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Movements and Basal Ganglia team, Inserm U 1127, CNRS UMR 7225, Sorbonne Universities, UPMC Univ Paris
06, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France, 5APHP, Urgences Cérébro-Vasculaires,
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Saint-Maurice, Saint-Maurice, France
∗Correspondence address. Chris Foulon, E-mail: hd.chrisfoulon@gmail.com and Michel Thiebaut de Schotten, michel.thiebaut@gmail.com

Abstract

Background: Patients with brain lesions provide a unique opportunity to understand the functioning of the human mind.
However, even when focal, brain lesions have local and remote effects that impact functionally and structurally connected
circuits. Similarly, function emerges from the interaction between brain areas rather than their sole activity. For instance,
category fluency requires the associations between executive, semantic, and language production functions. Findings: Here,
we provide, for the first time, a set of complementary solutions for measuring the impact of a given lesion on the neuronal
circuits. Our methods, which were applied to 37 patients with a focal frontal brain lesions, revealed a large set of directly
and indirectly disconnected brain regions that had significantly impacted category fluency performance. The directly
disconnected regions corresponded to areas that are classically considered as functionally engaged in verbal fluency and
categorization tasks. These regions were also organized into larger directly and indirectly disconnected functional
networks, including the left ventral fronto-parietal network, whose cortical thickness correlated with performance on
category fluency. Conclusions: The combination of structural and functional connectivity together with cortical thickness
estimates reveal the remote effects of brain lesions, provide for the identification of the affected networks, and strengthen
our understanding of their relationship with cognitive and behavioral measures. The methods presented are available and
freely accessible in the BCBtoolkit as supplementary software [1].
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Recent advances in neuroimaging techniques have allowed
for further examination of the structural and functional organi-
zation of the human brain. While diffusion weighted imaging
(DWI) tractography [2] depicts how brain areas are connected
together, functional magnetic resonance imaging (fMRI) mea-
sures the activity within and interaction between brain areas [3].
These methods have been successfully applied to the healthy
human brain; however, they remain underused in patients with
brain lesions.

Patients with brain lesions provide a unique opportunity to
understand the functioning of the human mind. Lesion symp-
tom mapping analyses traditionally assume that visible and di-
rectly damaged areas are responsible for a patient’s symptoms
[4–7]. Following this logic, the areas that are the most frequently
damaged by the lesion are considered as the neuronal sub-
strate for the function. Previous studies that used this method
have identified critical areas dedicated to, for example, language
production [8], comprehension [9], spatial awareness [10–13],
and other high-level cognitive functions [14–17]. However,
anatomical disconnections between regions are also important
considerations for the exploration of cognitive deficits [18, 19].
The dysfunction of distant areas that are connected to the le-
sioned tissue has also been reported in fMRI studies. These stud-
ies have shown that the networks are disrupted even by dis-
tant lesions through disconnection and diaschisis mechanisms
[20–22].

Nonlocal effects of lesions have previously been explored
using various forms of atlas-based analyses of tract damage
[23–32], lesion-driven tractography [32–34], disconnectomemap-
ping [35–39], and lesion-driven resting-state fMRI (rs-fMRI) con-
nectivity [34, 40]. However, determining what thesemethods ac-
tually measure and identifying how to properly combine them
are not always clear to the scientific community. Furthermore,
there is an extremely limited availability of free, open-source
software that applies methods to measure the nonlocal effects
of lesions. These resources and scientific tools remain very
much inaccessible and present a potential threat to reproducible
science [41].

Disconnections and diaschisis can have an impact on dis-
tant regions in several respects through maladaptive responses
and pathological spread [42]. When disconnected from its in-
puts and outputs, a region can no longer contribute to the elab-
oration of the supported function. This phenomenon is called
diaschisis [20, 21, 43]. Once deprived from its inputs and/or
outputs, transneuronal degeneration in the region will occur
[42], dendrite and synapse density will decrease in number,
myelin content will be altered, and neuronswill reduce in size or
die through a mechanism called apoptosis, a programmed cell
death [44–46]. Hence, a whitematter disconnection leads to both
functional and anatomical changes that extend well beyond the
visible damage. New approaches are therefore required to cap-
ture the long-range effects that follow brain disconnections. For
instance, cortical thickness [see, 47] and other volumetric [eg,
voxel-based morphometry 48] analyses have been used to study
the structural changes associated with brain lesions but have
not been applied in the context of brain disconnection.

In response to this need, here, we provide a set of comple-
mentary solutions to measure both the circuit and the subse-
quent changes within the circuit that are caused by a lesion. We
applied thesemethods to 37 patientswith focal brain lesions fol-
lowing a stroke or surgical resection. We first assessed the risk
of disconnection in well-known white matter tracts and tested
their relationship with category fluency performance. Category
fluency is an appropriate test to explore disconnection since

it requires the associations between executive, semantic, and
language production functions [49, 50]. We then developed a
tractography-based approach in order to producemaps of the ar-
eas that are directly disconnected by the lesion and tested their
relationship with category fluency performance. We addition-
ally calculated the rs-fMRI connectivity of these areas to reveal
the whole network of directly and indirectly disconnected re-
gions that participate in category fluency. Finally, we explored
potential microstructural changes in the latter disconnected re-
gions by estimating neuronal loss or local connectivity degener-
ation derived from magnetic resonance-based measures of cor-
tical thickness and resting-state fMRI entropy.

Methods
Participants and category fluency task

Thirty-seven right-handed patients (French native speakers; 19
females; mean age 48 ±14.2 years, age ranging from 23 to 75
years) who presented with a frontal lobe lesion at the chronic
stage (>3months) were included in this study (see Table 1 for de-
mographics). These patients were recruited from the stroke unit
and the neuroradiology department at Salpêtrière Hospital, the
neurological unit at Saint-Antoine Hospital, and the neuroradi-
ology department at Lariboisière Hospital in Paris. Patients with
a history of psychiatric or neurological disease, drug abuse, or
MRI contraindications were not included. Additionally, we gath-
ered behavioral data from 54 healthy participants (French native
speakers; 27 females; mean age 45.8 ±14.4 years, age ranging
from 22 to 71 years) in order to constitute a normative group.

