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Abstract

A large number of advanced finite element shell formulations have been developed, but their
adoption is hindered by complexities of transforming mathematical formulations into computer
code. Furthermore, it is often not straightforward to adapt existing implementations to emerging
frontier problems in thin structural mechanics including nonlinear material behaviour, complex
microstructures, multi-physical couplings, or active materials. We show that by using a high-level
mathematical modelling strategy and automatic code generation tools, a wide range of advanced
plate and shell finite element models can be generated easily and efficiently, including: the linear
and non-linear geometrically exact Naghdi shell models, the Marguerre-von Kármán shallow shell
model, and the Reissner-Mindlin plate model. To solve shear and membrane-locking issues, we use:
a novel re-interpretation of the Mixed Interpolation of Tensorial Component (MITC) procedure as
a mixed-hybridisable finite element method, and a high polynomial order Partial Selective Reduced
Integration (PSRI) method. The effectiveness of these approaches and the ease of writing solvers is
illustrated through a large set of verification tests and demo codes, collected in an open-source library,
FEniCS-Shells, that extends the FEniCS Project finite element problem solving environment.

Keywords: thin structures, plates, shells, finite element methods, domain specific language,
FEniCS.

1. Introduction

Plates and shells are solids occupying a spatial domain with one dimension, the thickness, much
smaller than the others. This implies the possibility of experiencing large changes of shape even with
small material deformations and an approximately linear elastic material behaviour. Their study has
received renewed attention in the last decade because of their unique nonlinear behaviour, mainly
caused by geometric effects [10], leading to d-cone singularities and crumpling [30], fracture [79],
or multistability [84, 85]. Examples of modern application fields in engineering include shape
control through active materials [48, 40], stretchable electronics [76], soft robotics [58], and thin
nano-structures e.g. graphene sheets and nanotubes [9].
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Effective models for plates and shells are two-dimensional, the through-the-thickness kinematics
being described by including a suitable microstructure in the model. Their mathematical modelling
leads to set of non-linear partial differential equations (PDEs) defined on a two-dimensional manifold
embedded in three-dimensional space. The resulting PDEs can be discretised using a variety of
numerical techniques, e.g. finite element methods (FEM) [13, 71], isogeometric analysis [45, 17], and
meshfree methods [39]. FEM-based discretisations of the plate and shell models are available in both
commercial (see e.g. Abaqus [2], AceFem [51] and Adina [12] and Ls-Dyna) and open-source
(e.g. GetFem++ [72], IgaFem [70], Code Aster [31], Mat-Fem [1] and Elmer [73]) software
packages. However, formulating the mathematical models and implementing finite element solvers
for custom plates and shells models remains a complex, highly technical, and time-consuming task,
requiring advanced knowledge in differential geometry, numerical analysis, and mechanics. Shell
and plate finite element models are regarded as very advanced topics in structural engineering and
applied mathematics curricula, and rarely are graduate students trained in their implementation.

Our work aims to overcome some of the above difficulties by using modern automatic code
generation tools and suitable mathematical abstractions. We present easily extensible and cus-
tomisable methods for the implementation of finite element solvers for various models of thin
structures, ranging from linear plates to non-linear shells. We leverage the tools offered by the
finite element library FEniCS Project [4], in particular its Unified Form Language (UFL) [5] and
the associated FEniCS Form Compiler (FFC) [46], to allow users to straightforwardly formulate
complex custom nonlinear shell models with less than one hundred lines of Python code and
syntax that closely mirrors the mathematical abstractions of the variational formulation. We
exploit the symbolic processing capabilities of UFL to specify the potential energy functionals of
various thin structural models in a high-level way and select suitable locking-free finite element
spaces for their discretisation. Custom constitutive models are straightforward to implement.
Consistent linearisation of the potential energy functional is performed automatically using the
symbolic differentiation tools in UFL [5]. These symbolic expressions are compiled automatically
to finite element code using FFC [46]. The differential geometry concepts [28] are expressed
directly in a very simple and expressive format, which we believe is of great pedagogical value.
We mimic the geometrically-exact shell model [28], where the reference configuration is described
by a mapping from R2 to a surface embedded in Euclidean space. Although we do not discuss
here the implementation of specific preconditioners, our finite element solvers can run without
modification on high-performance computing architectures using MPI and PETSc [11] allowing
large-scale calculations to be performed. State-of-the-art linear and non-linear solution strategies
are immediately available through PETSc [11]. These aspects sum up to a unique approach that
we believe will be of value to researchers, students, and practitioners working on frontier problems
in the mechanics of thin structures. The outcome of our work is distributed in the form of an
open-source (LGPLv3) Python library, FEniCS-Shells [36], collecting an implementation of the
models and discretisation techniques presented in this paper and including a large set of examples
and documented demos.

We consider here several shearable plate and shell models, including linear plates (Reissner-
Mindlin model [75, 65]), linear and nonlinear shells (Nagdhi model [67, 66]), and weakly non-linear
shallow shells (Marguerre-von Kármán model [62]). For these structural models, the discretisation
strategy is particularly important, because shear and membrane locking can lead to an unacceptably
slow convergence rate of the finite element solution with the mesh size [25]. After a deep analysis
of the methods available in the literature and the possible software tools, we selected two main
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discretisation techniques: the popular Mixed Interpolation of Tensorial Components (MITC)
approach [13, 14, 32] and a high polynomial-order Partial Selective Reduced Integration (PSRI)
approach [7], both of which can be applied in a uniform manner across user-defined models.

Both the MITC and PSRI approches presented here include some original aspects with respect
to the formulations previously introduced in the literature. In order to fit within the abstractions
of UFL and the associated code generation tools, MITC is reformulated as a mixed hybridisable
variational form with element-wise local projection. The PSRI technique proposed in [7] is extended
to nonlinear shells with a modified reduced integration rule and optimised weighting factor for
the energy splitting. To provide an efficient parallel implementation of the MITC technique, we
also extended the FEniCS automatic assembly tools to include the possibility of eliminating local
degrees of freedom through static condensation, a feature that could be potentially ported to the
FEniCS library itself in the near future.

The effectiveness of our MITC and PSRI discretisations are shown through a large set of numerical
verification tests. Beside many classical examples, we propose a novel numerical verification test
based on the exact solution of Mansfield [59] for the thermal buckling of a lenticular plate. We
believe that this latter example can usefully complement the traditional gallery of verification tests
for plates and shells.

The paper is organised as follows. First, we give an overview of the structural models considered
in our work, presenting the research of their equilibrium configurations as an energy minimisation
problem (Section 2). Hence we discuss the mathematics behind their finite element discretisation and
some details about their practical implementation (Section 3). Finally we show some comprehensive
verification examples demonstrating what is possible with our approach and the performance of the
proposed methods (Section 4). Three detailed documented demos are included as supplementary
material and several more are available in the online repository of the python library FEniCS-
Shells, companion to this paper.

A permanent DOI [36] has been created with links to the latest code and documentation.
Table 1 summarises the mathematical models and the numerical methods presented in each of
the documented demos currently available online. We suggest the reader consult the demos to
have an overview of the main capabilities and features of FEniCS-Shells, and in particular
the Clamped Reissner-Mindlin plate under uniform load demo for linear plates, the Buckling of
a heated von-Kármán plate for weakly nonlinear plate models, and the Clamped semi-cylindrical
Naghdi shell under point load demo for fully nonlinear shells. FEniCS-Shells follows the Best
Practices for Scientific Computing [91] as closely as possible, including using version control,
continuous integration and testing, repeatable computing environments [37] and providing thorough
documentation.

2. Structural models

This section presents the variational formulation of the equilibrium problem for the basic plate
and shell models considered in this work. Starting from the most general model, the nonlinear
Naghdi shell model [66], the linear Reissner-Mindlin plate model [75, 65] is obtained as a special
case of the linear Naghdi shell model [67]. In passing, we present also the so-called Marguerre-von
Kármán shallow shell model [62], because (in its unshearable version) it is extensively used in the
literature to study nonlinear phenomena in plates and shallow shells [60, 53, 10]. We review below
the basic notations used in this work.

3



Title Model Discretisation

Clamped Reissner-Mindlin plate under uniform load Linear shearable plate MITC
Simply supported Reissner-Mindlin plate Linear shearable plate MITC
Clamped Reissner-Mindlin plate with MITC7 Linear shearable plate MITC
Clamped Kirchhoff-Love plate Linear unshearable plate DG
Buckling of a heated von Kármán plate Shearable weakly nonlinear plate PSRI
Non-linear Naghdi roll-up cantilever Nonlinear shearable shell MITC
Clamped semi-cylindrical Naghdi shell under point load Nonlinear shearable shell PSRI
Partly Clamped Hyperbolic Paraboloid Linear shearable shell PSRI

Table 1: Structural models and discretisation techniques presented in main documented demos provided in FEniCS-
Shells [36]. All the demos adopt shareable shell theory, except the Clamped Kirchhoff-Love platewhich is based on
the discontinuous Galerkin discretisation technique presented in [90, 69], not discussed in the present paper.

Notation. We equip the Euclidean space with a Cartesian frame {O; a1, . . . , an} with orthogonal
unit basis vectors ai ∈ Vn, Vn being the translation space. Let x = X − O ∈ Vn denote the
position vector of the point X whose rectangular Cartesian coordinates are (X1, . . . , Xn) ∈ Rn.
We denote by Rm×n the space of m× n matrices and by Sn = {S ∈ Rn×n : S = ST } the space of
symmetric n × n matrices, Sn+ its subset of positive definite matrices. With a notational abuse,
for any tensor field T ∈ Vn ⊗ · · · ⊗ Vn, let T ∈ Rn×···×n denote also the collection of its Cartesian
components. The same applies to vectors and tensors on manifolds. We denote by a · the inner
product between two tensors. In particular if T is a tensor of order 2n and v a tensor of order
n, we denote by Tv the application of the tensor T on v and by Tv · v the quadratic form on the
space of v having T as metric. For v ∈ Rn and x ∈ Rm, ∇v ∈ Rn×m denotes the linear operator
such that dv = ∇v dx+ o(|dx|2). We often use also index notation, where Latin indices (e.g. i, j)
are assumed to take the values 1, 2, 3, whilst Greek indices (e.g. α, β) take the values 1, 2. For
the partial derivatives of a function f we use the abridged notation f,α = ∂f/∂xα. We define the
space L2(ω) as the usual Sobolev space of square-integrable functions on the domain ω with respect
to the Lebesgue measure dx. Then Hs(ω) is the usual Sobolev space of L2(ω) functions whose
weak derivatives of order s ∈ N are also in L2(ω). We use the notation f ∈ Hs(ω;Rn) to denote a
vector-valued function whose components (f1, · · · , fn) are each functions in Hs(ω).

