naghdi models is implemented in
FEniCS. We use an exact geometry approach, describing the mid-surface of the shell as an closed-form map �0 ∶ ! → ℝ3. For
example, for a cylindrical geometry we have (x0, x1) ∈ ! ∶= [−�∕2, �∕2] × [0, L] and the map �0 = {� sin x0, x1, � cos x0}.
From this, we can calculate approximations of the metric a0 and curvature b0 tensors and the normal n0 of the middle surface from
the map �0 using UFL. Further derived quantities required, e.g. the contravariant components of the metric tensor a��0 and the
elasticity tensor A���� , can be straightforwardly expressed using UFL. An abbreviated Python code giving an indication for how
the curved shell model can be implemented is given in Figure 4 , extracted from the documented demo Clamped semi-cylindrical
Naghdi shell under point load provided in the supplementary material.
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1 from dolfin import *; from mshr import *; import numpy as np

2 rho = 1.016; L = 3.048 # radius and length

3 mesh = generate_mesh(Rectangle(Point(-np.pi/2., 0.), Point(np.pi/2., L)), 21)

4 # Material properties and thickness

5 E, nu, t = 2.0685E7, 0.3, 0.03; mu = E/(2.0*(1.0 + nu)); lmbda = 2.0*mu*nu/(1.0 - 2.0*nu)

6 # Cylindrical map

7 initial_shape = Expression(('r*sin(x[0])','x[1]','r*cos(x[0])'), r=rho, degree = 4)

8 V_phi = FunctionSpace(mesh, VectorElement("Lagrange", triangle, degree = 2, dim = 3))

9 phi0 = project(initial_shape, V_phi)

10 # Normal

11 V_n = FunctionSpace(mesh, VectorElement("Lagrange", triangle, degree = 1, dim = 3))

12 nv = cross(phi0.dx(0), phi0.dx(1))

13 n0 = project(nv/sqrt(inner(nv, nv)), V_n) # surface normal in the reference configuration

14 # Director

15 director = lambda beta: as_vector([sin(beta[1])*cos(beta[0]), -sin(beta[0]), cos(beta[1])*cos(beta[0])])

16 beta0_expression = Expression(["atan2(-n[1], sqrt(pow(n[0],2) + pow(n[2],2)))", "atan2(n[0],n[2])"], n = n0, degree=4)

17 V_beta = FunctionSpace(mesh, VectorElement("Lagrange", triangle, degree = 2, dim = 2))

18 beta0 = project(beta0_expression, V_beta)

19 d0 = director(beta0) # director in the reference configuration

20 # Finite element space

21 P2, bubble = FiniteElement("Lagrange", triangle, degree = 2), FiniteElement("B", triangle, degree = 3)

22 enriched = P2 + bubble

23 U, Beta = VectorElement(enriched, dim=3), VectorElement(P2, dim=2) # element for displacements and rotations

24 Q = FunctionSpace(mesh, MixedElement([U, Beta])) # Mixed element

25 # Definitions of functions, test functions, and trial functions

26 q_ = Function(Q); q, q_t = TrialFunction(Q), TestFunction(Q); u_, beta_ = split(q_)

27 # Kinematics

28 F = grad(u_) + grad(phi0) # gradient of the transformation

29 d = director(beta_+ beta0) # direction

30 # Initial metric and curvature

31 a0 = grad(phi0).T*grad(phi0); a0_c = inv(a0); j0 = det(a0)

32 b0 = -0.5*(grad(phi0).T*grad(d0) + grad(d0).T*grad(phi0))

33 # Deformations

34 e = lambda F: 0.5*(F.T*F - a0) # membrane deformation

35 k = lambda F, d: -0.5*(F.T*grad(d) + grad(d).T*F) - b0 # bending deformation

36 gamma = lambda F, d: F.T*d-grad(phi0).T*d0 # shear deformation

37 # Contravariant Hooke's tensor.