All participants performed a category fluency task [51] in
French. They were instructed to enumerate as many animals as
possible during a timed period of 120 seconds. A clinical neu-
ropsychologist (M. U.) recorded the results. Repetition and dec-
lination of the same animal were not taken into account in the
final category fluency score.

The local ethics committee (Comités de protection des per-
sonnes, CPP Ile de France VI, Groupe hospitalier Pitie Salpetriere,
reference project number 16-10) approved the experiment. All
participants provided written, informed consent in accordance
with the Declaration of Helsinki. Participants also received a
small indemnity for their participation.

Magnetic resonance imaging

An axial 3-dimensional magnetization prepared rapid gradient
echo dataset covering the entire headwas acquired for each par-
ticipant (176 slices, voxel resolution = 1 × 1 × 1 mm, echo time
= 3 msec, repetition time = 2300 msec, flip angle = 9◦).

Additionally, the same participants underwent an fMRI ses-
sion of resting state. During the resting-state session, partic-
ipants were instructed to relax, keep their eyes closed, and
avoid falling asleep. Functional images were obtained using T2-
weighted echo-planar imaging with blood oxygenation level–
dependent contrast using SENSitivity Encoding (SENSE) imaging,
an echo time of 26 msec, and a repetition time of 3000 msec.
Each dataset comprised 32 axial slices acquired continuously in
ascending order covering the entire cerebrum with a voxel res-
olution of 2 × 2 × 3 mm; 200 volumes were acquired using these
parameters for a total acquisition time of 10 minutes.

Finally, DWI was also acquired for 54 participants of the nor-
mative group (French native speakers; 27 females;mean age 45.8
±14.4 years, age ranging from 22 to 71 years) and consisted of
70 near-axial slices acquired using a fully optimized acquisition
sequence for the tractography of DWI, which provided isotropic
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Table 1: Demographical and clinical data

ID Age (years) Education (years) Gender Lesion side Lesion volume (mm3) Lesion delay (months) Etiology

P01 56 17 F Right 255 7 Stroke
P02 55 19 M Left 34374 76 Hematoma
P03 46 17 F Left 14847 126 Stroke
P04 50 11 F Left 110145 137 Surgery
P05 64 14 M Right 59048 119 Stroke
P06 32 16 F Right 15946 129 epilepsy
P07 51 11 M Bilateral 113170 54 Stroke
P08 70 5 F Left 51530 85 Surgery
P09 47 11 M Right 7809 115 Hematoma
P10 62 13 F Bilateral 21295 14 Hematoma
P11 41 16 M Right 55848 29 Surgery
P12 46 12 M Bilateral 2542 51 Hematoma
P13 67 15 M Left 4102 133 Stroke
P14 49 9 M Bilateral 14929 19 Hematoma
P15 36 14 F Right 40854 82 Surgery
P16 40 22 F Left 24829 56 Hematoma
P17 40 14 M Bilateral 14364 7 Hematoma
P18 23 16 F Right 21681 47 Surgery
P19 54 22 M Right 51897 48 Stroke
P20 71 17 M Left 25779 91 Hematoma
P21 23 15 F Right 29513 36 Surgery
P22 27 9 F Left 12986 30 Surgery
P23 26 13 F Left 2640 19 Surgery
P24 32 14 F Left 12653 4 Surgery
P25 59 16 F Left 97 9 Hematoma
P26 26 13 F Left 26928 32 Stroke
P27 58 12 M Left 1026 3 Stroke
P29 75 12 F Left 14938 16 Hematoma
P30 52 13 F Right 11978 20 Surgery
P31 58 12 M Right 13263 21 Surgery
P32 62 5 M Right 20281 9 Surgery
P33 41 17 M Left 7463 29 Surgery
P34 42 17 M Left 24319 6 Infection
P35 60 12 M Right 41897 24 Surgery
P36 51 14 F Right 39213 17 Surgery
P37 51 12 F Right 8133 48 Surgery
P38 33 17 M Right 140947 48 Surgery

(2 × 2 × 2 mm) resolution and coverage of the entire head with a
posterior–anterior phase of acquisition. The acquisition was pe-
ripherally gated to the cardiac cycle [52], with an echo time = 85
msec. We used a repetition time equivalent to 24 RR (ie, interval
of time between 2 heart beat waves). At each slice location, 6 im-
ageswere acquiredwith no diffusion gradient applied. Addition-
ally, 60 diffusion-weighted images were acquired in which gra-
dient directions were uniformly distributed on the hemisphere
with electrostatic repulsion. The diffusion weighting was equal
to a b-value of 1500 s/mm2.

Stereotaxic space registration

As spatial normalization can be affected by the presence of a
brain lesion, additional processing was required before the nor-
malization could be calculated. For instance, in the case of bi-
lateral lesions, the registration was weighted as previously re-
ported [53]. For unilateral lesions, the first stepwas to produce an
enantiomorphic filling of the damaged area [54]. Each patient’s
lesion (or signal abnormalities due to the lesion) was manu-
ally segmented (using FSLview; [55]). Unilateral lesions were re-
placed symmetrically by the healthy tissue of the contralateral
hemisphere. Enantiomorphic T1 images were fed into FMRIB’s

Automated Segmentation Tool (FAST) [56] for estimation of the
bias field and subsequent correction of radiofrequency field in-
homogeneity. This improved the quality of the automated skull
stripping performed using a brain extraction tool (BET) [57] and
the registration to the MNI152 using affine and diffeomorphic
deformations [58]. The original T1 images (non enantiomorphic)
were registered to the MNI152 space using the same affine and
diffeomorphic deformations as calculated above. Subsequently,
lesions were segmented again in the MNI152 space under the
supervision of an expert neurologist (E. V.). This method has
been made freely available as the tool normalisation as part of
BCBtoolkit [1].

The following sections are hypotheses driven and outlined in
Supplementary Fig. 1.

White matter tracts disconnection

Each patient’s lesion was compared with an atlas of white mat-
ter tracts [59], indicating for each voxel, the probability of finding
a white matter tract such as the arcuate fasciculus, the frontal
aslant tract, or the uncinate fasciculus in the MNI152 coordinate
system. We considered a tract to be involved when the likeli-
hood of a tract being present in a given voxel was estimated
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4 Foulon et al.