2.1. Non-linear Naghdi shell model

Kinematics. We describe the reference configuration of shell-like bodies as:

p0(xα, x3) = φ0(xα) + x3 n0(xα) , xα ∈ ω ⊂ R2, x3 ∈ [−t/2, t/2],

where (xα, x3) are curvilinear coordinates, φ0 : ω → R3 is a (piece of) regular surface, and
n0 = (∂1φ0 × ∂2φ0)/ |∂1φ0 × ∂2φ0| (× refers to the vector cross-product in only this context) is a
continuous unit vector field normal to the middle surface φ0(ω), Fig. 1.

The vectors g0,α = ∂αφ0 define a covariant basis on the tangent plane at each point of the
reference configuration. The slenderness condition requires the thickness t to be much smaller that
the diameter of the middle surface ω. The geometry of the middle surface is completely described by
the metric and curvature tensors, a0 and b0 respectively, whose covariant components are computed
as:

a0 = ∇φT0∇φ0, b0 = −1

2

(
∇φT0∇n0 +∇nT0∇φ0

)
, a0 ∈ S2

+, b0 ∈ S2,
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Figure 1: Kinematics of the nonlinear Naghdi shell model. Left: Parametric domain ω and placement of a generic
point of the shell in the reference and current configuration. Right: Parameterisation of the director d in terms of the
β1, β2 angles.

where ∇φ0 = [g0,1, g0,2]. Whenever the reference configuration is chosen to be flat, that is when
φ0(ω) is a planar surface, n0 ≡ a3 (and x3 ≡ X3) and b0 = 0. In such a case a body is said plate-like.

In the nonlinear Naghdi shell model the current configuration of the shell is written as a sum of
the placement of the middle surface φ : ω → R3 (or alternatively the displacement field u = φ− φ0)
and of the director field d : ω → R3 (see Figure 1):

p(xα, x3) = φ(xα) + x3 d(xα).

In general, |d| 6= 1 and d · n 6= 0, where n = (∂1φ × ∂2φ)/ |∂1φ× ∂2φ| is the unit normal to the
current surface and the vectors gα = ∂αφ define a covariant basis on the tangent plane at each
point of the deformed configuration. When the normal fibres are assumed to be unstretchable,
|d| = 1 and the director can be parametrised by two angles β = (β1, β2) : ω → R2, e.g., d(β) =
(cosβ1 sinβ2,− sinβ1, cosβ1 cosβ2), giving rise the so-called five-parameter shell model [18] (the
three-components of the displacement field and the two angles (β1, β2)), Figure 1.

In a Lagrangian description, we use the following measures of deformation for the shell [66, 61]:

eN (u) =
1

2

(
∇φ(u)T∇φ(u)− a0

)
,

kN (u, β) = −1

2

[
∇φ(u)T∇d(β) +∇d(β)T∇φ(u)

]
− b0,

γN (u, β) = ∇φ(u)Td(β),

(1)

representing the stretching of the middle plane (a second order tensor), the bending curvature (a
second order tensor), and the shear strain vector, respectively. The shear strain vanishes if and
only if the director d coincides with the unit normal to the surface.

Strain energy and constitutive equations. We consider elastic shells characterised by an elastic strain
energy density in the reference configuration ψ̂(e, k, γ), a scalar function of the deformations. The
stress measures are the membrane stress resultant N = ∂eψ̂, a second order tensor, the couple stress
resultant M = ∂kψ̂ a second order tensor, and the vector T = ∂γψ̂ representing the transverse shear
stress. We will focus in our examples on linearly elastic constitutive behaviour for which the strain
energy density is a quadratic function of the strain measures. Thus, using standard notation:

ψ̂(e, k, γ) =
1

2
A(e− ē) · (e− ē) +B(e− ē) · (k − k̄) +

1

2
D(k − k̄) · (k − k̄) +

1

2
Sγ · γ,
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where A,D are fourth-order and positive-definite tensors providing the membrane and bending
stiffness, B is a fourth order tensor providing the membrane-to-bending constitutive coupling, S
is a second order tensor providing the shear stiffness and ē, k̄ are symmetric second order tensor
fields representing inelastic stretching and bending strains. In what follows, unless otherwise stated,
ē, k̄ = 0. This leads to the following linear constitutive laws:

N = A(e− ē) +B(k − k̄), M = B(e− ē) +D(k − k̄), T = Sγ.

The stored energy density is the sum of membrane, ψ̂m, bending, ψ̂b, and shearing, ψ̂s, contributions:

ψ̂(e, k, γ) = ψ̂m + ψ̂b + ψ̂s =
1

2
N · (e− ē) +

1

2
M · (k − k̄) +

1

2
T · γ.

For a shell made of a single homogeneous layer of St. Venant-Kirchhoff isotropic material the
contravariant components of the elastic tensors are:

Aαβστ

t
= 12

Dαβστ

t3
=

2λµ

λ+ 2µ
aαβ0 aστ0 + µ

(
aασ0 aβτ0 + aατ0 aβσ0

)
, Bαβστ = 0, Sαβ = µaαβ0 ,

where aαβ0 are the contravariant components of the metric tensor a0 and λ, µ the Lamé constants.
Denoting by ε = t/L the small thinness parameter, |A|, |S| ∝ ε, while |B| ∝ ε2 and |D| ∝ ε3. Pure
bending deformations (e = 0, γ = 0) are energetically cheaper and, whenever possible, they are
preferred.

Variational formulation of the equilibrium condition. We focus here on the solution of quasi-static
problems under the action of conservative loads, although this is not a limitation of the FEniCS-
Shells library. The equilibrium configurations are found by solving for the stationary points of the
potential energy:

ΠN (u, β) =

∫
ω
ψ̂(eN (u), kN (u, β), γN (u, β))

√
j0 dx−Wext, (2)

where Wext is the external work of the conservative forces and j0 = det a0. Considering as Dirichlet
boundary conditions imposed displacements ū on the part of the boundary γu and on the rotation
β̄ on γβ, the space of admissible displacements and rotations are, respectively:

U ≡ {u ∈ H1(ω,R3) |u = ū on γu}, R ≡ {β ∈ H1(ω,R2) |β = β̄ on γβ}. (3)

The variational formulation of the equilibrium equation consist in finding (u, β) ∈ U ×R such that

Dũ [ΠN (u, β)] = 0, Dβ̃ [ΠN (u, β)] = 0, ∀(ũ, β̃) ∈ U0 ×R0, (4)

where U0 and R0 are the vector spaces associated to U and R, obtained by setting ū = 0 and β̄ = 0
in (3). The stability of an equilibrium can by assessed by studying the sign of the second derivative
of the energy, a quadratic form of the variations ũ, β̃.

Remark. Shell models with energy in the form (2) are shearable, since flexure is due to both
bending and shearing. However, for very thin shells and plates the shearing strains turn out to be
negligible. These structures are quite naturally modelled by means of unshearable or pure bending
theories obtained by imposing the inner constraint γ = 0. Such theories can usually be recovered
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as limit models of shearable theories when the thinness parameter goes to zero, ε → 0. In what
follows the shell models in the library are introduced in their ‘shearable version’; their unshearable
counterpart can be easily derived. We remark that the distinction between shearable and unshearable
theories is of paramount importance, since the numerical solution procedures exhibit quite different
challenges.

Remark. By assuming the inner constraint γN = 0, from Eq. (1)3 d = n ∈ ker∇φT (u). Moreover,
from Eq. (1)2, the change of curvature can be written as k(u) = b(u)− b0, b(u) being the curvature
tensor of the current surface. In such a way the nonlinear Koiter shell model [49] is recovered
as the unshearable counterpart of the Naghdi’s one for thin shells. Since bαβ = ni,β (φ0 + u),α =
ni (φ0 + u),αβ, (i = 1, 2, 3), the displacement u must be sought in a space U ⊆ H2(ω,R3). This high
regularity requirement is a common feature of the unshearable theories.

2.2. Marguerre-von Kármán shallow shell model

Some widely studied and used weakly non-linear versions of the Naghdi shell equations are the
Föppl-von Kármán plate model [34, 89] and the Marguerre shallow shell model [62]. They can be
seen as the simplest nonlinear models able to properly describe the moderately large deflections
of thin shallow shells or plates, since they retain a minimal geometrical coupling between the
membrane and flexural behaviour. Here, we introduce them in their shearable version [44].

Consider a shell with a shallow initial configuration φ0(xα) = xα aα + ζ(xα)a3, with the
shallowness assumption |∇ζ| ∼ η � 1 and let φ(xα) = xαaα + v(xα) + w(xα)a3 be the current
configuration, where e3 of the middle plane with respect to a flat configuration x = xαeα ∈ ω, and
decompose the v ⊥ ω is the in-plane component and w on the a1−a2 plane, with v ·a3 = 0, and the
transverse component wa3. Similarly, we denote by θ the (small) rotations of the fibres orthogonal
to the middle-plane, with θ · a3 = 0.

The displacement of an arbitrary point of the three-dimensional body can be represented as:

UM (xα, x3) = v(xα) + w(xα)a3 − x3 θ(xα). (5)

The Marguerre-von Kármán shallow shell model can be derived from the nonlinear Naghdi model
by assuming |v|/L ∼ η2, |w|/L ∼ η and |θ| ∼ η, so that d(xα) − n0(xα) = θ(xα) + h.o.t., where
θ(xα) = β(xα)× a3. Then, the Marguerre-von Kármán strain measures are obtained as the leading
order terms of the Naghdi strain measures, Eqs. 1,

eM (v, w) =
∇v +∇vT

2
+
∇w ⊗∇w

2
− ∇ζ ⊗∇ζ

2
,

kM (θ) =
∇θ +∇θT

2
−∇∇ζ, γM (w, θ) = ∇w − θ.

