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Key Points:

• The internal structure of the magnetopause is investigated, using new analysis tools
allowed by the high performance MMS instruments.

• In a case study, the observed boundary is shown to be non planar and non station-
ary which makes it necessary to perform a local study of the internal structure of
the boundary.

• Thanks to this local analysis, quasi 1D thin sub layers are identified separated by
regions that are mainly 2D.
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Abstract
We explore the structure of the magnetopause using a crossing observed by the MMS
spacecraft on October 16th, 2015. Several methods (Minimum Variance Analysis, BV
method, Constant Velocity Analysis) are first applied to compute the normal to the mag-
netopause considered as a whole. The different results obtained are not identical and we
show that the whole boundary is not stationary and not planar, so that basic assumptions
of these methods are not well satisfied. We then analyze more finely the internal struc-
ture for investigating the departures from planarity. Using the basic mathematical defini-
tion of what is a one-dimensional physical problem, we introduce a new single spacecraft
method, called LNA (Local Normal Analysis) for determining the varying normal, and we
compare the results so obtained with those coming from the multi-spacecraft MDD tool
developed by Shi et al. [2005]. This last method gives the dimensionality of the magnetic
variations from multi-point measurements and also allows estimating the direction of the
local normal when the variations are locally 1D. This study shows that the magnetopause
does include approximate one-dimensional sub-structures but also two and three dimen-
sional structures. It also shows that the dimensionality of the magnetic variations can dif-
fer from the variations of other fields so that, at some places, the magnetic field can have
a 1D structure although all the plasma variations do not verify the properties of a global
one-dimensional problem. A generalization of the MDD tool is proposed.

1 Introduction

The magnetopause boundary separates two magnetized plasmas of different origins:
the solar wind and the magnetosphere. Its existence is due to the frozen-in property that
prevails at large scale and which would fully prevent the two plasmas to reconnect if it
was valid always and everywhere. As the magnetopause is accessible to in-situ space-
craft measurements, it provides a unique occasion to study the internal structure of such
a boundary and understand how the two plasmas interpenetrate each other via the kinetic
effects. However, this study is made difficult by the fact that the boundary is always per-
turbed by non stationary effects, due to the non stationary incident solar wind and/or to
surface wave instabilities such as tearing and Kelvin-Helmholtz instabilities (Chen et al.
[1997], Faganello et al. [2008]). It is worth noticing that, if purely planar and stationary,
the magnetopause layer should obey the classical theory of discontinuities [Belmont et al.,
2013], i.e. be purely tangential (BN = 0) or, if not, either purely rotational or purely com-
pressional. This is in contradiction with observations since compressional and rotational
variations are always observed in a close vicinity of each other in the magnetopause layer,
often mixed but with sometimes a clear separation between both [Dorville et al., 2014a].
Thanks to its unprecedented high quality and high time resolution experiments, the MMS
spacecraft (Pollock et al. [2016], Russell et al. [2016]) nowadays allow significant advances
in the study of the internal structure of the magnetopause layer. This paper shows the new
methods that can be used for that purpose.

October 16th, 2015 was a day with multiple magnetopause crossings by MMS. Fig.1
shows that it is due to the fact that the orbit of the spacecraft grazes the magnetopause for
about 4 hours between 09:00 and 13:00 UTC. The expected position of the magnetopause
is calculated with the Shue et al model ([Shue et al., 1997]) using ACE data [Stone et al.,
1998]. The figure evidences that many crossings are expected to happen. This is what
is observed and these multiple crossings can be expected to be complex, with possible
back and forth motions and partial penetration in the current layer. We choose to study the
crossing around 13:06 (which is shown by a red arrow) because this period has already
been studied by Burch et al. [2016], Torbert et al. [2016], and Le Contel et al. [2016], with
a main emphasis put on its relationship with the reconnection event identified at 13:07.

Fig. 2 displays the magnetic field measured by the MMS magnetometers [Russell
et al., 2016] during a 1 minute interval around the crossing investigated. In this figure as
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Figure 1. Radial distance from the Earth as a function of time: comparison between MMS orbit (blue line)
and Shue magnetopause position computed with ACE data.

in all the others unless specified, the times are counted for convenience from t0 =13:05:30.
The magnetic field is smoothed using a gaussian filter, with a standard deviation of the
gaussian kernel equal to 70 points, which makes an effective smoothing window of about
1.6s. All the data used in the study are resampled to the magnetic field sampling time and
then smoothed in the same way as the magnetic field.

One can see that the crossing is complex. The spacecraft come from a clear mag-
netospheric field at the beginning of the interval (Bz ≈ 35nT); a reversal is seen around
t ≈ 15s, showing the crossing of the main magnetopause current layer; the magnetic field
is not completely stationary afterwards, which can be interpreted, as done by Torbert et al,
by the fact that the spacecraft do not progress further in the normal direction with respect
to the magnetopause, so remaining inside it (“stagnation”), with even a backward motion
around t = 28s.
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Figure 2. GSE Magnetic field components observed on MMS1, October 16th, 2015, beginning time at
13:05:30.

Fig. 3 summarizes the evolution of the main physical parameters during the interval
under study, where it can be seen that the region where the plasma properties change is
not identical to the magnetic field reversal region but is close to the first part of it, and
slightly before.
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Figure 3. From top to bottom: magnetic field, electron velocity, density, and spectrograms of ions and
electrons for the global period studied in the paper. The blue boxes select the regions where the geometry is
1D and the yellow ones the regions where it is 2D (see the discussion at the end of the paper).