38 i, j, l, m = Index(), Index(), Index(), Index()

39 A = as_tensor((((2.0*lmbda*mu)/(lmbda + 2.0*mu))*a0_c[i,j]*a0_c[l,m] + mu*(a0_c[i,l]*a0_c[j,m] + a0_c[i,m]*a0_c[j,l])), [i,j,l,m])

40 # Stress

41 N = as_tensor(t*A[i,j,l,m]*e(F)[l,m],[i, j]) # membrane stress

42 M = as_tensor((t**3/12.0)*A[i,j,l,m]*k(F,d)[l,m],[i, j]) # bending moment

43 T = as_tensor(t*mu*a0_c[i,j]*gamma(F,d)[j], [i]) # shear stress

44 # Energy densities

45 psi_m = 0.5*inner(N, e(F)) # membrane energy

46 psi_b = 0.5*inner(M, k(F,d)) # bending energy

47 psi_s = 0.5*inner(T, gamma(F,d)) # shear energy

48 # Total energy functional including PSRI

49 h = CellDiameter(mesh); alpha = project(t**2/h**2, FunctionSpace(mesh,'DG',0))

50 dx_h = dx(metadata={'quadrature_degree': 2}) # measure with reduced integration

51 Pi_PSRI = psi_b*sqrt(j0)*dx + alpha*psi_m*sqrt(j0)*dx + alpha*psi_s*sqrt(j0)*dx

52 + (1.0 - alpha)*psi_s*sqrt(j0)*dx_h + (1.0 - alpha)*psi_m*sqrt(j0)*dx_h

53 # First and second directional derivatives to calculate residual and Hessian

54 F = derivative(Pi_PSRI, q_, q_t)

55 J = derivative(F, q_, q)

FIGURE 4 Abbreviated Python code showing construction of energies for half-cylinder non-linear Naghdi model (see
Section 4.4). For further details we refer the reader to the documented demo Clamped semi-cylindrical shell under point load
provided as the supplementary material.
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FIGURE 5 Chinosi clamped plate problem solved using Durán–Liberman element: Transverse displacements (scalar field,
density plot) and rotations (vector field, quiver plot, 50% of points discarded) (left). Convergence to Chinosi analytical solution
on sequence of uniformly refined meshes inH1 and L2 norms for t = 10−4 (right).

4 EXAMPLES

To verify the convergence of the adopted discretisation techniques and illustrate the capabilities of the FENICS-SHELLS library,
we report some benchmark examples. We select eight test cases, including two linear Reissner-Mindlin plates (Section 4.1), two
for linear Naghdi shells (Section 4.2), one for Marguerre-von Kármán shallow shells (Section 4.3), and three for nonlinear Naghdi
shells (Section 4.4). The linear plate examples are discussed in more detail for testing the performances of our implementation
of the MITC formulation; we also showcase here an adaptive remeshing example included in FENICS-SHELLS. For linear shells
we consider both membrane- and bending-dominated regimes while the non-linear shell examples serve to check them in large
displacements and rotation regimes and are based on the FENICS-SHELLS PSRI for curing the membrane and bending locking.
The example on the thermal buckling of a Marguerre-von Kármán shallow shells of Section 4.3 is proposed here for the first
time as a benchmark test of finite element shell models.

4.1 Reissner-Mindlin plate
In this section we demonstrate the correct convergence rate of our implementation of the Durán–Liberman element for the
Reissner-Mindlin plate problem towards a manufactured analytical solution. Then, we show an implementation of a residual-
based a posteriori error estimator which we use to drive mesh adaptivity, resolving the solution in a re-entrant plate problem with
strong boundary layers.

4.1.1 Clamped square plate
We solve the problem of a unit-square Reissner-Mindlin plate Ω = [0, 1] × [0, 1] clamped with uniform thickness t = � = 10−4,
isotropic material behaviour with a Poisson ratio � = 0.3. The plate is clamped on the boundary (homogeneous Dirichlet boundary
conditions on the transverse displacements and rotations) and loaded by a uniform pressure. The closed-form polynomial
expressions for the loading and the resulting solution fields are given in Appendix A.
Figure 5 shows the solution to the above problem obtained with FENICS-SHELLS using a 32 × 32 cross-pattern mesh (left)

and the error with respect to the analytical solution on a sequence of uniformly refined meshes in both theH1 and L2 norms
(right). The convergence result given in the original paper of Durán and Liberman35 is:

||� − �ℎ||H1(!,ℝ2) + ||w −wℎ||H1(!) ≤ Cℎ||f ||L2(!), (44)
where C is some unknown positive constant independent of the cell size ℎ, corresponding to a linear convergence in theH1-norm
for both the transverse displacements and rotation variables. Although no proof is given in35 we achieve quadratic convergence for
both variables in the L2 norm, the canonical ‘one order higher convergence in L2’ behaviour. Figure 6 shows the convergence
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FIGURE 6 Convergence of Reissner-Mindlin problem discretised with Durán–Liberman element to Chinosi analytical solution
for varying thickness parameter t. Left: Error for the transverse displacementw (H1-norm) as a function of the mesh size ℎ. Right:
Error for the rotation field � (H1-norm). In the latter case all lines lie on top of each other (convergence behaviour independent
of t). We achieve optimal convergence in all cases.