(6)

Then, solutions are found as the minimisers over a smooth set of vector fields v ∈ V ⊆ H1(ω,R2),
w ∈ W ⊆ H1(ω), θ ∈ R ⊆ H1(ω,R2) satisfying appropriate boundary conditions, of the nonlinear
Marguerre-von Kármán energy functional:

ΠM (v, w, θ) =
1

2

∫
ω
NM (v, w) ·

(
eM (v, w)− ē

)
dx+

1

2

∫
ω
MM (w, θ) ·

(
kM (w, θ)− k̄

)
dx

+
1

2

∫
ω
TM (w, θ) · γM (w, θ) dx−Wext. (7)
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Remark. By assuming the inner constraint γM = 0, from Eq. (6)3, θ = ∇w. Moreover, from Eq.
(6)2, k(w) = ∇∇w. In such a way the classical (unshearable) Marguerre-von Kármán shallow shell
model is recovered. As for the Koiter model [49], the transverse displacement w must be sought in a
space W ⊆ H2(ω).

2.3. Linear Naghdi shell model

Consider a shell body with reference surface φ0(ω). Again, let UÑ (xα, x3) = u(xα)a3 − x3 θ(xα)
be the representation formula for the displacement vector field, with θ ∈ TP φ0(xα), TP φ0(xα)
being the tangent plane to the reference surface at the point φ0(xα); u represents an (infinitesimal)
displacement from the reference surface, θ denotes the (infinitesimal) rotation of the fibers orthogonal
to the middle surface. The linear Naghdi strain measures are then obtained by linearisation from
Eqs. (1),

eÑ (u) =
1

2

(
∇φT0∇u+∇uT∇φ0

)
,

kÑ (u, θ) = −1

2

(
∇φ0

T∇θ +∇θT∇φ0

)
− 1

2

(
∇n0

T∇u+∇uT∇n0

)
,

γÑ (u, θ) = ∇φ0
T θ +∇uTn0.

(8)

Then, solutions are found as the minimisers over a smooth set of vector fields u ∈ U ⊆ H1(ω,R3),
θ ∈ R ⊆ H1(ω,R2) satisfying appropriate boundary conditions, of the linear Naghdi energy
functional:

ΠÑ (u, θ) =
1

2

∫
ω
NÑ (u) · eÑ (u) dx+

1

2

∫
ω
MÑ (u, θ) · kÑ (u, θ) dx

+
1

2

∫
ω
TÑ (u, θ) · γÑ (u, θ) dx−Wext. (9)

Remark. For a plate-like body, Eqs. (8) reduce to:

eRM (v) =
1

2

(
∇v +∇vT

)
, kRM (v, θ) =

1

2

(
∇θ +∇θT

)
, γRM (w, θ) = ∇w − θ, (10)

where u(xα) = v(xα)+w(xα) a3. In such a case the membrane and flexural problem are geometrically
decoupled and a linear coupling turns out to be possible only at the constitutive level. Eqs. (10)2,3

are the Reissner-Mindlin plate strain measures, depending only by the transverse displacement
w and the rotation θ. Again, solutions are found as the minimisers over a smooth set of vector
fields w ∈ W ⊆ H1(ω), θ ∈ R ⊆ H1(ω,R2), satisfying appropriate boundary conditions, of the
Reissner-Mindlin energy functional:

ΠRM (w, θ) =
1

2

∫
ω
MRM (w, θ) · kRM (w, θ) dx +

1

2

∫
ω
TRM (w, θ) · γRM (w, θ) dx − Wext. (11)

Remark. By assuming the inner constraints γÑ = 0 and γRM = 0, the linear Koiter shell model
[50] and the Kirchhoff-Love [47, 57] plate model are recovered, respectively. Solutions of such
unshearable models must be sought in spaces U ⊆ H2(ω,R3), W ⊆ H2(ω), respectively.
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3. Finite element formulations and implementation details

Notation. We use nomenclature from [55] related to finite element methods. We let Th (the mesh)
be a partition of the domain ω into a finite set of triangular cells Th = {T} with disjoint interiors:

∪T∈ThT = ω.

Each triangular cell T has circumradius hT , and h := maxT∈Th hT . We then denote the set of
edges of Th as E = {E}. E int

h ⊂ Eh is the subset of edges on the interior of the mesh (i.e. not
on the boundary). Normals to the edges of each cell are denoted n. Functions u evaluated on
opposite sides of an edge E are indicated by the subscripts + and −, giving the jump operator
JuK = u+ ·n+ +u− ·n−. We denote CGp ⊂ H1(ω) the standard continuous Lagrangian finite element
space of polynomial order p constructed on the mesh Th. The notation f ∈ [CGp]

n ⊂ Hs(ω;Rn)
denotes a vector-valued function whose components (f1, · · · , fn) are each a member of CGp.

3.1. Background

As pointed out in the previous section, shearable models give rise to weak formulations with
solutions in H1 while unshearable models give rise to weak formulations with solutions in H2.
It is well-known that producing conforming finite element method discretisations of H2 is not
straightforward, although several elegant solutions are possible [29, 69, 17, 39]. To bypass this issue,
one can choose to use shearable models even for very thin structures, even though in such cases
shear strains are negligible. Shearable models only requires H1-conforming finite element methods
which are significantly easier to implement than either discontinuous Galerkin or H2-conforming
finite element methods.

Unfortunately it is also the case that applying standard H1 conforming finite element methods
leads to shear-locking in the thin limit, since the finite element spaces are unable to properly
represent the zero shear-strain γ = 0 constraint asymptotically enforced within the mathematical
model as the thinness parameter goes to zero. A similar problem arises in shell problems whenever
pure bending displacements are non-inhibited: H1 conforming finite element methods for such
bending-dominated shells suffer of membrane-locking [25, 81, 82]. In other words, the discrete spaces
are incompatible with the structural models.

A wide variety of locking-free numerical methods exist, including the methods of assumed natural
strains [14, 26, 43], enhanced assumed strains [86, 19], discrete shear gap [20], partial selective
reduced integration [7] and mixed variational [39] approaches have been developed to overcome
this problem. Implementing these locking-free approaches is more complex than implementing the
standard H1-conforming finite element method as they require mixed formulations and special
finite element function spaces. Making these methods easier to code, use and adapt is one of the
main goals of the present work and the companion open-source library FEniCS-Shells.

For alleviating shear-locking in the Reissner-Mindlin and Marguerre-von Kármán models we
have chosen to implement a Mixed Interpolation Tensorial Components (MITC) reduction operator.
The MITC approach was introduced in the paper of Bathe and Dvorkin [13] for curing shear-locking
in the finite element discretisation of the Reissner-Mindlin model. Other notable contributions
along the same lines include the Durán-Liberman [32] and the MITC7 and MITC9 [14] elements.
The success of the various MITC elements for the Reissner-Mindlin problem rests on solid results
in numerical analysis, e.g. [14, 3]. It has also been shown numerically that MITC approach can be
successful in solving membrane and shear locking issues in the linear and non-linear Naghdi shell
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models [43], although without rigorous mathematical justification. A fully general shell element
with guaranteed mathematical and numerical behaviour in membrane and bending-dominated
regimes is still out of reach and mathematically robust finite element design for shells is an active
research topic. We have chosen to implement a high-order partial selective reduced integration
(PSRI) method which was analysed for the linear Naghdi model in [7].

3.2. The shear and membrane-locking issues

For notational convenience we drop the explicit RM suffix relating to the Reissner-Mindlin model
in what follows. Informally, when considering the Reissner-Mindlin plate model, shear-locking is
the result of the Kirchhoff constraint (vanishing shear strain γ) [38]:

γ = ∇w − θ = 0, (12)

being enforced on the discrete finite element spaces wh ∈ Wh ⊂ W and θh ∈ Rh ⊂ R for as the
small thinness parameter ε→ 0. The approximation power in the discrete finite element basis is
inadequate to simultaneously represent the Kirchhoff (bending) dominated mode and also provide a
uniformly convergent approximation to the problem with respect to ε.

More formally, denoting the continuous space of pure bending displacements (ε = 0) as:

V0 = {(w, θ) ∈ W ×R | ∇w − θ = 0} , (13)

and the discrete solution (wh, θh) ∈ Vh :=Wh×Rh, we seek solutions in a subspace Vh0 ⊂ (Vh ∩V0)
containing discrete pure bending displacements:

Vh0 = {(wh, θh) ∈ Wh ×Rh | ∇wh − θh = 0} . (14)

It is not so hard to construct discretisations in which this requirement is quite catastrophic.
Consider using standard H1(ω)-conforming linear Lagrangian elements for both fields, Wh := CG1

and Rh := [CG1]2, and suppose fully clamped Dirichlet conditions on all of the boundary, that
is Wh ⊂ H1

0 (ω) and Rh ⊂ H1
0 (ω,R2). With piecewise linear functions for wh, ∇wh then consists

of piecewise constant functions. Furthermore, as θh must be zero on the boundary, and we are
searching for solutions in the space Vh0 where ∇wh = θh, the only possible solution that our discrete
space can represent is wh = 0 and θh = 0. The finite element model is overly stiff, hence the term
‘locking’.

The membrane-locking issue arises in the linear and non-linear Naghdi shell models and the
Marguerre-von Kármán shallow shell model. The locking issue can be motivated by a similar
argument to the shear-locking issue and causes similarly poor results. However, the precise
circumstances under which membrane-locking can appear is a more subtle matter, and can depend
on a combination of geometry, boundary conditions and loading. We refer the reader to [25] for an
excellent discussion of locking in shell finite element models. Here, we limit ourselves to remarks we
consider strictly necessary to make our exposé understandable.

For simplicity in what follows, we refer to the linear Naghdi shell model. In this case, the
continuous space of pure bending displacements (no membrane or shear strains) reads as:

V0 = {(u, θ) ∈ U ×R | eN (u) = 0 and γN (u, θ) = 0}. (15)

When the thinness parameter goes to zero two distinct asymptotic behaviours emerge, depending
on whether V0 is empty or not, and thus on the shape of the shell and the Dirichlet boundary
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conditions applied on it. If V0 = ∅, pure bending is inhibited and the shell carries the load mainly by
membrane actions; this is the so called membrane-dominated regime. Conversely, whenever V0 6= ∅,
pure bending is non-inhibited, the membrane and shearing contribution to the elastic energy vanish
and the shell carries the load by bending actions; this is the so called bending-dominated regime.
When considering finite element discretisations, this latter case is likely to suffer both membrane
and shear locking, unless the discrete space Vh0 is chosen so as to properly approximate the space
V0 of pure bending displacements. In any case, since a finite element formulation should perform
well regardless of the asymptotic regime, benchmark tests have to be provided for both membrane-
and bending-dominated shells.