2 The magnetopause is non-stationary and non-planar

2.1 Comparison of normals

The most common method to analyze a magnetopause crossing is the Minimum
Variance Analysis (MVA), which has been introduced with the first measurements of the
magnetic field in space ([Sonnerup and Cahill, 1967], [Sonnerup and Scheible, 1998]).
It is based on the assumption that the boundary is perfectly 1D, i.e. that all isosurfaces
are parallel planes, and it provides a single boundary normal based on the magnetic field
measurements across the “whole crossing”. Years of study of experimental results have
shown that this assumption is acceptable as long as sufficiently large scales are considered
and ultimately amount to finding out the normal of the magnetopause boundary itself and
compare it to a model, e.g. Shue et al. [1997]. But they have also shown that the mag-
netopause itself has an internal structure which can be complex ([Dorville et al., 2014a],
[Burch et al., 2016]).

MVA relies on the Maxwell equation ∇ · B = 0, and on the constancy of the normal
component that follows from it for a strictly 1D geometry. This property is sufficient to
determine the normal direction as long as this component is the only that does not vary,
i.e. when the BT tangential hodogram has a certain curvature: otherwise, two components
are constant and BN=cst is not a sufficient condition to identify the normal direction (this
excludes the coplanar case of shocks). If the magnetopause conformed to the simple clas-
sical image of a boundary made of a monotonous ramp connecting two homogeneous re-
gions, the strict BN conservation would be valid on any interval, whatever the number
of points. The existence of different sub layers that can move with respect to each other
would not invalidate this property, at the condition that these sub layers are all planar and
strictly parallel to each other. The existence of non stationarity should not bring difficul-
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ties either, at the condition that the boundary remains strictly planar everywhere and that
its normal direction does not vary in time. The main difficulties therefore come from the
departures from planarity and from the absence of time stationarity of the normal direc-
tion. Such departures are likely to occur often at the magnetopause, even if only due to
the small scales waves and turbulence that are always present. To fix this difficulty, MVA
is usually used on a statistical basis and applied over a sufficiently long interval between
two points around the crossing, one considered as assuredly in the magnetosphere and one
as assuredly in the magnetosheath. This actually transforms the condition that BN is con-
stant into the condition that its variance is less than the variance of the other components.
A necessary condition for applying safely this condition is that the ratio between the min-
imum and intermediate variances is sufficiently small. Another condition that should be
checked is that these two variances are really characteristic of the large scale variation re-
lated with the current layer under study and not mainly due to the parasitic small scale
turbulence. When these conditions are not fulfilled, the result actually depends on the po-
sition and the size of the “global” interval chosen. The stability of the result is sometimes
tested a posteriori, by checking the variations of the observed BN and by using nested in-
tervals (see for instance [Zhang et al., 2005]). When contradictions occur in one of these
two tests, the results are rejected, under the assumption that the real local normal should
not depend on time inside the crossing. Beyond this constraint of a strictly constant nor-
mal direction, MVA also suffers from another limitation that prevents people from using it
on short intervals and therefore analyzing the sub-structure of the layer: the interval used
must be long enough to evidence the curvature of the BT tangential hodogram. Any vari-
ation obviously tends toward a straight line when the interval duration decreases, so in-
creasing the inaccuracy of the result in the M-N plane.

These limitations encouraged scientists to develop more elaborate methods (a re-
view can be found in [Haaland et al., 2004]). They are not all used nowadays, proba-
bly because they require more high time resolution data and are more difficult to apply
than MVA. Let us cite in particular the different GRA methods (Generic Residue Analy-
sis [Sonnerup et al., 2006]). These are generalizations of MVA to other parameters than
just B. Although generally more efficient than MVA, these methods rely on conservation
laws (fields and plasma) that require also planarity (1D variations) to be valid. They there-
fore suffer from most of the limitations of MVA for investigating sub-layers. In addition,
they require stationarity (∂t = 0). The BV method [Dorville et al., 2014b] mixes mag-
netic field (B) and velocity (V) data and is based on different grounds but still in the same
“global layer” spirit. It has been shown to give accurate normal determinations in a sta-
tistical study [Dorville et al., 2015]. Nevertheless it is not either perfectly suited for an-
alyzing intervals much shorter than the global width of the current layer (in spite of the
excellent time resolution of the MMS data). In any case, all the methods mentioned here
assume the boundary is locally a plane. This assumption may be questionable due to lo-
cal deformations of the surface, such as surface waves. Confirmation is given by all the
numerical simulations of reconnection or Kelvin-Helmholtz instability show (Aunai et al.
[2016], Chen et al. [1997], Dargent et al. [2017], Miura and Pritchett [1982]) and as some
experimental observations [Blagau et al., 2010].

For the crossing investigated in the present paper, MVA has been first applied on the
global interval. It shows that the three eigenvalues are not well separated, the maximum
variance being clearly larger than the two others, but these two others being rather similar
(ratio 1.9). This means that the normal might not be precisely determined. Nevertheless,
we obtain NMVA = [0.811, 0.536,−0.234] which is close to the normal obtained with the
[Shue et al., 1997] model which is NShue = [0.854, 0.519,−0.043]. The angle between
the two normals is 11° indicating that in this case the “global” magnetopause is probably
not far from the standard paraboloid shape assumed by Shue et al. As MVA, as we use it,
is a single-spacecraft technique,one can compare the MVA normals derived from the data
on each of the four spacecraft. As they are actually very near, they measure very similar
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magnetic fields and the angle between each normal and the average normal is indeed less
than 1°.