Figure 1: Category fluency performance (mean performance with 95% confidence intervals [CIs]) for patients with (dark gray) or without (light gray) disconnection of
each tract of interest. The green intervals indicate the range of controls’ performance corresponding to 95% CIs. ∗ P < 0.05.

above 50% [23]. This method is freely available as tractotron in
BCBtoolkit [1]. We focused on frontal lobe tracts with a potential
effect on executive, semantic, and language functions since all
of the patients had a frontal lesion. These tracts included the
cingulum, the frontal aslant, and the frontal superior and infe-
rior longitudinal tracts for the executive functions [60]; the unci-
nate and the inferior fronto-occipital fasciculi for the semantic
access [61, 62]; and the anterior and long segment of the arcu-
ate fasciculi for the phonemic system [63, 64]. A Kruskal-Wallis
test was used to compare performance on the category fluency
test for each tract between both preserved and disconnected pa-
tients and control participants. Subsequently, for each signifi-
cant tract between patients, Mann-Whitney post hoc compar-
isons were performed (Fig. 1).

Direct disconnection of brain areas: structural
connectivity network

This approach used the DWI datasets of 10 participants in the
normative group to track fibers that passed through each lesion.

For each participant, tractography was estimated as indi-
cated in [65].

Patients’ lesions in the MNI152 space were registered to each
control native space using affine and diffeomorphic deforma-
tions [58] and, subsequently, used as seed for the tractogra-
phy in Trackvis [66]. Tractography from the lesions were trans-
formed in visitation maps [67, 68], binarized, and brought to
the MNI152 using the inverse of precedent deformations. Fi-
nally, we produced a percentage overlap map by summing at
each point in the MNI space the normalized visitation map
of each healthy patient. Hence, in the resulting disconnectome
map, the value in each voxel took into account the interindi-
vidual variability of tract reconstructions in controls and indi-
cated a probability of disconnection from 50% to 100% for a
given lesion (ie, thus explaining more than 50% of the variance
in disconnection and corresponding to a large effect size). This

procedure was repeated for all lesions, allowing the construc-
tion of a disconnectome map for each patient/lesion. These steps
were automatized in the tool disconnectome map as part of the
BCBtoolkit. Note that sample size and age effects are carefully
explored and reported in the Supplementary Material. Overall,
10 patients are sufficient to produce a good enough disconnec-
tome map that matches the overall population (more than 70%
of shared variance). We also demonstrate in the Supplementary
Material that disconnectome maps show a very high anatomical
similarity between decades and no decrease of this similarity
with age.

Thereafter, we used AnaCOM2, which is available within the
BCBtoolkit, in order to identify the disconnections that are asso-
ciated with a given deficit, that is, connections that are critical
for a given function (Fig. 2). AnaCOM2 is comparable to AnaCOM
[69] but has been reprogrammed and optimized to work on any
Linux or Macintosh operating systems.

Initially,AnaCOM is a cluster-based lesion symptommapping
approach that identifies clusters of brain lesions that are as-
sociated with a given deficit, that is, the regions that are crit-
ical for a given function. In the context of this article, Ana-
COM2 used disconnectome maps instead of lesion masks to iden-
tify clusters of disconnection that are associated with cate-
gory fluency deficits, that is, the connections that are criti-
cal for a given function. Compared to standard voxel-based
lesion-symptom mapping (VLSM) [8], AnaCOM2 regroups vox-
els with the same distribution of neuropsychological scores
into clusters of voxels. Then, for each cluster larger than
8 mm3, AnaCOM2 will perform a Kruskal-Wallis test between
patients with a disconnection, patients spared of disconnec-
tion, and controls. Resulting P values are Bonferroni-Holm
corrected for multiple comparisons. Subsequently, significant
clusters (P value < 0.05) are used to perform a post hoc
Mann-Whitney comparison between 2 subgroups of interest (ie,
disconnected patients and healthy participants). Post hoc re-
sults are Bonferroni-Holm corrected for multiple comparisons
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Advanced lesion symptom mapping 5

Figure 2: Areas directly disconnected by the lesion that significantly contributed to a decreased score on category fluency task (referred to as “disconnected areas” in
the manuscript). A) Representative slices from disconnectome maps computed for category fluency performance; blue clusters indicate group average low performance
and red clusters indicate high performance. B) Brain areas contributing significantly after correction for multiple comparisons. C) Category fluency performance (mean

performance with 95% confidence intervals [CIs]) for patients with (dark gray) or without (light gray) disconnection of each of the examined cortical regions. The green
interval indicates performance in matched controls with 95% CIs. Abbreviations: A, anterior group of thalamic nuclei; LH, left hemisphere; IPs, intraparietal sulcus;
MFg, middle frontal gyrus; pars Op., frontal pars opercularis; PreSMA, presupplementary motor area; RH, right hemisphere; VA, ventral anterior; VLa, ventrolateral
anterior; VLp, ventrolateral posterior. ∗ P < 0.05 Bonferroni-Holm corrected for multiple comparisons.

(statistical tests and corrections are computed using R language
[70]).

Patient–control comparisons have been chosen as a first step
in order to avoid drastic reduction of statistical power when 2 or
more nonoverlapping areas are responsible for patients’ reduced
performance [69]. Nonparametric statistics have been chosen, as
it is fair to consider that some clusters will not show a Gaussian
distribution. AnaCOM2 resulted in a statistical map that reveals,
for each cluster, the significance of a deficit in patients who un-
dertake a given task as compared to controls.

In the following sections, the term “clusters” systematically
refers to the result of the post hoc Mann-Whitney comparison
between disconnected patients and healthy participants who
survived Bonferroni-Holm correction for multiple comparisons.

fMRI meta-analyses

A method described by Yarkoni et al. [71, 72] was used to iden-
tify the functional networks involved in category fluency. We
searched for brain regions that are consistently activated in
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6 Foulon et al.