3.3. Mixed Interpolation of Tensorial Components (MITC) method

We use the MITC approach to deal with the shear-locking issue. The MITC approach is based on
an underlying mixed variational method, where the Reissner-Mindlin shear strains γ are considered
as an independent variable. One of the most attractive aspects of the MITC approach is that the
final linear system of equations only contains the original primal unknown fields (wh, θh) despite
the consideration of the shear strain field γh in the formulation.

The first step in constructing an MITC-type element is the correct identification of the function
space S(ω;R2) in which the shear strain γ lives. For any scalar field w ∈ H1(ω) it holds that
∇w ∈ H(rot;ω) where H(rot;ω) is the Sobolev space of square-integrable vector-valued functions
with square-integrable rot:

H(rot;ω) :=
{
γ ∈ L2(ω;R2) | rot γ := ∂1γ2 − ∂2γ1 ∈ L2(ω)

}
. (16)

Furthermore, for θ ∈ H1(ω;R2) we have rot θ ∈ L2(ω) and thus it follows that

γ = ∇w − θ ∈ S ≡ H(rot;ω). (17)

Note that the operator rot is synonymous with the operator curl in R2.
Finite element approximation spaces that satisfy Sh ⊂ S consist of the well-known ‘curl/rot-

conforming’ elements, namely the Nédélec [68] (or rotated Raviart-Thomas elements [74] in R2) of
the first NEDn

1 and second kind NEDn
2 , and the Brezzi-Douglas-Fortin-Marini (BDFMn) elements

[23], where n is the element (polynomial) order. All of these finite element spaces are available for
use in FEniCS [4, 54, 5]. We refer the reader to [55] for a full description of the mathematical
construction of these elements, and [77] as a reference for the issues surrounding their implementation
in FEniCS.

For brevity, we shown only the development of the Durán-Liberman element [32]. This element
can be considered the lowest order MITC-type element with rigorous analytical convergence proofs.
There is also an implementation of MITC7 [14] in FEniCS-Shells but do not show the development
in this paper.

The starting point is the discrete counterpart of eq. (11):

Π(wh, θh) = Πb(wh, θh) +
1

2

∫
ω
T (wh, θh) · γ(wh, θh) dx−Wext,

Πb(wh, θh) :=
1

2

∫
ω
M(wh, θh) · k(wh, θh) dx.

(18)

The finite element spaces used in the construction of the Durán-Liberman element are continuous
piecewise-linear Lagrangian elements for the transverse displacements wh ∈ Wh := CG1, continuous

11



Figure 2: Finite element spaces making up the Durán-Liberman element. Circles denote point evaluations for degrees
of freedom. Arrows denote point evaluations of tangential component for degrees of freedom. The Durán-Liberman
has a total of 21 degrees of freedom: 3 for the displacement wh, 12 for the rotations θh, 3 for the shear strain γh, and
3 for the Lagrange multiplier ph. Thanks to the static condensation at the cell level, the latter 6 degrees of freedom
for γh and ph can be eliminated during the assembling process, reducing the number of effective degree of freedom
per element to 15.

piecewise-quadratic vector-valued Lagrangian elements for the rotations θh ∈ Rh := [CG2]2 and,
finally, the lowest-order Nédélec elements of the first kind for the shear strain γh ∈ S := NED1

1.
The product of these spaces then makes up the Durán-Liberman element, see Figure 2.

The element NED1 is defined [55] by the Ciarlet triple (T,V,L) (cell, polynomial space, degrees
of freedom):

T = triangle, (19a)

V = [P0(T )]2 + S1(T ), (19b)

L =

∫
E
v · t p ds, for p ∈ P0(E), ∀E ⊂ T, (19c)

where T is the reference triangle with edges E with measure ds, P0 is the set of constant polynomial
functions on the triangle T or edge E, and S1(T ) is the polynomial space:

S1(T ) =
{
s ∈ [P1(T )]2 | s(x) · x = 0 ∀x ∈ T

}
. (20)

The ‘trick’ of the MITC approach is recognising that by modifying the shear strain field at the
discrete level by applying a special operator Rh that takes the primal to the conforming space
H(rot;ω) for the shear strains

Rh :
[
CG1 × [CG2]2

]
→ NED1 (21)

the element can be ‘unlocked’. For the Durán-Liberman element, the operator Rh can be defined
by the following condition for each cell T in the mesh Th:∫

E
[(Rh[γ(wh, θh)]− γh) · t] p ds = 0, ∀p ∈ P0(E), ∀E. (22)

1 The original element construction of Durán and Liberman uses a slightly smaller quadratic space constructed as
a sum of linear polynomials and quadratic bubbles. As this space is not available in FEniCS we use the full quadratic
space instead.
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Note that (22) is very similar to the degree of freedom definition L in (19c). In effect, Rh ‘ties’
the degrees of freedom of the transverse displacement and rotation space CG1 × [CG2]2 to an
underlying NED1 space. Then, applying the operator Rh to (18) gives:

Π(wh, θh) = Πb(wh, θh) +
1

2

∫
ω
T (Rhγ(wh, θh)) ·Rhγ(wh, θh) dx−Wext. (23)

Remark. For the Reissner-Mindlin strain measure Rh [γ(wh, θh)] = ∇wh −Rhθh because Rhwh =
wh by definition. This application of the reduction operator to the rotation field is often found in the
literature. However, in our work we always apply the reduction operator to the complete shear-strain
variable γ.

3.4. New implementation of the MITC method in FEniCS-Shells

The formulation and implementation of MITC in FEniCS-Shells is slightly different to the
standard approach. In our view it is simpler to understand as it is purely variational and extends
the MITC shear-locking cure quite naturally to the non-linear models. Another key advantage is
that it can be concisely expressed in UFL [5].

Starting with (18) and this time directly substituting in the conforming strain field γh ∈ Sh
gives:

Π(wh, θh, γh) = Πb(wh, θh) +

∫
ω
T (γh) · γh dx−Wext. (24)

We then ‘tie’ the tangential component of the conforming strain field γh·t to its counterpart calculated
using the primal unknowns γ · t ≡ (∇w − θ) · t using a Lagrange multiplier field ph ∈ NED1 that
lives on all edges E ∈ Eh of the mesh Th:

Π(wh, θh, γh, ph) = Πb(wh, θh)+

∫
ω
T (γh)·γh dx+

∑
E∈Eh

∫
E

(γ(wh, θh)·t−γh ·t)·(ph ·t) ds−Wext.

(25)

It is possible to implement the Durán-Liberman element in FEniCS by directly expressing (25)
using UFL. However, this comes at the expense of two extra fields γh and ph over the standard
MITC implementation.

Fortunately it is possible to eliminate both γh and ph at the cell-local level. To this end, we
begin by defining the residual F (q; q̃) = 0 as the usual Gâteaux derivative of (25) at a point
qh := (wh, θh, γh, ph) in the direction of test functions q̃ := (w̃, θ̃, γ̃, p̃):

F (qh; q̃) := Dq̃ [Π(qh)] = 0, ∀q̃ ∈ CG1 × [CG2]2 ×NED1 ×NED1, (26)

which gives:

F (qh; q̃) = ab(wh, θh; w̃, θ̃) +as(γh; γ̃) +aΠh(wh, θh, ph; γ̃) +aΠh(γh; w̃, θ̃, p̃)−Wext(q̃) = 0, (27a)

where:

ab(wh, θh; w̃, θ̃) =

∫
ω
M(wh, θh) · k(w̃, θ̃) dx, (27b)

as(γh; γ̃) =

∫
ω
T (γh) · γ̃ dx, (27c)

aΠh(wh, θh, γh; p̃) =
∑
E∈Eh

∫
E

(γ(wh, θh) · t− γh · t) · (p̃ · t) ds. (27d)
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Deriving the Jacobian involves taking the Gâteaux derivative again, this time at a point qh in the
direction of trial functions q := (w, θ, γ, p):

J(qh; q; q̃) = Dq [F (qh; q̃)] . (28)

Because the Reissner-Mindlin equations are linear, this operation is trivial, giving:

J(qh; q; q̃) = ab(w, θ; w̃, θ̃) + as(γ; γ̃) + aΠh(w, θ, p; γ̃) + aΠh(γ; w̃, θ̃, p̃). (29)

Using a standard Newton method, given an initial guess q0 we seek for k = 0, . . . , n solutions
δq := (δw, δθ, δγ, δp) to the linear systems:

J(qk; q; q̃) δq = −F (qk; q̃), (30)

qk+1 = qk + δq. (31)

The left and right-hand side of the discrete Newton linear system corresponding to (29) and (27)
respectively, has the following block structure: A 0 C

0 B D
CT D 0

δzδγ
δp

 =

bzbγ
bp

 , (32)

where δz := (δw, δθ) and A, B correspond to the matrices associated with bilinear forms ab and as

in (29), respectively. The matrix D is a diagonal-form edge mass matrix arising from the bilinear
form:

−
∑
E∈Eh

∫
E

(γ · t) · (p̃ · t) ds, (33)

and C arises from the bilinear form:∑
E∈Eh

∫
E

(γ(wh, θh) · t) · (p̃ · t) ds. (34)

The notation b(·) corresponds to a splitting of the residual vector into its sub-blocks on the functions
z, γ and p.

Solving for δγ with row two of (32):

δp = D−1(bγ −Bδγ), (35)

and for δγ with row three of (32)

δγ = D−1(bp − CT δz), (36)

and then eliminating δγ from (35) using: (36) gives

δp = D−1(bγ −BD−1bp +BD−1CT δz), (37)

before finally eliminating δp from the first row of (32) using (37) and rearranging to give:

Asδz = bs, (38a)

As = (A+ CD−1BD−1CT ), (38b)

bs = bz + CD−1BD−1bp − CD−1bγ . (38c)
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1 from dolfin import *; import fenics_shells as fs; import matplotlib.pyplot as plt

2 mesh = UnitSquareMesh(32, 32)

3 # Duran-Liberman element

4 element = MixedElement([VectorElement("Lagrange", triangle, 2), # rotations (theta)

5 FiniteElement("Lagrange", triangle, 1), # displacement (w)

6 FiniteElement("N1curl", triangle, 1), # reduced shear strain (R_gamma)

7 FiniteElement("N1curl", triangle, 1)]) # Lagrange multiplier (p)

8 # Special projected function space (this is defined in fenics-shells)

9 Q = fs.ProjectedFunctionSpace(mesh, element, num_projected_subspaces=2)

10 Q_F = Q.full_space # Full function space for the mixed variational formulation

11 # Definitions for the variational formulations

12 q_, q, q_t = Function(Q_F), TrialFunction(Q_F), TestFunction(Q_F)

13 theta_, w_, R_gamma_, p_ = split(q_) # rotations, displacement, shear strain, Lagrange multipliers.