Looking at the magnetic data in Fig. 2, the global crossing can be guessed to con-
sist of a first current layer between, typically, t = 10s and 20s, followed by a backward
motion later, with only a partial entrance in the magnetopause between t = 25s and 30s.
For confirming or disproving such a guess, one has to investigate the internal structure of
the magnetopause layer in more details and look for possible sub-structures. For this pur-
pose, let us first compute MVA on shorter intervals. Between t = 10s and 20s, we obtain
(on MMS1) NMVA = [0.591,−0.591,−0.548], which is very different from the previous
normal, the angle between both being 73°. Let us note that changing slightly the choice
of the beginning and ending times of this MVA interval does not change much this con-
clusion. As the ratio between minimum and intermediate eigenvalues is again not much
larger then 1 (2.6), MVA is quite questionable and one can wonder whether this determi-
nation is just erroneous or if such a large difference can actually exist between the local
and the global normals. Taking advantage that, beyond B, all the other physical parameters
are measured at the same time, it is possible to use the particle data [Pollock et al., 2016]
to analyze the crossing with the BV technique [Dorville et al., 2014b]. The hodogram
(Fig. 4) is almost a straight line, without a clear curvature, but this does not prevent the
BV method from working, the fit of this hodogram by a very elongated ellipse remaining
quite acceptable. The BV program automatically determines the optimum interval for its
fitting procedure, which is between, unsurprisingly, t =14s and 18s. The normal obtained
is then (on MMS1): NBV = [0.838, 0.506,−0.205], which is only 9° from the Shue et al
normal. This result is much more likely than the MVA one.
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Figure 4. Hodogram of the magnetic field in the plane tangential to the magnetopause obtained by BV,
and its fit. The tangential directions BT1 and BT2 chosen for the plot are those of intermediate and largest
variances, but any rotation would not change the interpretation. The axis scales are in nT.

2.2 Thickness of the magnetopause

A possible byproduct of the BV method is an estimation of the thickness of the cur-
rent layer of the magnetopause and of its normal velocity, but it is worth noticing that
these estimations have to be taken with caution. The BV program provides, in its present
version an estimated thickness of 30 km on MMS1 and MMS2 and 40 km on MMS3 and
MMS4, which is smaller than the thermal ion Larmor radii (which vary from ≈ 140 km in
the magnetosphere to ≈ 110 km in the magnetosheath). It also provides an estimated nor-
mal velocity of 8 km.s−1 for MMS1 and MMS2 and 10 km.s−1 for MMS 3 and MMS4,
which is much smaller than the normal Alfvén velocity (36 to 170 km.s−1). These results
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being noticeably smaller than the values commonly observed, we have used other methods
to check them. These methods provide more likely results of about 200 km for the thick-
ness and 50 km.s−1 for the normal velocity.

The first calculation is the same as done in the BV method, but also similar to those
used in [Paschmann et al., 1990] and [De Keyser et al., 2002], which consists in integrat-
ing the normal ion velocity Vin over time to obtain the abscissa x(t), but using a different
normal which is likely to be more precise (see in further sections how we have obtained
this normal). The second calculation makes use of the four-spacecraft gradient determi-
nation. The abscissa along the normal is obtained by integrating the quantity δx = Y/Y ′,
where Y is a scalar variable and where Y ′ represents the projection of ∇Y on the normal
direction (the normal direction being determined in the same way as above). The spa-
tial derivatives in the different directions are estimated by linear interpolations from the
multi-point measurements (here 4 spacecraft). This can be done by methods similar to the
well-known “curlometer”, which is very often used to calculate the electric current den-
sity [Chanteur, 1998]. We have taken here Y = BL , which is the component of B that
varies most during the crossing. Fig. 5 shows the comparison between the two results.
Both results look quite compatible during the crossing of the main current layer and lead
to the same value of ≈ 200 km for its thickness. This similarity validates the hypothesis
which is done in the BV method that the flow through the boundary is negligible. Nev-
ertheless, the two results clearly depart at later times. This is due to a very strong de-
pendence of the result, with the BV method, on the quality of the normal determination
[Dorville et al., 2014b]. A small uncertainty in the normal direction determination can
draw a large variation of the Vn component because the tangential component of the ve-
locity is much larger than the normal one (see Fig. 3). With a magnitude of the velocity
of about ≈ 300 km.s−1, an uncertainty of 10° on the normal direction corresponds to an
uncertainty of ≈ 50 km.s−1 for the normal velocity, and an uncertainty of about ≈ 200 km
for the thickness. It is so quite understandable that, with a normal valid in the 14-18s in-
terval, the inaccuracy increases very fast at later times where this normal is no more valid.
The method based on gradients does not present this difficulty: it is much less sensitive to
the accuracy of the normal determination. Nevertheless, we had also to add a caution to
make it work correctly: because of various small accuracy issues, the denominator Y ′ may
cancel at a time slightly different from the numerator, which results in short divergences in
the result and jumps in the x(t) curve. This has to be corrected by adding adequate small
shifts in the denominator. In addition, Fig. 5 clearly gives the confirmation that the space-
craft is going backward inside the magnetopause around t = 27s, as was guessed before.
Due to its importance, this technique is under review for further improvements and will be
applied to other cases in next studies.
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Figure 5. Abscissas x(t) along the magnetopause normal, as determined by two different methods (see
text). The origin is arbitrary.
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(a)   (b)

Figure 6. Comparison of the normal component of the velocity and the density variation (MMS1). The
thick lines correspond to the t = 14 − 18s interval. The vertical thin lines indicate the limits of the two periods
described in the text.