in theH1-norm of the transverse displacement w and the rotations � for varying thickness t. We see a very slight deterioration of
the error for a thick plate, but the rate of convergence is nearly identical for thick through to very thin plates.
In conclusion, this benchmark indicates that the implementation of the Durán-Liberman element in FENICS-SHELLS is

locking-free and optimally convergent. We remark that a finite element method designed without consideration for locking
would not converge at all for this problem. A commented code for this test case is given in the documented demo Clamped
Reissner-Mindlin plate under uniform load (see supplementary material).

4.1.2 Partly-clamped L-shaped plate
This example shows how sophisticated and efficient adaptive remeshing strategies can be easily implemented using FENICS-
SHELLS. We consider the a posteriori error estimator proposed in76, which is similar to the one developed in77, but it includes
extra terms that control the error at boundaries induced by the strong boundary layer present78 in the Reissner-Mindlin problem as
� → 0. The full specification of the error indicator is given in Appendix B. It is possible to implement these complex expressions
in UFL with just a few lines of code and a demo in FENICS-SHELLS demonstrates the procedure.

We consider the problem of a non-convex L-shaped plate with a re-entrant corner clamped along the two edges that form the
re-entrant corner, and the other four sides left free Figure 7 . The plate is loaded with a uniform transverse load f scaled with the
cube of the plate thickness t3. The material parameters are the same as before. The difficulties of resolving the low regularity
solution in the straight corners and in the re-entrant corner, in addition to the strong boundary layers on the free edges, means
that a uniform refinement strategy will be very inefficient. Using an a posteriori error estimator to guide the refinement process
can lead to orders of magnitude efficiency improvements.

Because no exact analytical solution is known for the studied problem we cannot calculate the exact error. Therefore we resort
to comparing the behaviour of the error estimator under both uniform and adaptive refinement strategies.

Figure 8 a shows the convergence of the error estimator for a moderately thick plate t = 10−1 using adaptive (blue solid) and
uniform (green dashed) refinement. We can see that using uniform refinement we achieve an algebraic convergence rate of only
(d−1∕4) where d is the number of degrees of freedom for the discrete system. This corresponds to a classical convergence rate
of (ℎ1∕2). This sub-optimal behaviour is expected given the low regularity of the solution particularly in the re-entrant corner.
The convergence of the adaptive scheme initially matches that for the uniform refinement before increasing to (d−1∕2) due to
the strong local refinements in the re-entrant corner region, and also in the other corners during the latter refinement steps. In
Figure 7 a we show the meshes at the 2nd and 6th adaptive refinements, with 2,499 and 10,494 degrees of freedom, respectively.
The strong refinement near the re-entrant corner is clearly evident.

Critically, we can achieve the same level of convergence with significantly fewer degrees of freedom using the adaptive scheme.
Taking the most refined uniformly meshed problem, with 2,365,443 degrees of freedom, we can reach the roughly the same level
of error using 123,495 degrees of freedom with the adaptive strategy.
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(a) Thick plate (t = 10−1) (b) Thin plate (t = 10−4)
FIGURE 7 Meshes after adaptive remeshing at different refinement levels (3rd and 6th level) for thick and thin plates. The
increased refinement on the free boundaries for thin plates capture the strong boundary layer effect as t→ 0.

103 104 105 106

Number of degrees of freedom d

10 3

10 2

10 1

Er
ro

r e
st

im
at

or
 

Adaptive refinement
Uniform refinement

(d 1/2)
(d 1/4)

(a) Thick plate (t = 10−1)
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(b) Thin plate (t = 10−4)
FIGURE 8 Plot of error estimator � against the number of cells in the L-shaped plate problem with using adaptive and uniform
refinement. The rate of convergence is significantly improved using the adaptive refinement strategy compared with a uniform
refinement strategy.