14 # Material properties

15 E = Constant(10920.0); nu = Constant(0.3); kappa = Constant(5.0/6.0); t = Constant(0.001)

16 D = (E*t**3)/(24.0*(1.0 - nu**2))

17 # Deformations

18 k = sym(grad(theta_)) # Curvature

19 gamma = grad(w_) - theta_ # Shear strain

20 # Duran-Liberman tying

21 Pi_R = fs.inner_e(gamma - R_gamma_, p_) # This is defined in fenics_shells

22 # Energy densities

23 psi_b = D*((1.0 - nu)*tr(k*k) + nu*(tr(k))**2) # Bending

24 psi_s = ((E*kappa*t)/(4.0*(1.0 + nu)))*inner(R_gamma_, R_gamma_) # Shear

25 # External work

26 f = Constant(1.0)

27 W_ext = inner(f*t**3, w_)*dx

28 # Mixed variational forms

29 Pi = psi_M*dx + psi_T*dx + Pi_R - W_ext # Energy

30 F = derivative(Pi, q_, q_t) # Residual

31 J = derivative(F, q_, q) # Jacobian

32 # Assemble the linear system: the special projected assembler returns a linear system

33 # in the primal variables (theta, w) eliminating the local variables (R_gamma_, p_)

34 A, b = fs.assemble(Q, J, -F)

35 bc = DirichletBC(Q, Constant((0.0, 0.0, 0.0)), "on_boundary")

36 bc.apply(A, b)

37 # Solve the linear system in the primal space (theta, w)

38 theta_w_ = Function(Q) # (theta, w)

39 solver = LUSolver("mumps") # Use a direct solver

40 solver.solve(A, theta_w_.vector(), b)

41 # Postprocessing

42 theta_sol, w_sol = theta_w_.split(deepcopy=True) # extract rotations and displacement

43 plot(w_sol, title = "Displacement"); plt.savefig("w.png"); plt.close();

44 plot(theta_sol, title = "Rotation"); plt.savefig("theta.png")

Figure 3: Complete Python code for solving clamped Reissner-Mindlin problem with uniform transverse loading.

Note again that D is diagonal and can thus be cheaply inverted at the cell-local level allowing
(38) to be formed locally as well. The above procedure is implemented at the element level using
a custom assembly function written in C++. FEniCS automatically returns the dense cell-local
version of the block structured system (32) corresponding to the Jacobian (29) and residual (27)
forms. We then use the Eigen dense linear algebra package [35] to split up (32) into its constituent
blocks before calculating As and bs using (38). The cell-local contributions As and bs are then
assembled into a sparse matrix and vector associated with global displacement unknowns δz only.
Solving for the global unknown δz, we can then reconstruct the eliminated unknowns δγ and δp by
post-processing at the cell-local level using (36) and (35), respectively.

A Python code showing how to define the Reissner-Mindlin problem in FEniCS-Shells is given
in Figure 3. The new ProjectedFunctionSpace class (line 9 in Figure 3) manages the relationship
between full function space space with all unknowns qh := (wh, θh, γh, ph) the reduced function
space unknowns with displacement unknowns z = (wh, θh). The special custom assembly procedure
in FEniCS-Shells is invoked via a call to assemble passing the ProjectedFunctionSpace object
as the first argument, resulting in the elimination of δγ and δp at the local level (line 34 in Figure 3).

The above procedure applies directly to the case of models with non-linear strain measures, e.g.
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the non-linear Naghdi shell model (see Section 2.1). The tying term in the Lagrangian is simply
re-written using the appropriate strain measure γN :∑

E∈Eh

∫
E

(γN (uh, βh) · t− γNh · t) · (ph · t) ds, (39)

before being consistently linearised at the symbolic level using the tools in UFL. The resulting
discrete Newton system has precisely the same block form as (32), and so the same linear algebra
assembly procedure can be used to eliminate the auxiliary unknowns γNh and ph. We refer the
reader to the documented demo Non-linear Naghdi roll-up cantilever [36] for an example applying
MITC to a non-linear shell problem. Note, however, that we explicitly cure here only shear locking.
Our high-level approach makes it relatively straightforward to directly apply MITC to user-specified
thin structural models.

3.5. Partial Selective Reduced Integration (PSRI)

We use the PSRI approach to simultaneously deal with the shear- and membrane-locking issues
in the shell-like models. Our method is inspired by, but not identical to the one shown in [7], which
contains convergence proofs for the linear Naghdi model. The PSRI approach can be viewed as
a reduced integration method[7], a stabilised mixed method [27], or an augmented Lagrangian
method [21].

Following [7] we begin with the discrete linear Naghdi energy functional:

ΠÑ (u, θ) =
1

2

∫
ω
NÑ (uh) · eÑ (uh) dx+

1

2

∫
ω
MÑ (uh, θh) · kÑ (uh, θh) dx

+
1

2

∫
ω
TÑ (uh, θh) · γÑ (uh, θh) dx−Wext, (40)

or in shortened form:

ΠÑ (u, θ) = Πm(uh) +Πb(uh, θh) +Πs(uh, θh)−Wext, (41)

where Πm(uh), Πb(uh, θh) and Πs(uh, θh) correspond to the membrane, bending and shear energies
of the linear Naghdi model, respectively.

The finite element spaces used in the construction of the PSRI element are second-order
continuous piecewise-quadratic cubic-bubble-enriched Lagrangian elements for the displacements
uh ∈ Uh := [CG2 +B3]3 and second-order continuous piecewise-quadratic Lagrangian elements for
the rotations θ ∈ Rh := [CG2]2. The finite element space of cubic bubbles B3 is defined by the
Ciarlet triple (T,V,L):

T = triangle, V = {v ∈ P3(T ) | v|E = 0} , L = v (1/3, 1/3) . (42)

We then introduce a parameter α ∈ R that splits the membrane and shear energy in the energy
functional into a weighted sum of two parts:

ΠÑ (u, θ) = Πb(uh, θh)+αΠm(uh)+(1−α)Πm(uh)+αΠs(uh, θh)+(1−α)Πs(uh, θh)−Wext, (43)

to which we apply reduced integration to the parts weighted by the factor 1 − α. PSRI is
straightforward to implement in FEniCS using UFL [4]. We use a fourth-order accurate quadrature
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scheme on the portions of the energy in eq. 43 weighted by α and a second-order accurate
quadrature scheme on the portion of the energy weighted by 1 − α. As discussed in [7] a more
refined interpretation of PSRI is a stabilised mixed formulation where the extra stress unknowns
are projected out at assembly time. The lowest-order design in [7] suggests using a zero-order
accurate (one-point) quadrature scheme, however in practice we have found this to produce spurious
(zero-energy) modes.

The paper [7] also suggests setting α = 1. This choice is sufficient to obtain analytical convergence
results. However, for the Reissner-Mindlin problem, this leads to suboptimal convergence rates [56],
and a better choice in practice is setting αT = ε2/h2

T for each T ∈ Th. In numerical experiments we
have found that the performance of the method is robust with respect to the parameter α. The
combination of a high-order polynomial space with a PSRI approach for alleviating membrane- and
shear-locking seems both simple and effective.

3.6. Curved Shells

Finally, we describe how the curved shell geometry required for the linear and non-linear Naghdi
models is implemented in FEniCS. We use an exact geometry approach, describing the mid-surface
of the shell as a closed-form map φ0 : ω → R3. For example, for a cylindrical geometry we have
(x0, x1) ∈ ω := [−π/2, π/2] × [0, L] and the map φ0 = {ρ sinx0, x1, ρ cosx0}. From this, we can
calculate approximations of the metric a0 and curvature b0 tensors and the normal n0 of the middle
surface from the map φ0 using UFL. Further derived quantities required, e.g. the contravariant
components of the metric tensor aαβ0 and the elasticity tensor Aσβστ , can be straightforwardly
expressed using UFL. An abbreviated Python code giving an indication for how the curved shell
model can be implemented is given in Figure 4, extracted from the documented demo Clamped
semi-cylindrical Naghdi shell under point load provided in the supplementary material.

4. Examples

To verify the convergence of the adopted discretisation techniques and illustrate the capabilities
of the FEniCS-Shells library, we report some benchmark examples. We select eight test cases,
including two linear Reissner-Mindlin plates (Section 4.1), two for linear Naghdi shells (Section 4.2),
one for Marguerre-von Kármán shallow shells (Section 4.3), and three for nonlinear Naghdi shells
(Section 4.4). The linear plate examples are discussed in more detail for testing the performance of
our implementation of the MITC formulation; we also showcase here an adaptive remeshing example
included in FEniCS-Shells. For linear shells we consider both membrane- and bending-dominated
regimes while the non-linear shell examples serve to check them in large displacements and rotation
regimes and are based on the FEniCS-Shells PSRI for curing the membrane and bending locking.
The example on the thermal buckling of a Marguerre-von Kármán shallow shell of Section 4.3 is
proposed here for the first time as a benchmark test of finite element shell models.

