L. Guidi, Plankton networks driving carbon export in the oligotrophic ocean, Nature, vol.18, issue.7600, pp.532465-470, 2016.
DOI : 10.18637/jss.v018.i02

URL : https://hal.archives-ouvertes.fr/hal-01275276

P. Flombaum, Present and future global distributions of the marine Cyanobacteria 518, 2013.

S. Mazard, M. Ostrowski, F. Partensky, and D. Scanlan, Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus, Environmental Microbiology, vol.10, issue.2, pp.372-524, 2012.
DOI : 10.1111/j.1462-2920.2007.01246.x

URL : https://hal.archives-ouvertes.fr/hal-01218506

J. Sohm, Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron, The ISME Journal, vol.10, issue.2, pp.333-345, 2016.
DOI : 10.1111/j.1462-2920.2007.01246.x

URL : http://www.nature.com/ismej/journal/v10/n2/pdf/ismej2015115a.pdf

G. Farrant, Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria, Proceedings of the National Academy of Sciences, vol.59, issue.3, pp.3365-3374, 2016.
DOI : 10.1111/j.1574-6941.2009.00729.x

URL : https://hal.archives-ouvertes.fr/hal-01331214

C. Six, Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study, Genome Biology, vol.8, issue.12, pp.259-531, 2007.
DOI : 10.1186/gb-2007-8-12-r259

URL : https://hal.archives-ouvertes.fr/hal-00338622

L. Ong and A. Glazer, Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and 534 locations and energy transfer pathways in Synechococcus spp. phycoerythrins, J Biol Chem, vol.535, issue.15, pp.2669515-9527, 1991.

W. Sidler, Phycobilisome and phycobiliprotein structures. The Molecular Biology of 537, 1994.
DOI : 10.1007/0-306-48205-3_7

. Cyanobacteria, Advances in Photosynthesis, pp.139-216

F. Humily, A Gene Island with Two Possible Configurations Is Involved in Chromatic Acclimation in Marine Synechococcus, PLoS ONE, vol.6, issue.12, p.84459, 2013.
DOI : 10.1371/journal.pone.0084459.s010

URL : https://hal.archives-ouvertes.fr/hal-01218505

L. Campbell, Response of microbial community structure to environmental forcing in the Arabian Sea, Deep Sea Research Part II: Topical Studies in Oceanography, vol.45, issue.10-11, pp.2301-2325, 1998.
DOI : 10.1016/S0967-0645(98)00072-1

A. Wood, M. Lipsen, and P. Coble, Fluorescence-based characterization of phycoerythrin- 571 containing cyanobacterial communities in the Arabian Sea during the Northeast and early 572, 1999.

D. Yona, M. Park, S. Oh, and W. Shin, Distribution of Synechococcus and its phycoerythrin pigment in relation to environmental factors in the East Sea, Korea, Ocean Science Journal, vol.31, issue.4, pp.367-382, 2014.
DOI : 10.1007/s00343-013-2085-3

F. Hoge, C. Wright, T. Kana, R. Swift, and J. Yungel, Spatial variability of oceanic 576 phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions, 1998.

A. Wood, D. Phinney, and C. Yentsch, Water column transparency and the distribution of spectrally distinct forms of phycoerythrin-containing organisms, Marine Ecology Progress Series, vol.162, pp.25-31, 1998.
DOI : 10.3354/meps162025

URL : https://hal.archives-ouvertes.fr/hal-01651711

L. Campbell and R. Iturriaga, Identification of Synechococcus spp. in the Sargasso Sea by 581 immunofluorescence and fluorescence excitation spectroscopy performed on individual cells, 1988.

X. Xia, cyanobacteria in surface waters of the northwestern pacific ocean, Environmental Microbiology, vol.10, issue.1, pp.142-158, 2017.
DOI : 10.1128/AEM.01895-15

URL : https://hal.archives-ouvertes.fr/hal-01377154

X. Xia, H. Liu, D. Choi, and J. Noh, Variation of Synechococcus pigment genetic diversity along 586 two turbidity gradients in the China Seas, Microb Ecol, pp.1-12, 2017.

X. Xia, W. Guo, S. Tan, H. Liu, H. Jing et al., Synechococcus assemblages across the salinity gradient in a 588 salt wedge estuary Co- 589 occurrence of phycocyanin-and phycoerythrin-rich Synechococcus in subtropical estuarine and 590 coastal waters of Hong Kong: PE-rich and PC-rich Synechococcus in subtropical coastal waters, p.591, 2014.

C. Chung, G. Gong, C. Huang, J. Lin, and Y. Lin, Changes in the Synechococcus Assemblage Composition at the Surface of the East China Sea Due to Flooding of the Changjiang River, Microbial Ecology, vol.414, issue.3, pp.677-688, 2015.
DOI : 10.1038/35107050

M. Stomp, Colourful coexistence of red and green picocyanobacteria in lakes and seas, Ecology Letters, vol.38, issue.4, pp.290-298, 2007.
DOI : 10.1038/316253a0

N. Fuller, Clade-Specific 16S Ribosomal DNA Oligonucleotides Reveal the Predominance of a Single Marine Synechococcus Clade throughout a Stratified Water Column in the Red Sea, Applied and Environmental Microbiology, vol.69, issue.5, pp.2430-2443, 2003.
DOI : 10.1128/AEM.69.5.2430-2443.2003