The trends for a very thin plate with t = 10−4 shown in Figure 8 b and Figure 7 b are broadly similar to those in Figure 7 a.
However, in addition, because of the presence of the strong boundary layer on the free edges as t → 0, we can see that the error
indicator preferentially refines these regions as well as the re-entrant corner.

4.2 Linear Naghdi shell
In this section we demonstrate the performance of the finite element discretisation of the Naghdi linear shell model implemented
in the FENICS-SHELLS library. The numerical results presented here are based the PSRI formulation. To verify the discretisation
in both membrane- and bending dominated regimes two well known benchmark examples have been chosen, namely, a partly
clamped hyperbolic paraboloid (bending-dominated test) and an axisymmetric hyperboloid with clamped ends (membrane-
dominated test). In both cases, the computational domain is a rectangular domain ! which is mapped to the surface in ℝ3 through
the action of the map �0.

4.2.1 Partly clamped hyperbolic paraboloid
We consider a thin shell whose middle surface is an hyperbolic paraboloid; the shell is clamped on one of its edge and subjected
to a uniform load in the vertical direction, see Figure 9 for details. This is an excellent bending dominated benchmark problem to
test a FE formulation with respect to membrane-locking issues79. The initial shape is the analytical surface �0 = {x0, x1, x20−x21}with (x0, x1) ∈ [−1∕2, 1∕2]×[−1∕2, 1∕2]. For the simulation we set Poisson ratio � = 0.3. The convergence analysis is performed
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FIGURE 9 Partly clamped hyperbolic paraboloid with linear Naghdi shell model: initial shape (left), convergence plot (centre),
and deformed shape (right). We obtain convergence of (d−1) in the energy for this problem.

for thicknesses t = 10−n for n = 1, 2, 3, 4 and obtained by setting the uniform pressure load to p proportional t. Convergence
rates in strain energy are reported for different values of the dimensionless thinness parameter t = �. The deformed shape of the
shell shows two zones corresponding to radically different shell behaviours: a zone where geometry and constraints prevent pure
bending displacements (inhibited zone) and a zone where they are allowed (non-inhibited zone). For very thin shells this implies
a sharp change of the shell stiffness across the boundary separating the two zones, born out by the bending energy localisation80.

4.2.2 Axisymmetric hyperboloid with clamped ends
We consider a thin shell whosemiddle surface is an hyperboloid of revolution; the shell is clamped on both its edges and subjected to
a surface axisymmetric normal pressure, so that symmetry arguments enable us to solve the problem over a smaller computational
domain (1/8th of the whole domain), see Figure 10 for details. This is a well-posed membrane dominated benchmark problem81.
The initial shape is the analytical surface �0 = {cos x0 cosh x1, sin x0 cosh x1, sinh x1} with (x0, x1) ∈ [0, �∕2] × [−1, 0]. For the
simulation we set Poisson ratio � = 1∕3 and the pressure load f = f0 cos(2x0). Convergence rates in strain energy are reported
for different values of the thinness parameter t. The deformed shape of the shell shows a boundary layer of width ≈ 6√t near the
clamped edge can be recognised, where the mesh must adequately refined for proper convergence. These results are in agreement
to what is reported in the literature81.

FIGURE 10 Clamped hyperboloid: initial shape (left), convergence plot (centre), and deformed shape (right).We obtain
convergence of (d−1) in the energy for this problem. This convergence requires strong refinement in the region of the boundary
layer, shown on the deformed shape (right).
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4.3 Marguerre-von Kármán shallow shell
We discuss the performance finite element discretisations of the nonlinear Marguerre-von Kármán shallow shell model (see
Section 2.2) implemented in the FENICS-SHELLS library. We compare here the results obtained with the MITC and PSRI
formulations.

4.3.1 Lenticular plate with inelastic curvature
We consider an initially flat isotropic linear elastic disk of radius a with lenticular thickness subject to a through-the-thickness
temperature gradient. Thus, the initial shape of the plate is the disk x20 +x21 ≤ a2 and the thickness varies as (1−x20∕a2 −x21∕a2) t,where t is the maximal thickness at the center. This special shape has been proposed by Mansfield39,44 to avoid boundary layer
effects and obtain a prestressed plate allowing for an exact analytical solution in the nonlinear regime. The temperature gradient
is modelled as a uniform isotropic inelastic curvature k̄ with k̄xx = k̄yy = kT and k̄xy = 0 (with x0 = x, x1 = y). Mansfield has
shown that in the framework of the von Kármán model the exact solution of the problem is with uniform curvature in space. The
curvature tensor at the equilibrium is with kxy = 0 and