4.1. Reissner-Mindlin plate

In this section we demonstrate the correct convergence rate of our implementation of the
Durán–Liberman element for the Reissner-Mindlin plate problem towards a manufactured analytical
solution. Then, we show an implementation of a residual-based a posteriori error estimator which
we use to drive mesh adaptivity, resolving the solution in a re-entrant plate problem with strong
boundary layers.
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1 from dolfin import *; from mshr import *; import numpy as np

2 rho = 1.016; L = 3.048 # radius and length

3 mesh = generate_mesh(Rectangle(Point(-np.pi/2., 0.), Point(np.pi/2., L)), 21)

4 # Material properties and thickness

5 E, nu, t = 2.0685E7, 0.3, 0.03; mu = E/(2.0*(1.0 + nu)); lmbda = 2.0*mu*nu/(1.0 - 2.0*nu)

6 # Cylindrical map

7 initial_shape = Expression(('r*sin(x[0])','x[1]','r*cos(x[0])'), r=rho, degree = 4)

8 V_phi = FunctionSpace(mesh, VectorElement("Lagrange", triangle, degree = 2, dim = 3))

9 phi0 = project(initial_shape, V_phi)

10 # Normal

11 V_n = FunctionSpace(mesh, VectorElement("Lagrange", triangle, degree = 1, dim = 3))

12 nv = cross(phi0.dx(0), phi0.dx(1))

13 n0 = project(nv/sqrt(inner(nv, nv)), V_n) # surface normal in the reference configuration

14 # Director

15 director = lambda beta: as_vector([sin(beta[1])*cos(beta[0]), -sin(beta[0]), cos(beta[1])*cos(beta[0])])

16 beta0_expression = Expression(["atan2(-n[1], sqrt(pow(n[0],2) + pow(n[2],2)))", "atan2(n[0],n[2])"], n = n0, degree=4)

17 V_beta = FunctionSpace(mesh, VectorElement("Lagrange", triangle, degree = 2, dim = 2))

18 beta0 = project(beta0_expression, V_beta)

19 d0 = director(beta0) # director in the reference configuration

20 # Finite element space

21 P2, bubble = FiniteElement("Lagrange", triangle, degree = 2), FiniteElement("B", triangle, degree = 3)

22 enriched = P2 + bubble

23 U, Beta = VectorElement(enriched, dim=3), VectorElement(P2, dim=2) # element for displacements and rotations

24 Q = FunctionSpace(mesh, MixedElement([U, Beta])) # Mixed element

25 # Definitions of functions, test functions, and trial functions

26 q_ = Function(Q); q, q_t = TrialFunction(Q), TestFunction(Q); u_, beta_ = split(q_)

27 # Kinematics

28 F = grad(u_) + grad(phi0) # gradient of the transformation

29 d = director(beta_+ beta0) # direction

30 # Initial metric and curvature

31 a0 = grad(phi0).T*grad(phi0); a0_c = inv(a0); j0 = det(a0)

32 b0 = -0.5*(grad(phi0).T*grad(d0) + grad(d0).T*grad(phi0))

33 # Deformations

34 e = lambda F: 0.5*(F.T*F - a0) # membrane deformation

35 k = lambda F, d: -0.5*(F.T*grad(d) + grad(d).T*F) - b0 # bending deformation

36 gamma = lambda F, d: F.T*d-grad(phi0).T*d0 # shear deformation

37 # Contravariant Hooke's tensor.

38 i, j, l, m = Index(), Index(), Index(), Index()

39 A = as_tensor((((2.0*lmbda*mu)/(lmbda + 2.0*mu))*a0_c[i,j]*a0_c[l,m] + mu*(a0_c[i,l]*a0_c[j,m] + a0_c[i,m]*a0_c[j,l])), [i,j,l,m])

40 # Stress

41 N = as_tensor(t*A[i,j,l,m]*e(F)[l,m],[i, j]) # membrane stress

42 M = as_tensor((t**3/12.0)*A[i,j,l,m]*k(F,d)[l,m],[i, j]) # bending moment

43 T = as_tensor(t*mu*a0_c[i,j]*gamma(F,d)[j], [i]) # shear stress

44 # Energy densities

45 psi_m = 0.5*inner(N, e(F)) # membrane energy

46 psi_b = 0.5*inner(M, k(F,d)) # bending energy

47 psi_s = 0.5*inner(T, gamma(F,d)) # shear energy

48 # Total energy functional including PSRI

49 h = CellDiameter(mesh); alpha = project(t**2/h**2, FunctionSpace(mesh,'DG',0))

50 dx_h = dx(metadata={'quadrature_degree': 2}) # measure with reduced integration

51 Pi_PSRI = psi_b*sqrt(j0)*dx + alpha*psi_m*sqrt(j0)*dx + alpha*psi_s*sqrt(j0)*dx

52 + (1.0 - alpha)*psi_s*sqrt(j0)*dx_h + (1.0 - alpha)*psi_m*sqrt(j0)*dx_h

53 # First and second directional derivatives to calculate residual and Hessian

54 F = derivative(Pi_PSRI, q_, q_t)

55 J = derivative(F, q_, q)

Figure 4: Abbreviated Python code showing construction of energies for half-cylinder non-linear Naghdi model (see
Section 4.4). For further details we refer the reader to the documented demo Clamped semi-cylindrical shell under
point load provided as the supplementary material.
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Figure 5: Chinosi clamped plate problem solved using Durán–Liberman element: Transverse displacements (scalar
field, density plot) and rotations (vector field, quiver plot, 50% of points discarded) (left). Convergence to Chinosi
analytical solution on sequence of uniformly refined meshes in H1 and L2 norms for t = 10−4 (right).

4.1.1. Clamped square plate

We solve the problem of a unit-square Reissner-Mindlin plate Ω = (0, 1)2 clamped with uniform
thickness t = ε = 10−4, and with isotropic linear elastic material behaviour with Youngs modulus
E = 10920 and Poisson ratio ν = 0.3. The plate is clamped on the boundary (homogeneous
Dirichlet boundary conditions on the transverse displacements and rotations) and loaded by a
uniform pressure. The closed-form polynomial expressions for the loading and the resulting solution
fields are given in Appendix A.

Figure 5 shows the solution to the above problem obtained with FEniCS-Shells using a 32×32
cross-pattern mesh (left) and the error with respect to the analytical solution on a sequence of
uniformly refined meshes in both the H1 and L2 norms (right). The convergence result given in the
original paper of Durán and Liberman [32] is:

||θ − θh||H1(ω,R2) + ||w − wh||H1(ω) ≤ Ch||f ||L2(ω), (44)

where C is some unknown positive constant independent of the cell size h, corresponding to a linear
convergence in the H1-norm for both the transverse displacements and rotation variables. Although
no proof is given in [32] we achieve quadratic convergence for both variables in the L2 norm, the
canonical ‘one order higher convergence in L2’ behaviour. Figure 6 shows the convergence in the
H1-norm of the transverse displacement w and the rotations θ for varying thickness t. We see a
very slight deterioration of the error for a thick plate, but the rate of convergence is nearly identical
for thick through to very thin plates.

In conclusion, this benchmark indicates that the implementation of the Durán-Liberman element
in FEniCS-Shells is locking-free and optimally convergent. We remark that a finite element
method designed without consideration for locking would not converge at all for this problem. A
commented code for this test case is given in the documented demo Clamped Reissner-Mindlin
plate under uniform load (see supplementary material).

4.1.2. Partly-clamped L-shaped plate

This example shows how sophisticated and efficient adaptive remeshing strategies can be easily
implemented using FEniCS-Shells. We consider the a posteriori error estimator proposed in [16],
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Figure 6: Convergence of Reissner-Mindlin problem discretised with Durán–Liberman element to Chinosi analytical
solution for varying thickness parameter t. Left: Error for the transverse displacement w (H1-norm) as a function of
the mesh size h. Right: Error for the rotation field θ (H1-norm). In the latter case all lines lie on top of each other
(convergence behaviour independent of t). We achieve optimal convergence in all cases.

which is similar to the one developed in [24], but it includes extra terms that control the error at
boundaries induced by the strong boundary layer present [8] in the Reissner-Mindlin problem as
ε→ 0. The full specification of the error indicator is given in Appendix B. It is possible to implement
these complex expressions in UFL with just a few lines of code and a demo in FEniCS-Shells
demonstrates the procedure.

We consider the problem of a non-convex L-shaped plate with a re-entrant corner clamped
along the two edges that form the re-entrant corner, and the other four sides left free, Figure 7.
The plate is loaded with a uniform transverse load f scaled with the cube of the plate thickness t3.
The material parameters are the same as before. The difficulties of resolving the low regularity
solution in the straight corners and in the re-entrant corner, in addition to the strong boundary
layers on the free edges, means that a uniform refinement strategy will be very inefficient. Using
an a posteriori error estimator to guide the refinement process can lead to orders of magnitude
efficiency improvements.

Because no exact analytical solution is known for the studied problem we cannot calculate the
exact error. Therefore we resort to comparing the behaviour of the error estimator under both
uniform and adaptive refinement strategies.

Figure 8a shows the convergence of the error estimator for a moderately thick plate t = 10−1

using adaptive (blue solid) and uniform (green dashed) refinement. We can see that using uniform
refinement we achieve an algebraic convergence rate of only O(d−1/4) where d is the number of
degrees of freedom for the discrete system. This corresponds to a classical convergence rate of
O(h1/2). This sub-optimal behaviour is expected given the low regularity of the solution particularly
in the re-entrant corner. The convergence of the adaptive scheme initially matches that for the
uniform refinement before increasing to O(d−1/2) due to the strong local refinements in the re-entrant
corner region, and also in the other corners during the latter refinement steps. In Figure 7a we show
the meshes at the 2nd and 6th adaptive refinements, with 2,499 and 10,494 degrees of freedom,
respectively. The strong refinement near the re-entrant corner is clearly evident.

Critically, we can achieve the same level of convergence with significantly fewer degrees of
freedom using the adaptive scheme. Taking the most refined uniformly meshed problem, with
2,365,443 degrees of freedom, we can reach the roughly the same level of error using 123,495 degrees
of freedom with the adaptive strategy.
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(a) Thick plate (t = 10−1) (b) Thin plate (t = 10−4)

Figure 7: Meshes after adaptive remeshing at different refinement levels (3rd and 6th level) for thick and thin plates.
The increased refinement on the free boundaries for thin plates capture the strong boundary layer effect as t→ 0.
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(b) Thin plate (t = 10−4)

Figure 8: Plot of error estimator η against the number of cells in the L-shaped plate problem with using adaptive
and uniform refinement. The rate of convergence is significantly improved using the adaptive refinement strategy
compared with a uniform refinement strategy.

The trends for a very thin plate with t = 10−4 shown in Figure 8b and Figure 7b are broadly
similar to those in Figure 7a. However, in addition, because of the presence of the strong boundary
layer on the free edges as t → 0, we can see that the error indicator preferentially refines these
regions as well as the re-entrant corner.

4.2. Linear Naghdi shell

In this section we demonstrate the performance of the finite element discretisation of the Naghdi
linear shell model implemented in the FEniCS-Shells library. The numerical results presented
here are based the PSRI formulation. To verify the discretisation in both membrane- and bending
dominated regimes two well known benchmark examples have been chosen, namely, a partly clamped
hyperbolic paraboloid (bending-dominated test) and an axisymmetric hyperboloid with clamped
ends (membrane-dominated test). In both cases, the computational domain is a rectangular domain
ω which is mapped to the surface in R3 through the action of the map φ0.