Figure 3: Areas classically activated with functional magnetic resonance imaging (P < 0.01 corrected for False Discovery Rate) during fluency (pink) and categorization
(cyan) tasks. Areas involved in both fluency and categorization are highlighted in dark blue. Abbreviations: A, anterior group of thalamic nuclei; IPs, intraparietal sulcus;
MFg, middle frontal gyrus; PreSMA, presupplementary motor area; VA, ventral anterior; VLa, ventrolateral anterior; VLp, ventrolateral posterior.

studies that load highly on the following 2 features: “fluency”
(120 studies, 4214 activations) and “category” (287 studies, 10179
activations). The results were superimposed on the 3D recon-
struction of the MNI152 images (Fig. 3).

Indirect disconnection of brain areas: functional
connectivity network

Rs-fMRI images were first motion corrected using MCFLIRT [73],
then corrected for slice timing, smoothed with a full half width
maximum equal to 1.5 times the largest voxel dimension, and
finally filtered for low temporal frequencies using a Gaussian-
weighted local fit to a straight line. These steps are available in
Feat as part of the FSL package [74].

Rs-fMRI images were linearly registered to the enantiomor-
phic T1 images and, subsequently, to the MNI152 template
(2 mm) using affine transformations. Confounding signals were
discarded from rs-fMRI by regressing out a confound matrix
from the functional data. The confound matrix included the es-
timated motion parameters obtained from the previously per-
formed motion correction, the first eigenvariate of the white
matter and cerebrospinal fluid (CSF) as well as their first deriva-
tive. Eigenvariates can easily be extracted using fslmeants
combined with the –eig option. White matter and CSF eigen-
variates were extracted using masks based on the T1-derived
3-classes segmentation thresholded to a probability value of 0.9,
registered to the rs-fMRI images, and binarized. Finally, the first
derivative of the motion parameters, white matter, and CSF sig-
nal was calculated by linear convolution between their time
course and a [−1 0 1] vector.

For each control participant, we extracted the time course
that corresponded to each significant cluster, which was identi-
fied by the statistical analyses of the disconnectome maps. These
time courses were subsequently correlated to the rest of the
brain so as to extract seed-based resting-state networks. In order
to obtain themost representative networks at the group level, for
each seed-based resting-state network, we calculated the me-
dian network across the group. The median network resulting
from a seed contains, in each voxel, the median of functional
connectivity across all the controls. Medians were chosen in-
stead of average as they are less sensitive to outliers and are
more representative of the group-level data [75]. The calculation
of the functional connectivity was automatized andmade avail-
able inside the funcon tool as part of BCBtoolkit. Medians were
calculated using the function fslmaths.

Visual inspection revealed that several of these resting-
state networks shared a very similar distribution of activations.
Therefore, an “activation” matrix was derived from the seed-
based resting-state networks. This matrix consisted of columns
that indicated each seed-based resting-state network and rows
that represented the level of activation for each voxel in the cor-
tex. This activation matrix was entered into a principal compo-
nent analysis in SPSS (Chicago, Illinois) using a covariance ma-
trix and varimax rotation (with a maximum of 50 iterations for
convergence) in order to estimate the number of principal com-
ponents to extract for each function. Components were plotted
according to their eigenvalue (y; lower left panel in Fig. 4); we
applied a scree test to separate the principal from residual com-
ponents. This analysis revealed that 3 factors were enough to
explain 82% of the variance of the calculated seed-based resting-
state networks. This means that 3 factors are good enough to

Downloaded from https://academic.oup.com/gigascience/article-abstract/7/3/giy004/4838040
by BIUS Jussieu user
on 17 April 2018



Advanced lesion symptom mapping 7

Figure 4: Functional networks involving the identified disconnected areas, as defined by resting state functional connectivity. Top panel, Main cortical networks
involving the disconnected areas revealed by a principal component analysis. Bottom left panel, Principal component analysis of the raw functional connectivity result.
Bottom right panel, Strength of the functional connectivity for patients with (dark gray) or without (light gray) involvement of the functional network. Abbreviations:

CO, cingulo-opercular network; CS, cortico-striatal network; VFP, ventral fronto-parietal network. ∗ P < 0.05; ∗∗ , P < 0.01.

summarize most of the seed-based resting-state network re-
sults. Finally, brain regions that had a statistically significant
relationship with the 3 components (ie, factor-networks) were
detected using a linear regression with 5.000 permutations, in
which the eigenvalues of the 3 components represented the in-
dependent variable and the seed-based resting-state networks
represented the dependent variable. Results were Family Wise
Error–corrected formultiple comparisons and projected onto the
average 3D rendering of the MNI152 template in the top panel of
Fig. 4. In the following sections, the term “factor-networks” sys-
tematically refers to brain regions that have a statistically sig-
nificant relationship with the 3 components.

Additionally, for each patient, we extracted the time course
that corresponded to each factor-network. These time courses
were subsequently correlated to the rest of the brain so as to ex-
tract seed-based factor-networks in each patient. FSLstats was
used to extract the strength of factor-networks functional con-
nectivity and, subsequently, to compare patients according to
their disconnection status. Note that a patient disconnected in
a factor-network is a patient who has a disconnection in at
least 1 of the clusters that contributed significantly to the factor-
network.

Structural changes in disconnected regions

A distant lesion can affect cortical macro- and microstructures
remotely. Conscious of this, we attempted to estimate these

structural changes and their relationship with category fluency
within each functional factor-network. To this aim, we explored
the properties of each functional network using the following
2 complementary measures: T1w-based cortical thickness to
identify fine local volumetric changes and the Shannon entropy
of rs-fMRI as a surrogate for the local complexity of the neu-
ral networks [76]. Each original functional network seeded from
each cluster was thresholded and binarized at r > 0.3 and used
as a mask to extract cortical thickness and entropy. Patients’ le-
sions were masked out for these analyses.