⎧

⎪

⎨

⎪

⎩

for kT ≤ k∗T , kx = ky ∶ kx +
4

(1 + �)2
k3x
k∗2T

= kT

for kT > k∗T , kx, ky = kT ±
√

k2T − k
∗2
T

, with k∗T =
t
r2

2
1 + �

√

2(7 + �)
(1 + �)

. (45)

For kT ≪ k∗T , the behaviour is approximately linear. The equilibrium curvature k is spherical and close to k̄. However, conforming
the plate to a spherical surface implies membrane extension. For kT ≫ k∗T , the extensional deformation becomes too expensive
from the energetic point of view and the minimal energy configurations are approximately cylindrical and bending-dominated.
The critical value k∗T corresponds to a bifurcation from the spherical shape. For k ≃ k∗T bending and extensional energies are of
the same order. In the perfectly isotropic case, for k > k∗T the plate is neutrally stable: all the shapes obtained by rotating the
curvature axis are still solutions of the problem. This structure was a source of inspiration for several recent works on morphing
plates and shells4,5,7.
We perform simulations increasing the inelastic curvature kT , for a Poisson ration � = 0.3 and maximum thickness t = 0.01.

The Young modulus has not influence here. To break the rotational symmetry, we introduce a slight imperfection in the inelastic
curvature imposing k̄x = kT ∕�, k̄y = kT � with � = 0.998. Figure 11 reports the results obtained with the MITC and the PSRI
discretisations for the shearable version of the model exposed in Section 2.2. We use uniform unstructured triangular meshes and
parametrise the mesh size by the number of division n along the radius. To avoid rigid body motions, we applied suitable pointwise
Dirichlet boundary conditions. Namely we set to zero all the components of the displacement at the center, the displacement in x
direction at (0, a) and the displacement in y direction at (a, 0). The analytical solution (45) is reported in the plot as solid blue line.
The results obtained with both the discretisations converge to the analytical solution. However, PSRI converges much quickly
than MITC, giving very good results even with n = 5. A possible explanation is that membrane locking is not cured in our MITC
implementation. We conclude that the PSRI technique introduced in FENICS-SHELLS is a very efficient discretisation to cure
both shear and membrane locking in the weakly nonlinear regime. This will be further tested and assessed in the next Section. To
introduce fully nonlinear models, we compare in Figure 12 the results obtained with the fully nonlinear Naghdi shell model and
the Marguerre-von Kármán shallow shell model. In both cases we use the PSRI discretisation. As expected45, the results confirm
that Marguerre-von Kármán model can safely be used to approximate the Naghdi model for sufficiently small loadings, namely
for curvatures of the order of a2∕t. More surprisingly, for the present test the discrepancies with respect the fully nonlinear model
remains tolerable also for k ≃ 50 a2∕t. The documented demo Buckling of a heated von Kármán plate in the supplementary
material includes the full commented code for the Marguerre-von Kármán shallow shell with PRSI discretisation. An extension
of this problem to the case of an orthotropic material is included in FENICS-SHELLS as a further documented demo in order to
illustrate some basic tools for modelling composite laminates, that we do not explicitly comment in this paper.

4.4 Nonlinear Naghdi shell
We demonstrate here the performance of the finite element discretisation of the nonlinear Naghdi shell model implemented in the
FENICS-SHELLS library. To test the predictive capability of the formulation in the large displacements and rotations regime we
selected three well known benchmark problems, see82 and references therein.
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before the bifurcation
after the bifurcation

FIGURE 11 Lenticular orthotropic plate. Bottom row: Bifurcation diagram for the curvatures kx and ky at the equilibrium as
a function of the temperature loading. The curvature values reported in the plots as dots are the space average extracted from
the finite element results with the MITC (left) and PRSI (right) models with uniform unstructured meshes with n ∈ [0, 5, 10]
divisions along the radius. The top row: Sketch of the lenticular plate (left) and snapshots of the equilibrium shapes before
(center) and after (right) the bifurcation. The results are for a2∕t = 100 and � = 0.3.
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FIGURE 12 Lenticular orthotropic plate. Comparison of the results obtained with the von Kármán and the Naghdi model using
PSRI discretisation and an unstructured uniform mesh with n = 5 division along the radius. The results are for a2∕t = 100 and
� = 0.3.