4.2.1. Partly clamped hyperbolic paraboloid

We consider a thin shell whose middle surface is an hyperbolic paraboloid; the shell is clamped
on one of its edges and subject to a uniform load in the vertical direction, see Figure 9 for details.
This is an excellent bending dominated benchmark problem to test a FE formulation with respect
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Figure 9: Partly clamped hyperbolic paraboloid with linear Naghdi shell model: initial shape (left), convergence plot
(centre), and deformed shape (right). We obtain convergence of O(d−1) in the energy for this problem.

to membrane-locking issues [15]. The initial shape is the analytical surface φ0 = {x0, x1, x
2
0 − x2

1}
with (x0, x1) ∈ [−1/2, 1/2] × [−1/2, 1/2]. For the simulation we set Poisson ratio to be ν = 0.3.
The convergence analysis is performed for thicknesses t = 10−n for n = 1, 2, 3, 4 and obtained by
setting the uniform pressure load to p to be proportional to t. Convergence rates in strain energy
are reported for different values of the dimensionless thinness parameter t = ε. The deformed
shape of the shell shows two zones corresponding to radically different shell behaviours: a zone
where geometry and constraints prevent pure bending displacements (inhibited zone) and a zone
where they are allowed (non-inhibited zone). For very thin shells this implies a sharp change of
the shell stiffness across the boundary separating the two zones, born out by the bending energy
localisation [52].

4.2.2. Axisymmetric hyperboloid with clamped ends

We consider a thin shell whose middle surface is an hyperboloid of revolution; the shell is clamped
on both its edges and subjected to a surface axisymmetric normal pressure, so that symmetry
arguments enable us to solve the problem over a smaller computational domain (1/8th of the whole
domain), see Figure 10 for details. This is a well-posed membrane dominated benchmark problem
[41]. The initial shape is the analytical surface φ0 = {cosx0 coshx1, sinx0 coshx1, sinhx1} with
(x0, x1) ∈ [0, π/2]× [−1, 0]. For the simulation we set Poisson ratio ν = 1/3 and the pressure load
f = f0 cos(2x0). Convergence rates in strain energy are reported for different values of the thinness
parameter t. The deformed shape of the shell shows a boundary layer of width ≈ 6

√
t near the

clamped edge can be recognised, where the mesh must adequately refined for proper convergence.
These results are in agreement to what is reported in the literature [41].

4.3. Marguerre-von Kármán shallow shell

We discuss the performance finite element discretisations of the nonlinear Marguerre-von Kármán
shallow shell model (see Section 2.2) implemented in the FEniCS-Shells library. We compare
here the results obtained with the MITC and PSRI formulations.

4.3.1. Lenticular plate with inelastic curvature

We consider an initially flat isotropic linear elastic disk of radius a with lenticular thickness
subject to a through-the-thickness temperature gradient. Thus, the initial shape of the plate is the
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Figure 10: Clamped hyperboloid: initial shape (left), convergence plot (centre), and deformed shape (right).We obtain
convergence of O(d−1) in the energy for this problem. This convergence requires strong refinement in the region of
the boundary layer, shown on the deformed shape (right).

disk x2
0 +x2

1 ≤ a2 and the thickness varies as (1−x2
0/a

2−x2
1/a

2) t, where t is the maximal thickness
at the center. This special shape has been proposed by Mansfield[59, 60] to avoid boundary layer
effects and obtain a prestressed plate allowing for an exact analytical solution in the nonlinear
regime. The temperature gradient is modelled as a uniform isotropic inelastic curvature k̄ with
k̄xx = k̄yy = kT and k̄xy = 0 (with x0 = x, x1 = y). Mansfield has shown that in the framework of
the von Kármán model the exact solution of the problem is with uniform curvature in space. The
curvature tensor at the equilibrium is with kxy = 0 and

for kT ≤ k∗T , kx = ky : kx +
4

(1 + ν)2

k3
x

k∗2T
= kT

for kT > k∗T , kx, ky = kT ±
√
k2
T − k∗2T

, k∗T =
t

r2

2

1 + ν

√
2(7 + ν)

(1 + ν)
. (45)

For kT � k∗T , the behaviour is approximately linear. The equilibrium curvature k is spherical
and close to k̄. However, conforming the plate to a spherical surface implies membrane extension.
For kT � k∗T , the extensional deformation becomes too expensive from the energetic point of view
and the minimal energy configurations are approximately cylindrical and bending-dominated. The
critical value k∗T corresponds to a bifurcation from the spherical shape. For k ' k∗T bending and
extensional energies are of the same order. In the perfectly isotropic case, for k > k∗T the plate is
neutrally stable: all the shapes obtained by rotating the curvature axis are still solutions of the
problem. This structure was a source of inspiration for several recent works on morphing plates
and shells[84, 85, 40].

We perform simulations increasing the inelastic curvature kT , for a Poisson ration ν = 0.3 and
maximum thickness t = 0.01. The Young modulus has no influence here. To break the rotational
symmetry, we introduce a slight imperfection in the inelastic curvature imposing k̄x = kT /ρ,
k̄y = kTρ with ρ = 0.998. Figure 11 shows the bifurcation diagrams obtained with the MITC
and the PSRI discretisations for the shearable version of the model exposed in Section 2.2. We
use uniform unstructured triangular meshes and parametrise the mesh size by the number of
division n along the radius. To avoid rigid body motions, we applied suitable pointwise Dirichlet
boundary conditions. Namely we set to zero all the components of the displacement at the
center, the displacement in x direction at (0, a) and the displacement in y direction at (a, 0). The
analytical solution (45) is reported in the plot as solid blue line. The results obtained with both
the discretisations converge to the analytical solution. However, PSRI converges more quickly than
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MITC, giving very good results even with n = 5. A possible explanation is that membrane locking
is not cured in our MITC implementation. We conclude that the PSRI technique introduced in
FEniCS-Shells is a very efficient discretisation to cure both shear and membrane locking in the
weakly nonlinear regime. This will be further tested and assessed in the next Section. To introduce
fully nonlinear models, we compare in Figure 12 the results obtained with the fully nonlinear Naghdi
shell model and the Marguerre-von Kármán shallow shell model. In both cases we use the PSRI
discretisation. As expected [53], the results confirm that Marguerre-von Kármán model can safely
be used to approximate the Naghdi model for sufficiently small loadings, namely for curvatures
of the order of a2/t. More surprisingly, for the present test the discrepancies with respect the
fully nonlinear model remain tolerable also for k ' 50 a2/t. The documented demo Buckling of a
heated von Kármán plate in the supplementary material includes the full commented code for the
Marguerre-von Kármán shallow shell with PRSI discretisation. An extension of this problem to
the case of an orthotropic material is included in FEniCS-Shells as a further documented demo
in order to illustrate some basic tools for modelling composite laminates that we do not explicitly
describe in this paper.

before the bifurcation
after the bifurcation

Figure 11: Lenticular orthotropic plate. Bottom row: Bifurcation diagram for the curvatures kx and ky at the
equilibrium as a function of the temperature loading. The curvature values reported in the plots as dots are the
spatial average extracted from the finite element results with the MITC (left) and PRSI (right) models with uniform
unstructured meshes with n ∈ [5, 10] divisions along the radius. The top row: Sketch of the lenticular plate (left) and
snapshots of the equilibrium shapes before (center) and after (right) the bifurcation. The results are for a2/t = 100
and ν = 0.3.

4.4. Nonlinear Naghdi shell

We demonstrate here the performance of the finite element discretisation of the nonlinear Naghdi
shell model implemented in the FEniCS-Shells library. To test the predictive capability of the
formulation in the large displacements and rotations regime we selected three well known benchmark
problems, see [43] and references therein.
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Figure 12: Lenticular orthotropic plate. Comparison of the results obtained with the von Kármán and the Naghdi
models using the PSRI discretisation and an unstructured uniform mesh with n = 5 division along the radius. The
results are for a2/t = 100 and ν = 0.3.

Analytical solution 
MITC  x1-displacement 

MITC  x3-displacement 

M = 0.5 Mmax

M = Mmax

Figure 13: Cantilever plate under end moment. Left: initial geometry and loading. Right: Comparison between
analytical and numerical solution (MITC) for the moment-displacement diagram, where the insets show the deformed
configurations for M = 0.5Mmax and M = Mmax. We report here the results for displacement at the free end in the
X1 and X3 directions, normalised with the initial length L.

4.4.1. Cantilever plate under end moment

We consider a strip clamped on one of its edges and subjected to a moment M on the other
edge, see Figure 13 for details. In its natural configuration the shell occupies a flat rectangular
domain of width b, length L. In the numerical simulations we set L = 12b, thickness t = b/10, and
Poisson ratio ν = 0. For load M = 2πEI/L, where I = t3/12 the plate completely rolls up on itself.
The normalised vertical and horizontal displacements at the free end have the analytical expressions
w/L = (1− cos 2πµ)/(2πµ) and v/L = sin (2πµ)/(2πµ)− 1, respectively, where µ = M/Mmax. A
comparison between the finite element and analytical solutions in terms of load-deflection curves
is reported in Figure 13. The numerical solution is computed by discretising the domain with a
48× 4 element mesh and shows excellent agreement with the analytical one. The insets show the
deformed configurations of the plate for two values of the end moment.
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4.4.2. Slit annular plate under end shear force

We consider a slit annular plate of internal radius R1 = 6 and external radius R2 = 10 clamped
on one of its edges and subjected to a line shear load p on the other edge, see Figure 14 for details.
A comparison between the finite element and reference solutions in terms of load-deflection curves is

Abaqus S4R (Sze)

Point A - MITC
Point B  - MITC

Figure 14: Slit annular plate subjected to a line vertical load. The load-deflection diagram compare the numerical
solution obtained with FEniCS-Shells MITC discretisation with a reference solution (Sze [87], Abaqus S4R). Right:
geometry and loading; Left: final deformed configuration. Excellent agreement between the result of Sze [87] and
FEniCS-Shells is achieved.

reported in Figure 14, where we set the thickness t = 0.03, Poisson ratio ν = 0 and maximum load
p = 0.8E, with E = 21× 106. The numerical solution is computed by discretising the domain with
a 28−division unstructured mesh and the MITC technique. The reference solution [87] is computed
on a 10× 80 Abaqus S4R-element mesh. We see excellent agreement between the two results.

4.4.3. Clamped semi-cylindrical shell under point load

Abaqus S4R (Sze)
PSRI

Figure 15: Clamped semi-cylindrical shell under point load. Left: Initial configuration and boundary conditions.
Right: Comparison of the results of the PRSI implementation with a reference solution (Sze [87], Abaqus S4R). The
insets show the deformed configurations for P = Pmax and P = Pmax/2. Notice the stiffening of the shell beyond a
load of around 750N.
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We consider a semi-cylindrical shell clamped on one of its curved edges and subjected to a point
load P at the centre of the free curved edge. Along its straight longitudinal edges the transverse
displacement and the normal rotation are restrained, see Figure 15 for details.