In Fig. 6, we have plotted the projection of the ion velocity along the normal ob-
tained by BV, together with the density profile. This evidences an internal structure inside
the magnetopause. Two main parts can be observed in the interval t = 14 − 18s, where
the main plasma gradients are located and which is emphasized by a thick line: in inter-
val (a) a sharp density gradient, with an almost constant Vn, followed in interval (b) by
a smoother gradient with a normal velocity close to zero. This is in agreement with the
sketch drawn in Fig. 3 of [Burch et al., 2016] which is a possible interpretation of this
crossing (although assuming a stationary boundary): a rather straight crossing, followed by
a stagnation of the spacecraft inside the boundary. This is confirmed by the observation
of energetic ions continuously after 13:05:42 [Le Contel et al., 2016]. Out of the central
interval t = 14 − 18s, the curve Vn(t) is plotted with a dashed line, to warn the reader
that the projection of the velocity is obtained using the BV normal based on this interval
and that the validity of this projection, even if correct in the magnetic ramp itself, remains
questionable outside of it.

2.3 Non-stationarity

Using timing methods is another classical way for getting information on the bound-
ary properties from multi-spacecraft measurements. We tested CVA (Constant Velocity
Analysis), which assumes the boundary is a planar structure encountered by the 4 space-
craft with a constant velocity [Sonnerup et al., 2008a], [Sonnerup et al., 2008b]. As in any
other timing method, the analysis is based on the knowledge of the positions of the space-
craft and the measurements of the delays between the signatures of the crossing seen by
the four spacecraft. As shown in Fig. 7, these delays are very short with respect to the
parasitic variations due to the intrinsic non stationarities, in particular waves and turbu-
lence. If the boundary was stationary, we should find a constant delay between the fields
observed by MMS1 and MMS4. On the contrary, it is obvious that the dispersion of the
points is not negligible at all with respect to the delay itself. It is worth noticing that we
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have plotted here the Bz component, which is the component that varies most, and for the
MMS1-MMS4 pair, for which the delay is maximum. The situation is worst when using
the other components and the other spacecraft pairs. This results in a very inaccurate de-
termination of the delays and therefore in a bad determination of the normal direction.
The first conclusion is therefore that, in this case, the CVA method cannot be used without
much caution.

Looking at Fig. 7, we can also derive some hints on the non stationarity of the
boundary at different scales. In the beginning of the crossing there are oscillations, evok-
ing the presence of waves, superimposed to the magnetopause variation. This induces
variations of the delay on the top of the figure. But there is also a large-scale variation
of the delay: on the top of the figure (beginning of the crossing) its mean value is about -
0.07s and afterward it goes to -0.15s: the delay is not constant through the crossing. Sim-
ilar conclusions are obtained with the two other spacecraft. Using an averaging of the de-
lays, one could interpret the large-scale variation as a constant acceleration of the bound-
ary, which would help improving this result [Dunlop et al., 2002]. Results of other timing
methods, such as CTA (Constant Thickness Analysis) are not presented here, but the same
difficulty (small delays with respect to the intrinsic fluctuations) would lead, on this exam-
ple, to the same difficulties.

time (s) from 13:05:30 delays (s) between the magnetic fields 

Figure 7. Comparison of the main component (Bz ) of the magnetic field (left) and computation of the delay
(right) between points having the same Bz value. The green vertical line is the average delay.

The conclusion of these observations is that the magnetic field is not stationary dur-
ing the crossing by the four MMS spacecraft and therefore the boundary is not the planar
stationary discontinuity which is the most simple model for the magnetopause. It is neces-
sary to investigate in more details the geometry and behaviour of the magnetopause.

3 Internal structure: departures from planarity

When analyzing a boundary crossing, one most often assumes that this boundary is
1D, i.e. that all parameters vary only in one direction, which is its normal. When this hy-
pothesis of planarity is fully verified, the normal component Bn of the magnetic field is
strictly constant and this property is used in MVA method to determine a single “global”
normal direction (if no other B component is constant in the interval). Nevertheless, when
the boundary is shaken by some non stationary effect (either due to varying incident con-
ditions or due to surface instability such as tearing mode or Kelvin Helmholtz), it gen-
erally does not remain fully 1D. Such departures to planarity can easily be observed in
numerical simulations of reconnection (see for instance Dargent et al. [2017], which will
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be used afterwards in the paper) or, less easily, it can be guessed from data (see the mag-
netopause reconstructions in Hasegawa et al. [2005], De Keyser [2008]). These departures
result in the fact that MVA is not suitable to this case and the meaning a global normal
direction becomes unclear. One way for dealing with these cases is to try to determine,
when possible, a “local normal”, possibly varying along the crossing, instead of a single
“global” one.