4.4.1 Cantilever plate under end moment
We consider a thin strip clamped on one of its edges and subjected to a momentM on the other edge, see Figure 13 for details.
In its natural configuration the shell occupies a flat rectangular domain of width b, length L. In the numerical simulations we set
L = 12b, thickness t = b∕10, and Poisson ratio � = 0. When increasing, the loading the plate bends until it completely rolls up
forM = 2�EI∕L, where I = t3∕12. The normalised vertical and horizontal displacements at the free end have the analytical
expressions w∕L = (1 − cos 2��)∕(2��) and v∕L = sin (2��)∕(2��) − 1, respectively, where � =M∕Mmax. A comparison
between the finite element and analytical solution in terms of load-deflection curves is reported in Figure 13 . The numerical
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Analytical solution 
MITC  x1-displacement 

MITC  x3-displacement 

M = 0.5 Mmax

M = Mmax

FIGURE 13 Cantilever plate under end moment. Left: initial geometry and loading. Right: Comparison between analytical
and numerical solution (MITC) for the moment-displacement diagram, where the insets show the deformed configurations
forM = 0.5Mmax andM = Mmax. We report here the results for displacement at the free end in the X1 and X3 directions,
normalised with the initial length L.

solution is computed by discretising the domain with a 48× 4 element mesh and shows an excellent agreement with the analytical
one. The insets show the deformed configurations of the plate for two values of the end moment.

4.4.2 Slit annular plate under end shear force
We consider a slit annular plate of internal radius R1 = 6 and external radius R2 = 10 clamped on one of its edges and subjected
to a line shear load p on the other edge, see Figure 14 for details. A comparison between the finite element and reference solution

Abaqus S4R (Sze)

Point A - MITC
Point B  - MITC

FIGURE 14 Slit annular plate subjected to a line vertical load. The load-deflection diagram compare the numerical solution
obtained with FENICS-SHELLS MITC discretisation with a reference solution (Sze83, Abaqus S4R). Right: geometry and loading;
Left: final deformed configuration. Excellent agreement between the result of Sze83 and FENICS-SHELLS is achieved.

in terms of load-deflection curves is reported in Figure 14 , where we set the thickness t = 0.03, Poisson ratio � = 0 and a
Maximum load p = 0.8E, withE = 21×106. The numerical solution is computed by discretising the domain with a 28−divisions
unstructured mesh and the MITC technique. The reference solution83 is computed on a 10 × 80 ABAQUS S4R-element mesh.
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4.4.3 Clamped semi-cylindrical shell under point load
We consider a semi-cylindrical shell clamped on one of its curved edges and subjected to a point load P at the centre of the
free curved edge. Along its straight longitudinal edges the transverse displacement and the normal rotation are restrained, see
Figure 15 for details. The computational domain is a rectangle (x0, x1) ∈ [−�∕2, �∕2]×[0, 3.048]which is mapped to the natural

(Abaqus S4R (Sze)
PSRI

FIGURE 15 Clamped semi-cylindrical shell under point load. Left: Initial configuration and boundary conditions. Right:
Comparison of the results of the PRSI implementation with a reference solution (Sze83, Abaqus S4R). The insets show the
deformed configurations for P = Pmax and P = Pmax∕2. Notice the stiffening of the shell beyond a load of around 750N.

configuration semi-cylindrical shell of radius � = 1.016 through the initial transformation �0(x0, x1) = {� sin x0, x1, � cos x0}. A
comparison between the FE and reference solution in terms of load-deflection curves is reported in Figure 15 for the thickness
t = 0.03, Young modulus E = 2.0685× 107, Poisson ratio � = 0.3, and a maximum load Pmax = 2000. The numerical solution is
computed by discretising the domain with a 21−division unstructured mesh and shows a very good agreement with the reference
solution in83 referred to a 40 × 40 ABAQUS S4R-element mesh. For a complete commented code for this test case we refer to the
documented demo Clamped semi-cylindrical Naghdi shell under point load, available in the supplementary material.