The computational domain is a rectangle (x0, x1) ∈ [−π/2, π/2]× [0, 3.048] which is mapped to
the natural configuration semi-cylindrical shell of radius ρ = 1.016 through the initial transformation
φ0(x0, x1) = {ρ sinx0, x1, ρ cosx0}. A comparison between the FE and reference solution in terms
of load-deflection curves is reported in Figure 15 for the thickness t = 0.03, Young modulus
E = 2.0685× 107, Poisson ratio ν = 0.3, and a maximum load Pmax = 2000. The numerical solution
is computed by discretising the domain with a 21−division unstructured mesh and shows a very
good agreement with the reference solution in [87] computed on a 40× 40 abaqus S4R-element
mesh. For a complete commented code for this test case we refer to the documented demo Clamped
semi-cylindrical Naghdi shell under point load, available in the supplementary material.

5. Conclusions

In this paper we shown how a high-level approach to specifying thin structural models, in
conjunction with automatic code generation tools, can lead to simple, extensible and effective
finite element plate and shell formulations. The power of this approach is demonstrated via
the open-source FEniCS-Shells library. We have shown the main mathematical aspects of the
structural models available and the numerical procedures used to discretise them, with a particular
emphasis on shear- and membrane-locking issues. We selected two main discretisation strategies:
a special implementation of the MITC technique that provides an effective cure for shear-locking
in linear plate models, and an extension to nonlinear shells of the PRSI strategy proposed in [7]
for nonlinear shell problems shear- and membrane-locking. The examples section, accompanied
by a set of documented demos, while by no means exhaustive, shows the good performance of the
proposed methods and the type of analysis that can be performed.

We believe that FEniCS-Shells will be a helpful contribution for researchers and graduate
students in the community simulating thin structures. FEniCS-Shells could provide users
with efficient and simple tools to implement specific solvers for multilayered or other specific
plate and shell models [80], shell models including multiphysical couplings or nonlinear material
behaviour [79, 48, 40], as well as one atom thick shell structures such as nanotubes and graphene [9].

The present work constitutes an instrumental step in a larger project on the mechanics and
physics of shell structures, including the analysis of the nonlinear material behaviour and fracture
of isotropic and anisotropic shells through phase-field variational models [22, 42, 63, 6], applications
to multistable structures with embedded active materials [40, 83], and for the understanding of
singularities and energy scalings in plates and shells [30]. Current and future technical developments
of FEniCS-Shells will be aimed at providing anisotropic adaptive remeshing tools [82, 64] and
coupling to advanced nonlinear solvers, such as asymptotic numerical continuation methods [88]
and deflation techniques [33] to automatically detect multiple solutions of nonlinear systems. A
further interesting extension would be to adapt to shell modelling the special approach proposed by
[78] for solving PDEs on manifolds with FEniCS.
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Appendix A. Closed-form solution for a Reissner-Mindlin clamped square plate with
polynomial loading

This analytical solution is taken from the paper [27]. With transverse loading:

f(x, y)/D = 12y(y − 1)(5x2 − 5x+ 1)
{

2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1)
}

+ 12x(x− 1)(5y2 − y + 1)
{

2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1)
}
, (A.1)

with D = Et3/[12(1 − ν2)], it is possible to obtain the following closed-form solutions for the
rotations and transverse displacements:

θ(x, y) =
{
y3(y − 1)3x2(x− 1)2(2x− 1), x3 − 1)y2(y − 1)2(2y − 1)

}T
(A.2a)

w(x, y) =
1

3
x2(x− 1)3(y − 1)3 − 2t2

5(1− ν)
[y3(y − 1)3x(x− 1)(5x2 − 5x+ 1) (A.2b)

+ x3(x− 1)3y(y − 1)(5y2 − 5y + 1)]. (A.2c)

Appendix B. Residual-based a posteriori error estimator

The key result found in the paper[16] is that the error between the finite element solution and
the exact solution defined in the following sense:

|||(θ − θh, w − wh)|||h + t||γ − γh||L2(Ω) + ||γ − γh||H−1(Ω) + t2|| rot(γ − γh)||L2(Ω), (B.1)

where the mesh-dependant norm |||(θ, w)|||h is defined by:

|||(θ, w)|||2h = ||θ||2H1(Ω) +
∑
T∈Th

1

t2 + h2
T

||∇w − θ||2L2(T ), (B.2)

can be controlled by an error estimator of the following form:

η2
h =

∑
T∈Th

(η2 + ρ2) +
∑
E∈E inth

η2
int +

∑
E∈Efreeh

η2
free, (B.3a)

η2 = h2
T (h2

T + t2)||f + div γh||2L2(T ) + h2
T ||divMh + γh||2L2(T ), (B.3b)

η2
int = hE(h2

E + t2)||Jγh · nK||L2(E) + hE ||JMhnK||2L2(E), (B.3c)

η2
free = hE ||Mhn||2L2(E) + hE(h2

E + t2)||γh · n||2L2(E), (B.3d)

ρ2 = || rot(I −Rh)θh||2L2(T ) + ||(I −Rh)θh||2L2(T ), (B.3e)

where E free
h 6⊂ E int

h are the subset of edges on the free boundary (natural boundary conditions).
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[45] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with Kirchhoff–Love elements.
Computer Methods in Applied Mechanics and Engineering, 198(49-52):3902–3914, November 2009. ISSN 00457825.
doi: 10.1016/j.cma.2009.08.013. URL http://linkinghub.elsevier.com/retrieve/pii/S0045782509002680.

[46] R. C. Kirby and A. Logg. A Compiler for Variational Forms. ACM Trans. Math. Softw., 32(3):417–444, September
2006. ISSN 0098-3500. doi: 10.1145/1163641.1163644. URL http://doi.acm.org/10.1145/1163641.1163644.

[47] G. R. Kirchhoff. Uber das gleichgewicht und die bewegung einer elastischen scheibe. 1850.
[48] Y. Klein, E. Efrati, and E. Sharon. Shaping of elastic sheets by prescription of non-Euclidean metrics. Science,

315:1116–1120, February 2007.
[49] W. T. Koiter. A consistent first approximation in the general theory of thin elastic shells. The theory of thin

elastic shells, pages 12–33, 1959.
[50] Warner T Koiter. On the foundations of linear theory of thin elastic shells. 1. Proceedings of the Koninklijke

Nederlandse Akademie van Wetenschappen Series B-Physical Sciences, 73(3):169, 1970.
[51] J. Korelc. Multi-language and Multi-environment Generation of Nonlinear Finite Element Codes. Engineering

with Computers, 18(4):312–327, November 2002. ISSN 0177-0667, 1435-5663. doi: 10.1007/s003660200028. URL
https://link.springer.com/article/10.1007/s003660200028.

[52] P-S. Lee and K-J. Bathe. On the asymptotic behavior of shell structures and the evaluation in finite element
solutions. Computers & structures, 80(3):235–255, 2002.

[53] M. Lewicka, L. Mahadevan, and M. R. Pakzad. Models for elastic shells with incompatible strains. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Science, 470(2165), 2014. doi: 10.1098/rspa.
2013.0604. URL http://rspa.royalsocietypublishing.org/content/470/2165/20130604.abstract.

[54] A. Logg and G. N. Wells. DOLFIN: Automated Finite Element Computing. ACM Trans. Math. Softw., 37(2):
20:1–20:28, April 2010. ISSN 0098-3500. doi: 10.1145/1731022.1731030. URL http://doi.acm.org/10.1145/

1731022.1731030.
[55] A. Logg, K-A. Mardal, and G. Wells, editors. Automated Solution of Differential Equations by the Finite Element

Method, volume 84 of Lecture Notes in Computational Science and Engineering. Springer-Verlag Berlin and
Heidelberg, 1 edition, 2012. ISBN 978-3-642-23099-8. URL https://dx.doi.org/10.1007/978-3-642-23099-8.

[56] C. Lovadina. A New Class of Mixed Finite Element Methods for Reissner-Mindlin Plates. SIAM Journal on
Numerical Analysis, 33(6):2457–2467, December 1996. ISSN 0036-1429. URL http://www.jstor.org/stable/

2158480.

31

https://figshare.com/articles/FEniCS-Shells/4291160
http://ieeexplore.ieee.org/document/7933304/
http://spiral.imperial.ac.uk/handle/10044/1/14379
http://www.sciencedirect.com/science/article/pii/S0045782512001983
http://www.sciencedirect.com/science/article/pii/S0045782512001983
http://rspa.royalsocietypublishing.org/content/473/2204/20170364
http://rspa.royalsocietypublishing.org/content/473/2204/20170364
http://www.sciencedirect.com/science/article/pii/S0045794914001977
http://linkinghub.elsevier.com/retrieve/pii/S0045782509002680
http://doi.acm.org/10.1145/1163641.1163644
https://link.springer.com/article/10.1007/s003660200028
http://rspa.royalsocietypublishing.org/content/470/2165/20130604.abstract
http://doi.acm.org/10.1145/1731022.1731030
http://doi.acm.org/10.1145/1731022.1731030
https://dx.doi.org/10.1007/978-3-642-23099-8
http://www.jstor.org/stable/2158480
http://www.jstor.org/stable/2158480


[57] A. E. H. Love. A treatise on the mathematical theory of elasticity. Cambridge University Press, 2013.
[58] N. Lu and D. Kim. Flexible and Stretchable Electronics Paving the Way for Soft Robotics. Soft Robotics, 1(1):

53–62, July 2013. ISSN 2169-5172. doi: 10.1089/soro.2013.0005. URL https://www.liebertpub.com/doi/abs/

10.1089/soro.2013.0005.
[59] E. H. Mansfield. Bending, buckling and curling of a heated thin plate. Proceedings of the Royal Society

of London. Series A, Mathematical and Physical Sciences, 268(1334):316–327, 1962. ISSN 00804630. URL
http://www.jstor.org/stable/2414149.

[60] E.H. Mansfield. The bending and stretching of plates. Cambridge University Press, Cambridge, UK, 1989.
[61] C. Mardare. On the derivation of nonlinear shell models from three-dimensional elasticity. Rev. Roumaine Maths.

Pures Appl., 53:499–522, 2008.
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