3.1 Local Normal Analysis

We introduce here a new method, that we call LNA (Local Normal Analysis), based
on the independent measurements of B (from field data) and j (from particle data), and
which allows determining a normal that can vary along the crossing. Mathematically
speaking, a local normal direction can be defined wherever all plasma parameters depend
on space only through a single scalar function s(x, y, z) of the three coordinates. This en-
sures that the gradients of all parameters are parallel to each other at any point, this com-
mon “normal” direction possibly depending on the point considered. The direction N is
given by:

N =
∇s
|∇s |

(1)

In a cylindrical geometry for instance, all quantities depend on space only through
the radius r , so that all gradients are everywhere parallel to the radial direction. Of course,
this direction is variable from one point to another in the azimuthal direction.

For any vectorial field U verifying this property, one can write the curl as

∇ × U = ∇s × dsU =| ∇s | N × dsU (2)

where dsU stands for the derivative of U with respect to s. Therefore when it is applied
to the magnetic field it shows that the current density is perpendicular to the normal (ne-
glecting the displacement current). When applied to the electric field, it shows that ∂tB
is perpendicular to the normal, using Maxwell-Faraday equation. A simple cross product
between these two vectors is then a priori sufficient to provide the normal direction

N =
j × ∂tB
|j × ∂tB|

(3)

When both parameters j and B are independently determined with a sufficient accu-
racy, this expression can provide a simple and efficient way for determining the local nor-
mal N at each time and for a single spacecraft. It is worth noticing that this method does
not rely on ∇ · B = 0 and thus on the fact that one component (and only one) is constant:
it is therefore not limited to sufficiently rotational cases. For the first time in space history,
MMS provides independent -and generally reliable- measurements for j and B [Torbert
et al., 2016], since we can compute a high resolution current density from the particle data
[Pollock et al., 2016]. On previous space observations we used to work only with current
density obtained from the magnetic field, with the well-known curlometer technique, be-
cause the particle instruments had neither the necessary accuracy nor the necessary time
resolution to do it. On MMS it has been shown that both calculations of the current show
a global fairly good agreement (see [Le Contel et al., 2016] who computed the currents for
the same time period).

It is worth noticing that this new method has to be scale dependent: in the present
program, this dependence is crudely controlled by the way the variables are smoothed be-
fore use. Since the method relies on time derivatives, this smoothing has an important role
in the result. Here, the components of the magnetic field are smoothed with a local cu-
bic fit, which is convenient for getting the time derivatives analytically (The smoothing is
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performed on the same timescale as the previous gaussian filtering). Going to large-scale
smoothing should allow retrieving the classical notion of global normal. On the contrary,
going to very short scale smoothing would provide the wave vectors of the different waves
encountered (which can be considered as “parasitic” for the present kind of study). This
step could be improved in the future (by using for instance a Fourier filtering instead of a
smoothing).

Fig. 8 shows what the results look like when running the “Local Normal Analysis”
(LNA) method on the case presented in Fig. 2 without further precaution. The data have
been smoothed over 1.6 seconds (the global interval being of 1min). This time scale is a
good compromise for this case: it is significantly shorter than the global crossing time (so
giving access to the internal structure), and long enough to get rid of most high frequency
turbulence. One can see that this figure appears almost unintelligible in these conditions:
apart from a short period about t = 15s where the normal appears relatively stable (and
where its direction will be confirmed by another method hereafter), it appears highly fluc-
tuating and apparently random. The reason can easily be understood: the method provides
the local normal under the hypothesis that this normal exists, i.e. that the variations are
locally 1D. As, at this stage, there is no test of this hypothesis, one gets a result every-
where, even where it is not verified and where the result is thus meaningless. An addi-
tional test of locally 1D variations is therefore necessary to make the LNA method com-
plete. It will be the subject of the next sections.

0 10 20 30 40 50 60
time(s) from 13:05:30
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Figure 8. The three components of the vector NLNA as determined by LNA without 1D selection in GSE
frame, with no test of the significance of the result.

3.2 Test of the local planarity

The best test for determining the dimensionality of observed variations demands
multi-point measurements. It has been proposed by [Shi et al., 2005] for Cluster data. This
method, called MDD (Minimum Directional Derivative) analysis makes use of magnetic
field data, although it is not based on specific properties of this field. It actually has been
little used with Cluster, most of the authors preferring to stay in the purely 1D hypothe-
sis and the simple notion of a global normal supposed to be determined by MVA. But it
is nowadays attracting increasing interest for analyzing the MMS data (see for instance
[Chen et al., 2017]) because of the short separation between spacecraft that allows a better
determination of the local gradients. In a recent paper, [Denton et al., 2016] have even ap-
plied this MDD method on a magnetopause crossing in the same global interval shown in
Fig. 1 as the crossing analyzed here, but a bit later.