For the cortical thickness, a registration-based method (Dif-
feomorphic Registration based Cortical Thickness, DiReCT) was
used [77] from the T1-weighted imaging dataset. The first step,
as for the normalization, was to produce an enantiomorphic fill-
ing of the damaged area in order to prevent the analysis from
being contaminated by the lesioned tissue. The second step of
thismethod consisted of creating two 2-voxel thick sheets, 1 lay-
ing just between the gray matter and the white matter and the
second laying between the gray matter and the CSF. The gray–
white interface was then expanded to the gray–CSF interface
using diffeomorphic deformation estimatedwithAdvancedNor-
malization Tools (ANTs). The registration produced a correspon-
dence field that allowed an estimate of the distance between the
gray–white and the gray–CSF interfaces and thus corresponded
to an estimation of cortical thickness. Voxels that belonged to
the lesion were subsequently removed from the cortical thick-
ness maps (see Supplementary Fig. S2). This approach has good
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8 Foulon et al.

scan–rescan repeatability and good neurobiological validity as it
can predict with a high statistical power the age and gender of
the participants [78] as well as atrophy following brain lesions
[79]. Note that the striatum and thalamus were excluded from
the cortical thickness analysis since they do not have a cortical
ribbon.

Shannon entropy is an information theory–derived measure
that estimates signal complexity [80, 81]. In the context of rs-
fMRI, the entropy measures the local complexity of the blood
oxygen level–dependent (BOLD) signal as a surrogate of the com-
plexity of the spontaneous neuronal activity [82, 83]. Since “cells
that fire together wire together” [84], for each gray matter voxel,
Shannon entropy of rs-fMRI can be considered as a surrogate for
the complexity of the connectionswithin this voxel and between
this voxel and the rest of the brain. Shannon entropy was ex-
tracted from the previously preprocessed rs-fMRI using the fol-
lowing formula: − sum (p∗log(p)), where p indicates the proba-
bility of the intensity in the voxel [76].

FSLstats was used to extract the average cortical thickness
and resting state fMRI entropy for each cluster and factor-
network. Statistical analysis was performed using SPSS soft-
ware. In our analysis, Gaussian distribution of the data was not
confirmed for the cortical thickness and the entropy measures
using the Shapiro–Wilk test. Therefore, nonparametric statistics
were chosen to compare cortical thickness and entropy levels
between patients disconnected, patients spared, and controls in
each cluster and factor-network. Additionally, bivariate Spear-
man rank correlation coefficient analyses were performed be-
tween the cortical thickness or entropy measurement of each
functional network and each patient’s category fluency perfor-
mance. Correlation significant at P < 0.0041 survives Bonferroni
correction for multiple comparisons (12 networks).

Results
White matter tracts disconnection

Patients’ lesions were compared to an atlas of white matter con-
nections in order to identify the probability of tract disconnec-
tions [59]. A Kruskal-Wallis test indicated that for each tract,
patients (ie, connected and disconnected) and control partici-
pants showed a significantly different performance on the cate-
gory fluency test (all P < 0.001; full statistics reported in Table 2).
Between patients, post hoc comparisons revealed that discon-
nections of the left frontal aslant (U = 90.0; P = 0. 0389), frontal
inferior longitudinal (U = 69.0; P = 0. 0216) and frontal superior
longitudinal (U = 75.0; P = 0. 0352) tracts, and the anterior (U =
28.5; P= 0. 0116) and long segment (U= 31.5; P= 0.0059) of the ar-
cuate fasciculus were associated with a poorer performance in
category fluency (Fig. 1). However, these post hoc comparisons
did not survive Bonferroni-Holm correction for multiple com-
parisons.

These results indicate that poor performance measured in
patients with brain damage can be associated to some extent
with white matter tract disconnections.

Direct disconnection of brain areas: structural
connectivity network

As different white matter atlases exist for the interpretation of
the white matter tract disconnection [85] and atlas-based ap-
proaches cannot assess the disconnection of the subportion of
tracts nor the involvement of multiple tracts by a lesion, data-
driven maps of disconnection or “disconnectomes” were pro-

duced. Using tractography in a group of 10 healthy controls, the
registered lesions were used as a seed to reveal white matter
tracts that passed through the injured area so as to produce
maps of disconnections, later referred to as disconnectome maps.
Category fluency scores were attributed to each patient’s discon-
nectome map (see Fig. 2A). A Kruskal-Wallis test indicated that
for several clusters, patients (ie., connected and disconnected)
and control participants showed a significantly different perfor-
mance on the category fluency test (all P < 0.001; full statistics
reported in Table 3).

Results were further statistically assessed using Mann-
Whitney post hoc comparisons in order to identify areas that,
when deafferented due to a disconnection mechanism, lead to
a significant decrease in performance in category fluency when
compared to controls.

The following results are Bonferroni-Holm corrected formul-
tiple comparisons. Main cortical areas in the left hemisphere in-
cluded the pre supplementary motor area (preSMA; cluster size
= 1449; Mann Whitney U = 88.5; P = 0.025), the anterior portion
of the intraparietal sulcus (IPs; cluster size = 1143; U = 18; P =
0.030), anterior cingulate gyrus (cluster size = 837; U = 304; P =
0.025) and middle cingulate gyrus (cluster size = 898; U = 95.5;
P = 0.014), the middle frontal gyrus (MFg; cluster size = 829; U =
81.5; P = 0.005), and the pars opercularis of the inferior frontal
gyrus (cluster size = 5314; U = 16; P = 0.025).

In the right hemisphere, the preSMA (cluster size = 1050; U =
50.5; P = 0.014), theMFg (cluster size = 552; U = 54; P = 0.018), the
anterior cingulate gyrus (cluster size = 572; U = 44.5; P = 0.009),
and the middle cingulate gyrus (cluster size = 817; U = 317; P =
0.041) were also involved (Fig. 2B).

Subcortical areas in the left hemisphere involved the cau-
date, the putamen, and several ventral thalamic nuclei including
the ventral anterior, the ventrolateral anterior, and the ventro-
lateral posterior as a part of the same cluster (cluster size= 5314;
U = 16; P = 0.025).

In the right hemisphere, the striatum (cluster size = 527; U
= 310; P = 0.031) and the ventral thalamic nuclei (cluster size =
935; U = 202.0; P = 0.025) were also involved (Fig. 2B).