5 CONCLUSIONS

In this paper we have given an overview of the FENICS-SHELLS library. We have shown the main mathematical aspects of
the structural models available and the numerical procedures used to discretise them, with a particular emphasis on shear- and
membrane-locking issues. We selected two main discretisation strategies: a special implementation of the MITC technique that
provides a very efficient cure of the shear locking for linear plate models, and an extension to nonlinear shells of the PRSI strategy
proposed in36, that combines simplicity of implementation with efficiency for nonlinear shell problems shear and membrane
locking. The examples section, accompanied by a set of documented demos, while by no means exhaustive, shows the good
performance of the proposed methods and the type of analysis that can be performed. We believe that FENICS-SHELLS will
be a helpful contribution for researchers and graduate students in the community simulating thin structures. FENICS-SHELLS
could provide users with efficient and simple tools to implement specific solvers for multilayered or other specific plate and
shell models84, shell models including multiphysical couplings or nonlinear material behaviour3,6,7, as well as one atom thick
shell structures such as nanotubes and graphene10. The present work constitutes an instrumental step in a larger project on the
mechanics and physics of shell structures, including the analysis of the nonlinear material behaviour and fracture of isotropic
and anisotropic shells through phase-field variational models85,86,87,88, applications to multistable structures with embedded
active materials7,89, and for the understanding of singularities and energy scalings in plates and shells2. Current and future
technical developments of FENICS-SHELLS will be aimed at providing anisotropic adaptive remeshing tools59,90 and coupling to
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advanced nonlinear solvers, such as asymptotic numerical continuation methods91 and deflation techniques92 to automatically
detect multiple solutions of nonlinear systems.

How to cite this article: J. S. Hale, M. Brunetti, S. P. A. Bordas, and C. Maurini (), FENICS-SHELLS: an open-source library for
simulating thin structures, , .

APPENDIX

A CLOSED-FORM SOLUTION FOR A CLAMPED SQUARE REISSNER-MINDLIN PLATE
WITH POLYNOMIAL LOADING

This analytical solution is taken from the paper73. With transverse loading:

f (x, y) = Et3

12(1 − �2)
[

12y(y − 1)(5x2 − 5x + 1)
{

2y2(y − 1)2 + x(x − 1)(5y2 − 5y + 1)
}

+

12x(x − 1)(5y2 − y + 1)
{

2x2(x − 1)2 + y(y − 1)(5x2 − 5x + 1)
}]

, (A1)
results in the following closed-form solutions for the rotations and transverse displacements:
�(x, y) =

{

y3(y − 1)3x2(x − 1)2(2x − 1), x3 − 1)y2(y − 1)2(2y − 1)
}T (A2a)

w(x, y) = 1
3
x2(x − 1)3(y − 1)3 − 2t2

5(1 − �)
[

y3(y − 1)3x(x − 1)(5x2 − 5x + 1) + x3(x − 1)3y(y − 1)(5y2 − 5y + 1)
]

. (A2b)

B RESIDUAL-BASED A POSTERIORI ERROR ESTIMATOR

The key result found in the paper76 is that the error between the finite element solution and the exact solution defined in the
following sense:

|||(� − �ℎ, w −wℎ)|||ℎ + t||
 − 
ℎ||L2(Ω) + ||
 − 
ℎ||H−1(Ω) + t2|| rot(
 − 
ℎ)||L2(Ω), (B3)
where the mesh-dependant norm |||(�,w)|||ℎ is defined by:

|||(�,w)|||2ℎ = ||�||2H1(Ω) +
∑

T∈ℎ

1
t2 + ℎ2T

||∇w − �||2L2(T ), (B4)

can be controlled by an error estimator of the following form:
�2ℎ =

∑

T∈ℎ

(�2 + �2) +
∑

E∈ intℎ

�2int +
∑

E∈ f reeℎ

�2free, (B5a)

�2 = ℎ2T (ℎ
2
T + t

2)||f + div 
ℎ||2L2(T ) + ℎ
2
T || divMℎ + 
ℎ||2L2(T ), (B5b)

�2int = ℎE(ℎ
2
E + t

2)||J
ℎ ⋅ nK||L2(E) + ℎE||JMℎnK||
2
L2(E), (B5c)

�2free = ℎE||Mℎn||
2
L2(E) + ℎE(ℎ

2
E + t

2)||
ℎ ⋅ n||2L2(E), (B5d)
�2 = || rot(I − Rℎ)�ℎ||2L2(T ) + ||(I − Rℎ)�ℎ||2L2(T ), (B5e)

where  f reeℎ ⊄  intℎ are the subset of edges on the free boundary (natural boundary conditions).
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