J. Larsson, Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea, The ISME Journal, vol.6, issue.9, pp.1892-1903, 2014.
DOI : 10.1038/ismej.2011.201

F. Chen, Phylogenetic diversity of Synechococcus in the Chesapeake Bay, p.608, 2004.

D. Choi and J. Noh, Phylogenetic diversity of Synechococcus strains isolated from the East, p.611, 2009.

S. Sunagawa, Structure and function of the global ocean microbiome, Science, vol.73, issue.16, pp.3481261359-614, 2015.
DOI : 10.1128/AEM.00062-07

URL : https://hal.archives-ouvertes.fr/hal-01233742

R. Logares, Metagenomic 16S rDNA Illumina tags are a powerful alternative, p.615, 2014.
DOI : 10.1111/1462-2920.12250

URL : https://hal.archives-ouvertes.fr/hal-01258219

P. Pearman, A. Guisan, O. Broennimann, and C. Randin, Niche dynamics in space and time, Trends in Ecology & Evolution, vol.23, issue.3, p.618, 2008.
DOI : 10.1016/j.tree.2007.11.005

M. Paulsen, Synechococcus in the Atlantic Gateway to the Arctic Ocean, Frontiers in Marine Science, vol.11, 2016.
DOI : 10.1111/j.1462-2920.2009.01902.x

T. Haverkamp, Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea, The ISME Journal, vol.1, issue.4, pp.397-408, 2008.
DOI : 10.1111/j.1574-6941.2006.00060.x

P. Cabello-yeves, Novel Synechococcus genomes reconstructed from freshwater 47 Adaptation to blue light in marine Synechococcus requires MpeU, 626 an enzyme with similarity to phycoerythrobilin lyase isomerases, Front Microbiol, vol.8, pp.243-627, 2017.

M. Veldhuis and G. Kraay, Cell abundance and fluorescence of picoplankton in relation to growth irradiance and nitrogen availability in the red sea, Netherlands Journal of Sea Research, vol.31, issue.2, pp.135-145, 1993.
DOI : 10.1016/0077-7579(93)90003-B

URL : https://hal.archives-ouvertes.fr/hal-01663431

T. Katano and S. Nakano, Growth rates of Synechococcus types with different phycoerythrin 630 composition estimated by dual-laser flow cytometry in relationship to the, p.631, 2006.

N. Ahlgren and G. Rocap, Culture isolation and culture-independent clone libraries reveal 633 new marine Synechococcus ecotypes with distinctive light and N physiologies, Appl Environ, p.634, 2006.
DOI : 10.1128/aem.00358-06

URL : http://aem.asm.org/content/72/11/7193.full.pdf

S. Bemal and A. Anil, Genetic and ecophysiological traits of Synechococcus strains isolated 636 from coastal and open ocean waters of the Arabian Sea, FEMS Microbiol Ecol, vol.92, issue.11, 2016.

R. Everroad and A. Wood, Phycoerythrin evolution and diversification of spectral 638 phenotype in marine Synechococcus and related picocyanobacteria, Mol Phylogenet Evol, vol.639, issue.3, pp.64381-392, 2012.

A. Morel, Optical properties of the ???clearest??? natural waters, Limnology and Oceanography, vol.52, issue.1, pp.52217-229, 2007.
DOI : 10.4319/lo.2007.52.1.0217

A. Martiny, Y. Huang, and W. Li, Occurrence of phosphate acquisition genes in 646, 2009.

A. Martiny, M. Coleman, and S. Chisholm, Phosphate acquisition genes in Prochlorococcus ecotypes: Evidence for genome-wide adaptation, Proceedings of the National Academy of Sciences, vol.104, issue.1, pp.12552-12557, 2006.
DOI : 10.1029/1998JC900011

A. Martiny, S. Kathuria, and P. Berube, Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes, Proceedings of the National Academy of Sciences, vol.26, issue.33, pp.10787-651, 2009.
DOI : 10.1111/j.1574-6968.1985.tb01559.x

URL : http://www.pnas.org/content/106/26/10787.full.pdf

S. Guindon, New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Systematic Biology, vol.174, issue.3, pp.307-321, 2010.
DOI : 10.1093/bioinformatics/17.4.383

URL : https://hal.archives-ouvertes.fr/lirmm-00511784

J. Huerta-cepas, F. Serra, and P. Bork, ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data, Molecular Biology and Evolution, vol.155, issue.1, pp.1635-1638, 2016.
DOI : 10.1093/molbev/msi237

URL : https://academic.oup.com/mbe/article-pdf/33/6/1635/7953632/msw046.pdf

C. Camacho, BLAST+: architecture and applications, BMC Bioinformatics, vol.10, issue.1, pp.421-659, 2009.
DOI : 10.1186/1471-2105-10-421

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-10-421?site=bmcbioinformatics.biomedcentral.com

F. Matsen, R. Kodner, and E. Armbrust, pplacer: linear time maximum, p.660, 2010.

M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik, cluster: cluster analysis basics 665 and extensions, p.666, 2017.

W. Venables and B. Ripley, Modern applied statistics with S Fourth 667 edition Available at, 2002.
DOI : 10.1007/978-0-387-21706-2

F. Harrell, Hmisc: Harrell Miscellaneous Available at, 2016.