Additionally, between-patient (ie, connected and discon-
nected, uncorrected for multiple comparisons) comparisons
confirmed the critical involvement of the preSMA (U = 212;
P = 0.0456), the MFg (U = 237; P = 0.01), the pars opercularis (U
= 179; P = 0.004), and the IPs (U = 172; P = 0.01) in the left hemi-
sphere. The preSMA (U = 208; P = 0.01) and the MFg (U = 196; P =
0.038) were also involved in the right hemisphere (Fig. 2C). Full
statistics are reported in Table 3.

fMRI Meta-analyses

We further examined whether the disconnected areas in pa-
tients with poor performance are functionally engaged in tasks
related to fluency and categorization using a meta-analysis ap-
proach [71, 72].

The result indicates that disconnected areas reported as
significantly contributing to category fluency performance in
patients are classically activated by functional MRI tasks that
require either fluency or categorization in healthy controls
(Fig. 3).

Indirect disconnection of brain areas: functional
connectivity network

As the disconnectome mapping method cannot measure the indi-
rect disconnection produced by a lesion (ie, it fails to measure
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Table 2: White matter tracts disconnection relationship with category fluency statistical report

3 groups comparison
Patients disconnected

and connected
Patients disconnected

and controls
Patients connected and

controls n1a n2b

Tract K P value U P value U P value U P value

Cingulum left 19 0.0001 141 0.2035 189 0.0003 277 0.0003 16 21
Cingulum right 19 0.0001 161 0.5 280 0.0001 187 0.0019 23 14
Uncinate left 19 0.0001 148 0.3994 176 0.0027 291 0.0001 13 24
Uncinate right 19 0.0001 167 0.4635 209 0.0004 258 0.0003 17 20
Arcuate anterior
segment left

22 0.0000 29 0.0116 12 0.0004 454 0.0001 5 32

Arcuate anterior
segment right

19 0.0001 126 0.3855 118 0.0025 348 0.0001 16 21

Arcuate long
segment left

23 0.0000 32 0.0059 13 0.0001 453 0.0002 6 31

Arcuate Long
segment right

19 0.0001 107 0.2559 117 0.0068 349 0.0001 9 28

Inferior
fronto-occipital
fasciculus left

19 0.0001 165 0.5 196 0.0011 271 0.0001 15 22

Inferior
fronto-occipital
fasciculus right

19 0.0001 157 0.3457 199 0.0002 268 0.0004 17 20

Frontal aslant tract
left

21 0.0000 90 0.0389 90 0.0001 377 0.0004 11 26

Frontal aslant tract
right

19 0.0001 155 0.3131 194 0.0001 272 0.0012 18 19

Frontal inferior
longitudinal left

21 0.0000 69 0.0216 54 0.0001 413 0.0004 9 28

Frontal inferior
longitudinal right

19 0.0001 140 0.3051 171 0.0022 295 0.0001 13 34

Frontal superior
longitudinal left

20 0.0000 75 0.0352 73 0.0004 393 0.0002 9 28

Frontal superior
longitudinal right

19 0.0001 129 0.1992 120 0.0001 346 0.0005 13 34

Results are not corrected for multiple comparisons.
aNumber of disconnected patients.
bNumber of spared patients.

the disconnection in a region that is not directly anatomically
connected to a damaged area but that nonetheless remains a
part of the same large network of functionally connected ar-
eas), we used functional connectivity in healthy controls. This
allowed us to reveal the entire network of regions that are func-
tionally connected to the areas that were reported as contribut-
ing significantly to the category fluency performance when di-
rectly disconnected.When compared to tractography, functional
connectivity has the added advantage of revealing the areas that
contribute to the network through both direct and indirect struc-
tural connections.

Principal component analysis indicated that the signifi-
cant areas that contributed to category fluency performance
belonged to 3 main functional networks (ie, factor-networks)
(Fig. 4), which accounted for more than 80% of the total variance
of the functional connectivity results.

The left cingulate clusters (anterior andmiddle), the right an-
terior cingulate, the middle frontal gyrus, the thalamus, and the
operculum all belonged to the cingulo-opercular network (CO)
[86], including the right preSMA, posterior cingulate, and rostral
portion of the middle frontal gyrus.

The middle of the cingulate gyrus and the striatum in
the right hemisphere both belonged to a cortico-striatal
network (CS) [87] that involves the right thalamus and
striatum.

Finally, the left MFg, preSMA, IPs, pars opercularis, thalamus,
and striatum were all involved in a larger, left ventral fronto-
parietal network (VFP), which also included other areas such as
the right preSMA, the frontal eye field, and the temporo-parietal
junction [88].

Additional analyses revealed the differences in the func-
tional connectivity of these factor-networks relative to the dis-
connected status of areas involved in category fluency. Between-
patient (ie, connected and disconnected) comparisons revealed
significantly lower functional connectivity in the left VFP net-
work (U = 54.0; P = 0.006) and in the CS network (U = 63.0;
P = 0.027) when anatomically disconnected. The CO network,
however, did not show any significant difference (U = 40.0;
P = 0.213). Overall, the strength of the functional connectivity
for each patient did not correlate significantly with the fluency
performance.

Structural changes in disconnected regions

Additional exploratory analyses revealed structural changes re-
lated to the disconnections. We estimated these changes using
the following 2 complementary measures: T1w-based cortical
thickness to identify fine local volumetric changes and the Shan-
non entropy of rs-fMRI as a surrogate for the local complexity of
the neural networks [76].
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When compared to controls, patients showed a reduced cor-
tical thickness in the left pars opercularis (H = 13; P = 0.0012),
MFg (H = 8; P = 0.0143), preSMA (H = 8; P = 0.0224), IPs (H = 9; P
= 0.0131), and right anterior (H = 7; P = 0.0296) and middle cin-
gulate gyrus (H = 23; P= 0.000).When compared to patients with
no disconnection, only the rightmiddle cingulate gyrus survived
the Bonferroni-Holm correction for multiple comparisons (U =
67; P = 0.004). When compared to controls, disconnected pa-
tients showed reduced entropy for all regions (all P< 0.05, except
for the right middle frontal gyrus). However, when compared to
patients with no disconnection, none of the comparisons sur-
vived the Bonferroni-Holm correction for multiple comparisons.
Uncorrected P values are reported as an indication in Table 4 and
the bar chart in Supplementary Fig. S3.

None of these measures correlated significantly with the flu-
ency performance.