The MDD method consists in diagonalizing the matrix L = G · GT , where G = ∇B
and the superscript T indicates matrix transposition and where the spatial derivatives are
computed as explained before. The largest eigenvalue λ1 corresponds to the largest deriva-
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tive for the ensemble of the B components. When this eigenvalue is much larger than the
two other eigenvalues, it means that all B components vary in one single direction, which
is given by the corresponding eigenvector α1, i.e. that it is 1D, with the normal direction
N = α1. When the two largest values λ1 and λ2 have the same order of magnitude, while
the third one λ3 is much smaller, it means that the problem is 2D, the variations occurring
in the plane (α1, α2), α3 so being the direction of invariance. When the three eigenvalues
have the same order of magnitude, it means that the B variations are fully 3D. A modified
MDD method has been proposed by Denton et al. [2010] (see also a test in simulation in
Denton et al. [2012]) to avoid the effects of possible offsets and calibration errors in the
data. These errors might have a noticeable impact when the method is used to compute
the velocity of a structure (Denton et al. [2010]) but, as it is not what we do here, we use
only the original version of MDD in the present paper. Nevertheless, this point of view
may have to be reconsidered for the generalized MDD method that we propose hereafter
because such errors have certainly a much larger effect when using the electric field data
than with the only magnetic field ones.

In order to visualize more easily the effective dimensionality of the variations, we
have introduced three parameters, which can be used as proxies:

D1 =
λ1 − λ2
λ1

(4)

D2 =
λ2 − λ3
λ1

(5)

D3 =
λ3
λ1

(6)

These three parameters vary between 0 and 1 and their sum is equal to 1. For D1 =
1 and D2 = D3 = 0, variation happens only in one direction: the geometry can be told
“purely 1D variation”. For D2 = 1 and D1 = D3 = 0, the amplitudes of the varia-
tions are equal in two directions: it is what we call the case “purely 2D”. For D3 = 1
and D1 = D2 = 0, the amplitudes of the variations are equal in the three directions: it
is what we call it “purely 3D”. Of course, all intermediate situations are possible. Let us
consider, for instance, a flux rope with λ1 = 5, λ2 = 1 and λ1 = 0.1, which gives the di-
mensions D1 = 0.8, D2 = 0.18 and D3 = 0.02. The structure has a slightly 2D character
since D2 is not negligible, but D1 > D2 indicates that the tube is strongly flattened in one
direction: this makes the transition between 2D (circular tube) and 1D (tube infinitely flat-
tened). Such structures have been observed and studied by Shi et al. [2009] and Shi et al.
[2013] on Cluster and Yao et al. [2017] on MMS.

When applying the MDD Analysis to the interval under study, the three eigenvalues
obtained are quite similar to those of the Fig. 1 of [Denton et al., 2016]. These results
are plotted in Fig. 9 using the three Di parameters. It must be kept in mind that the Di

coefficients deriving from MDD give a local measurement of the dimensionality at the
scale which has been selected by the smoothing. Our data have been smoothed on 1.6
s, therefore the wave structures superimposed on the magnetopause crossing are mostly
removed. It can be observed that the 1D variations are generally dominant but that 2D and
3D variations are also present in the interval. It is worth noticing that, in the regions of
2D variations, the direction of invariance α3 is determined by the MDD method, which
may be an important information for numerical modeling purposes.

In the regions where D1 ≈ 1, the normal can be determined by NMDD = α1. In
Fig. 10, the angular distance of this MDD normal with the reference NShue normal is
plotted, for the regions where D1 > 0.9 (thin line) and for D1 > 0.98 (thick line). An
additional caution has been taken in this figure: we have discarded the regions where there
are no significant magnetic field variations (|∂t (B)|2 less than 1/10 of its maximum value)
because we are not interested in the direction of the gradients for these small variations:
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Figure 9. The three dimensions resulting of the MDD Analysis as functions of time for the same interval as
Fig 8.

(1) (2)

Figure 10. On top, the D1 parameter. Below the angle between the normal determined by MDD (in blue)
and the reference normal given by the Shue model. The thin lines correspond to D1>0.9. The thick lines
correspond to D1>0.98. In black, the results of the LNA method have been over-plotted for comparison, with
the same convention. The intervals selected by dotted lines refer to the text.

they are more likely related to wave and turbulence rather than to the large-scale current
layers. In the remaining regions, the results of our LNA have been over-plotted for com-
parison (in blue). One can observe that, as expected, the results obtained by the two meth-
ods are generally close to each other when D1 ≈ 1, and that they diverge from each other
for smaller values of D1. For the sake of clarity, we have isolated the two intervals, lim-
ited by dashed lines in the figure, where D1 > 0.98 and which are long enough: interval
1 from 13.8 to 16.8, and interval 2 from 27.4 to 28.4. If we compute the averaged nor-
mals on these intervals, we find that the two normals make a 4° angle in interval 1 and
7° angle in interval 2. Considering for instance the normal determined with MDD, it is:
N1 = [0.925, 0.124,−0.355] for interval 1 and: N2 = [0.872, 0.473,−0.121] for interval
2. Therefore, during the small incursion into the magnetopause which is observed around
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t = 28s, the normal is different from the normal observed during the large crossing. The
two normals are separated by 25°, and the interval 2 normal is closer to the nominal Shue
model (which assumes the magnetopause is a paraboloid) than the interval 1 normal.

Nevertheless, one can also observe that, at some points (see t ≈ 22 or t ≈ 29),
the results can be significantly different (with fast variations for LNA), while D1 is not
much smaller than unity. A possible reason for these differences may be the use of dif-
ferent current densities: LNA uses the particle current density, whereas MDD is based on
the magnetic field. These departures may also indicate that, sometimes, the layer is 1D in
the sense of MDD, but not in the sense of LNA. The physical reasons for these discrepan-
cies will be investigated in the next subsection, where the two analysis methods have been
tested in a numerical simulation.