In order to further assess the integrity of the whole network
of regions thatwere functionally connected to the areas reported
as having significantly contributed to category fluency perfor-
mance, we also extracted the cortical thickness and entropy
from the regions that were functionally connected to the dis-
connected areas. Correlation analyses indicated that a thinner
cortex in the ventral fronto-parietal network seeded from the
left MFg (Spearman Rho = .464 ± 0.341; P = .004), IPs (Rho = .475
± 0.341; P = .003), and left pars opercularis/striatum/thalamus
(Rho = .512 ± 0.341; P = .001) corresponded to a reduced perfor-
mance in category fluency (Fig. 5). Additionally, a thinner corti-
cal thickness in the left preSMA functional network (Rho = .376
± 0.341; P = .024) and a higher rs-fMRI entropy (Rho = −.420 ±
0.370; P = .019) in the mid cingulate gyrus functional network
were associated with poorer performance in category fluency.
These last 2 results, however, did not survive Bonferroni-Holm
correction for multiple comparisons.

The same analyses were repeated controlling for age and
lesion size and confirmed the results for the ventral fronto-
parietal network seeded from the leftMFg (SpearmanRho= .423;
P = .01), IPs (Rho = .538; P = .001), and left opercularis (Rho =
.590 ± 0.341; P < .001) and corresponded to a reduced perfor-
mance in category fluency (Fig. 5). Additionally, a thinner cortical
thickness in the left preSMA functional network (Rho = .439; P =
.007) and a higher rs-fMRI entropy (Rho = −.420 ± 0.370; P = .019)
in the mid cingulate gyrus functional network were associated
with poorer performance in category fluency.

Discussion

A large set of complementary methods can capture the impact
of lesions on distant regions and expose the subsequent con-
sequences on patients’ neuropsychological performance. Sev-
eral of these methods are built directly into our freely available
software package BCBtoolkit. This package can be used to mea-
sure the pathophysiological mechanisms that cause cognitive
deficits and to assess the relationship between these mecha-
nisms and their consequential effects. Here, we evaluated the
risk of disconnection of classically defined white matter tracts
and tested their relationshipwith category fluency performance.
We then used a tractography-based approach to reveal regions
that were structurally disconnected by the lesion and to assess
their relationship with category fluency performance as com-
pared to controls and other patients. Functional connectivity
from the disconnected regions revealed large networks of in-
terconnected areas. Within these regions/networks, measures
of cortical thickness and entropy of the rs-fMRI images were
correlated to fluency performance, suggesting that some struc-

tural changes that occurred within these networks were due
to the remote effect of a lesion that led to cognitive impair-
ments. Consequently, the BCBtoolkit provided investigators with
an ability to quantify the effect of brain damage on the whole
brain and to explore its relationship to behavioral and cognitive
abilities.

The investigation into the contribution of white matter tract
disconnection is an approach that ismore than a century old and
postulates an interruption in the course of white matter tracts
in single case patients [89, 90]. Our method provides an anatom-
ical rationale and puts forth a statistical methodology that en-
ables it to be extended to group-level studies. In the case of cat-
egory fluency performance, this analysis particularly revealed
a significant involvement of the anterior and long segments of
the arcuate fasciculus, which are implicated in the language
network [90–92]. However, these tracts have been defined, for
convenience, by their shape (eg, uncinate for hook-shaped
connections and arcuate for arched-shaped connections) and
should not be considered as a single unit, as, ultimately, sub-
portions could contribute differently to the elaboration of the
cognition and behavior.

Data-driven maps of disconnection, or disconnectomes, were
consequently produced in order to identify the subportion of
disconnected tracts and reveal the pattern of cortico-subcortical
areas that were disconnected by the lesion. For the first
time, we exemplify that this method goes beyond assessing
only lesions and can be used to assess the relationship be-
tween disconnected areas and the patient’s neuropsychological
performance. Here, this approach revealed that category flu-
ency performance significantly decreased when several corti-
cal and subcortical clusters were directly disconnected. The ob-
served areas are consistent with previous lesion studies on flu-
ency tasks [93]. Furthermore, each area identified as significantly
involved in this analysis corresponded, almost systematically,
to activation loci derived from fMRI studies in healthy controls
who performed fluency and/or categorization tasks. This result
suggests that the method appropriately identified altered func-
tional networks that contribute to the category fluency test.
Nonetheless, one might argue that a cascade of polysynap-
tic events can influence behavior and that dysfunctional, dis-
connected areas will also impact other indirectly connected
areas.

In order to explore this additional dimension, we calculated
the functional connectivity of the previously identified discon-
nected regions (ie, clusters). In the case of the present analy-
sis on category fluency performance, we revealed that the dis-
connected areas belonged to the following 3 large functional
networks (ie, factor-networks): a left-dominant ventral fronto-
parietal network; a mirror of the right-lateralized ventral atten-
tion network [94], which links key language territories [88] and
is associated with executive functions [95, 96]. In addition, we
showed the involvement of the cingulo-opercular network, a
network that interacts with the fronto-parietal control network
for the control of goal-directed behaviors [97], which together
with the cortico-striatal networkmay also be linked to a reduced
performance in fluency tasks [98]. The cingulo-opercular and
cortico-striatal networks may also have contributed to perfor-
mance through the global inertia or the ability of participants
to allocate and coordinate resources during the task [99]. Fi-
nally, disconnection was associated with a significant reduction
of functional connectivity in 2 of the 3 factor-networks inves-
tigated. This is an important result, as functional connectivity
appeared to be less significantly impaired in bilateral networks,
suggesting that the proportion of the preserved functional net-
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Figure 5: Dimensional relationship between cortical thickness measured in rs-fMRI disconnected networks and category fluency. Note that regression lines (in black)
and intervals (mean confidence intervals in red) are for illustrative purposes since we performed a rank-order correlation. Abbreviations: IPs, intraparietal sulcus; MFg,

middle frontal gyrus.

work in both of the intact hemispheres may contribute to the
strength of functional connectivity.

Changes in connectivity should induce changes in the mi-
crostructure of the areas of projection and provoke cognitive
or behavioural consequences. Measures of the cortical thick-
ness revealed a significant thinning for some, but not all, di-
rectly disconnected areas. This result may reflect a potential
transneuronal degeneration mechanism [42]. However, current
limitations in spatial resolution and MRI signal might have bi-
ased this measure in some regions due to changes in myelina-
tion in the lower layers of the cortex [100]. Cortical thickness
analyses revealed that the left dominant ventral fronto-parietal
network, whether it is seeded fromMFg, IPs, or subcortical struc-
tures in the left hemisphere, had a reduced cortical thickness
associated with the category fluency performance. This result
indicates a strong and encouraging relationship between the in-
tegrity of a network derived frommeasures of cortical thickness
and behavioral performances. Future research can benefit from
this approach to stratify patient populations and predict poten-
tial recovery.

Additionally, we explored whether structural changes such
as other neural (eg, synaptic plasticity) or nonneural factors
(eg, altered properties of the vasculature) could also be cap-
tured by measures of rs-fMRI entropy. Our results replicated
recently published results that showed a strong decrease of
entropy in both hemispheres when patients were compared to
controls [101]. This indicates a large-scale effect of brain lesion
on the overall BOLD dynamic of the brain. Finally, the result be-
tween patients (connected and disconnected) did not survive the
correction for multiple comparisons, suggesting that, although
promising, Shannon entropymeasures of BOLDmay be too noisy
of a measure to capture very fine microstructural events with
high enough statistical power.

Previous reports indicated that AnaCOM suffers from lower
specificity than VLSM (Rorden et al. [102]. AnaCOM compares
performance of patients with that of controls, an approach that
has previously been criticized [102]. In the context of our study,
classic VLSM did not reveal any significant area involved with
category fluency. In classic VLSM approaches, nonoverlapping
lesions are competing for statistical significance, fundamen-
tally assuming that a single region is responsible for the symp-

toms. In the present study, we followed Associationist principles
[19, 18], assuming that several interconnected regions will con-
tribute to the elaboration of the behavior. By comparing the per-
formance between patients and a control population using Ana-
COM2, several nonoverlapping regions can reach significance
without competing for it. Hence, our results differ theoretically
and methodologically from previous approaches. Perhaps more
importantly, the network of disconnected areas revealed byAna-
COM2 is typically considered as functionally engaged during flu-
ency and categorization tasks in healthy controls.

Newer multivariate methods have also been shown to pro-
vide superior performance compared to traditional VLSM (ie,
support vector regression lesion-symptommapping) [7, 103]. For
instance, such approaches have been used to model the statisti-
cal relationship between damaged voxels in order to reduce false
positives. In the disconnectome maps, this relationship has been
preestablished using an anatomical prior derived from tractog-
raphy in healthy controls. Therefore, it is not recommended
to use multivariate approaches with the disconnectome maps, as
they might come into conflict with the prebuilt anatomical as-
sociation between the voxels. Additionally, these approaches re-
quire a much larger database of patients than the current study.
Future research that uses large lesion databases will be required
to explore the effect of multivariate statistical analysis on dis-
connectome maps.

Multivariate approaches also elegantly demonstrated that
false positives can be driven by the vascular architecture [7]. This
is an important limitation concerning any voxel and vascular
lesion symptom mapping. Here, the group of patients explored
had stroke and surgical lesions. Althoughwe cannot exclude the
participation of the vascular architecture in the present findings,
the heterogeneity of the lesions included in our analyses may
have limited this factor. Additionally, the statistical interaction
between vascular architecture and the disconnectome map results
remain to be explored in large databases of lesions.

Methods used to estimate cortical thickness have previously
been reported to perform poorly in peri-infarct regions, and the
quality of the tissue segmentation may be particularly poor for
stroke patients [79]. Here, we followed previously published rec-
ommendations for applying DiReCT [77] to the data from stroke
patients; the lesion was masked out, the tissue segmentations
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were visually inspected, and manual boundary correction was
performed when necessary (see Supplementary Fig. S2 for an
example).

Finally, we applied our methods to the neural basis of cat-
egory fluency as a proof of concept. The anatomy of category
fluency should be, ideally, replicated in a larger sample of pa-
tients that includes adequate lesion coverage of the entire brain
to provide amore comprehensive understanding of category flu-
ency deficit after a brain lesion. While gathering such a large
dataset of patients with brain lesions would have been impos-
sible to achieve before, it might soon become possible thanks to
collaborative initiatives such as the Enigma Consortium stroke
recovery initiative [104, 105].

Conclusion

Overall, using BCBtoolkit, researchers and clinicians can mea-
sure distant effects of brain lesions and associate these effects
with neuropsychological outcomes. However, our methods re-
quire the manual delineation of lesion masks, automatization
remaining a big challenge, especially on T1 images [105]. Taken
together, these neuroimagingmeasures help discern the natural
history of events that occur in the brain after a lesion, as well as
assist in the localization of functions. These methods, gathered
in the BCBtoolkit, are freely available as supplementary software
[1, 107].

Availability of supporting data

Patients’ lesions registered to the reference map MNI152 are
available as supplementarymaterial via the BCBlabwebsite [106]
and via the GigaScience database GigaDB [107]. However, we are
not able to fully share the actual clinical sample data because
sharing of the clinical rawdata is not covered by the participants’
consent. A copy of the consent formas signed by the participants
is available via GigaDB.

Availability of supporting source code and
requirements
� Project name: BCBtoolkit
� Project home page: http://toolkit.bcblab.com
� Operating system(s): Linux, MacOS
� Programming language: Java, Bash, R
� Other requirements: FSL, R, Python 2.7, Numpy
� License: BSD 3-Clause

An archival copy of the supporting source code is also avail-
able via GigaDB [107].

Additional material

Figure S1: Step by step, hypotheses-driven analyses with
BCBtoolkit.

Figure S2: Native T1, enantiomorphic deformation and de-
rived cortical thickness of 3 representative patients.

Figure S3: Cortical thickness and Shannon entropy measures
(mean with 95% confidence intervals) in patients with (dark
gray) or without (light gray) disconnection for each of the dis-
connected areas. The green interval indicates performance in
matched controls with 95% confidence intervals.
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