3.3 Tests of the MDD and LNA methods on a numerical simulation and general-
ization of MDD

For testing the MDD and LNA methods, we use a 2D numerical PIC simulation
published in [Dargent et al., 2017]. Note that this simulation of reconnection has no re-
lation with the above experimental case. In this simulation, we have mimicked various
spacecraft crossings of the magnetopause layer and treated the data by both the MDD and
LNA methods. The crossing used in this paper is shown in Fig. 11 where a map of the
magnetic field in the simulation is plotted. The only difference with the real spacecraft
data is that the spatial derivatives have been estimated directly from the simulation grid
instead of being estimated from the 4-point measurements of the MMS irregular tetrahe-
dron.

Figure 11. Bz component in the numerical simulation superimposed to the magnetic field lines in the
simulation plane. The (x, y) components are those of the 2D simulation box. The straight line indicates the
simulated crossing trajectory, with the period of time which is studied below over-lined in green, beginning
at the bottom of the simulation box and going in the direction of the increasing y. The small arrows are the
MDD local normals determined along the trajectory.

Fig. 12 shows the results for the crossing shown in Fig. 11, in the same format as
Fig. 10, with the same criterion on |∂t (B)|2. It can be seen that MDD determines a nor-
mal which is, as expected, close to the y direction, with a clear regular variation which
finely fits the shape of the exhaust region in the simulation. It is worth noticing that the B
variations are shown to be almost 1D everywhere in the layer, even in the region relatively
close to the X point where the field lines are clearly not straight lines.Our LNA result is
quite consistent, in general, with this one. Nevertheless, one can once again observe that
the two results are not perfectly identical: at some points (see t = 41 − 43) where D1 is
very close to unity, the difference between the two results is significant. The LNA result
can even include a non negligible z component (not shown), which is inconsistent with the
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2D simulation. Although the discrepancies remain generally small, they are to be under-
stood because, for a fully 1D variation, it is clear that j and ∂t (B) should be strictly tan-
gential and the LNA method should work perfectly. The MDD local normals are plotted
also in Fig. 11, where it is clear that the local normal varies along the crossing.

Figure 12. Same as Fig. 10 for the crossing in the simulation box shown on Fig. 11. The time is counted
from the entrance of the spacecraft in the simulation box which is crossed at constant velocity. The angle is
measured with respect to the reference direction, which is here the y direction of the simulation box. The thin
lines correspond to D1>0.9. The thick lines correspond to D1>0.98.

These discrepancies point out a weak point in the basic MDD method, which is
based on the magnetic field only: when D1 ≈ 1, it indeed guarantees that the B variations
are 1D, so that j is tangential, but it does not guarantee that the other plasma variations
are also 1D. In particular, if E variations are not 1D, there is no reason why ∂tB should
be strictly tangential, which is necessary for LNA to work. In low beta regions, one can
guess that the magnetic field controls all the other plasma parameters, so that everything
is likely to be 1D when the magnetic field is 1D. It is probably the reason why the dis-
crepancies remain quite limited. But in the regions where pressure effects are important
(in the central part of the exhaust for instance in reconnection geometries), it is not cer-
tain that the 1D variations of B actually ensure the planarity for all the plasma parameters.
The fluid equations of momentum, for ions and electrons, clearly show in particular that
the variations of the parallel components of the fluid velocities ui and ue are determined
by the pressure forces. When these pressure effects are not negligible, the parallel veloci-
ties are therefore not constrained by the geometry of the magnetic field variations.

Fortunately, the MDD can easily be generalized. Instead of considering the 3*3 ma-
trix G = ∇B, one can introduce variations of all the needed parameters G′ = ∇S, where
S is a vector of dimension N , including not only the 3 components of B, but also any of
the other available parameters: the components of the electric field, those of the ion and
electron velocities, those of the pressure tensors, as well as the scalars as the density, etc.
In these conditions, G′ is a 3 ∗ N tensor, but L remains 3*3 and the rest of the method
can remain unchanged. A normalization has to be introduced in the computation so that
the weight of the different physical quantities is equivalent: the Frobenius norm of ∇B is
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computed as a function of time, and the magnetic field is normalized by the maximum of
the norm over all the interval. And the same is done for the electric field.

Figure 13. Same as Fig. 12 for the crossing in the simulation box shown on Fig. 11 when MDD is replaced
by MDD generalized to E field. The three components of the electric field are plotted in the lowest panel for
reference.

In the simulation data, such a generalization has been done by just introducing the
electric field vector in addition to the magnetic one. The result, which can be compared
with the result of Fig. 12 is presented in Fig. 13. One can see that the generalized MDD
method allows evidencing a 2D character of the plasma in a small region in the current
layer, close to the X point, that was not evidenced by the only B variations. D1 has more
contrasted variations than with the non-generalized method, so that the same threshold
is now more demanding. This leads to reject some normal determinations in the regions
where the discrepancy between the LNA and MDD normals was the most important (with
a noticeable z component for the LNA normal in particular) and where D1 has now smaller
values.

Concerning the magnetopause crossing presented in this paper, preliminary tests
have been done of the generalization of MDD. They are not presented here because they
have not proved yet to be efficient. When applying the same generalization as in the simu-
lation (addition of the E data), the result is not conclusive. The reason seems to be purely
experimental: as the calibration of electric antennas is a difficult issue, the precision on
the different components of E [Ergun et al., 2016] is not sufficient to calculate safely the
tensor ∇E from the four spacecraft measurements: even the basic Maxwell-Faraday law
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cannot be verified from the data because the differences between spacecraft are dominated
by the differences between offsets rather than by the physical differences. The problem
is still complicated by the presence, on the magnetospheric side, of very strong electro-
static bursts of short period, which can hardly be eliminated by the smoothing process and
which make difficult obtaining the small transverse field induced by the current layers we
are interested in. The attempts to use the MDD method modified by [Denton et al., 2010]
have not allowed hitherto to overcome this difficulty.

Generalizing with the ion velocity Vi does not pose similar problems. This has been
done, but this test did not lead to conclusive results either: introducing the Vi variations
does not change significantly the result obtained with B alone. Improving the generalized
MDD method to make it efficient with the experimental observations is still a work in
progress.

4 Conclusion and perspectives

For investigating the magnetopause internal structure, one cannot be satisfied with
the simplest hypothesis of a perfectly stationary and mono-dimensional layer. We give
here evidence of departures from these two simple hypotheses on a magnetopause crossing
by MMS. The departure from planarity is particularly investigated, introducing a new sin-
gle spacecraft method, called LNA, used together with an existing multi-spacecraft method
called MDD [Shi et al., 2006]. As LNA can give a reliable result only when the variations
are locally 1D, it can indeed be usefully combined with MDD, which allows selecting the
intervals where this local 1D hypothesis is verified. We have shown that the basic MDD
method, which is based on the B variations only, is not always sufficient for that: even
when it indicates variations close to perfectly 1D, the normal provided by LNA can show
small but significant differences with the corresponding normal coming from MDD itself.
We therefore propose a generalization of MDD using more data. The idea has been tested
by adding the E variations to the B ones, with data coming from a numerical simulation:
the test has shown that this addition is sufficient for solving, at least partly, the problem. It
remains to be investigated more thoroughly with spacecraft data. It is worth emphasizing
once again that this paper presents the different methods accessible by MMS for investi-
gating the internal structure of the magnetopause only from a case study: benchmarking
these methods and comparing their performances on a statistical basis remain to be done
in future studies.

Pending these studies, Table 1 shows that the case presented here is not exceptional
and seems rather typical. We analyze six cases in the same way as above, six of them be-
ing in the same day as the example of this paper. And we show that the two determina-
tions, LNA and MDD, when restricted to strong criteria for D1 and for the amplitude of
the B variation, are globally consistent, even though they both vary with respect to the
"global" MVAB normal (determined in a short interval including the main magnetic gradi-
ent). They both show to be often clearly different from this global MVAB determination.
The choice of severe criteria has been done here in order to limit as much as possible the
effects of non planarity and the role of the superposed turbulence and therefore make the
different cases more comparable. However, the results are not perfect in the sense that
the distance between the LNA and MDD determinations, which could be expected to be
negligible, are generally not smaller than the local variations of each determination, as es-
timated by the standard deviation of their direction with respect the global MVAB result.
This imperfection is likely to be due to the same reason as explained above: using MDD
only on the magnetic field does not guarantee the real mono-dimensionality of the physics.
Generalizing the method to the electric field should solve this problem if the electric field
measurement was accurate enough to allow such a generalization.

The MDD method, contrary to LNA, does not make use of Maxwell equations. In
return, it loses the single-spacecraft character of LNA and so part of its locality. There
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Date θLNA/MVAB θMDD/MVAB θLNA/MDD

2015 10 16
10:20:00 (+120) 20 ± 3 17 ± 8 9 ± 6

2015 10 16
10:29:30 (+120) 56 ± 0.5 44 ± 3 12 ± 4

2015 10 16
10:36:30 (+120) 33 ± 0.8 21 ± 0.9 12 ± 0.4

2015 10 16
10:55:00 (+60) 12 ± 1 11 ± 4 3 ± 1

2015 10 16
13:05:30 (+60) 24 ± 2 20 ± 3 7 ± 3

2017 01 27
12:05:23 (+70) 35 ± 19 39 ± 14 9 ± 6

Table 1. Comparison of the normals obtained by MDD and LNA on the periods given on the left (the du-
ration is indicated in brackets). The table provides the angles (in degrees) of the two types of normals with
respect to MVAB and the angle between them. The statistics are done over all the local normals that satisfy
D1 > 0.99 and ∂t (B)2 > 0.5 of its maximum value. The first number corresponds to the mean value and the
second one (after ±) corresponds to the standard deviation.

is a priori no method that would be strictly single-spacecraft and which would allow to
test the local 1D hypothesis with a comparable reliability. Nevertheless, some simplifying
hypotheses could be used, in the future, to discard the non-1D regions with some confi-
dence. If one assumes, for instance, that the observed B variations can be approximated
locally as stationary in some frame, we must have, in the observation frame:

∂t (B) = −V · ∇B (7)

where V is the local propagation velocity of the structure. The same property has already
been assumed in Shi et al. [2006], where the propagation velocity of the structures could
so be determined. It can be noticed that the red curve plotted in Fig. 5 is an integration
of the velocity obtained by this method. The change of slope in the curve around t = 27
indicates a change of the velocity of the boundary and therefore gives a confirmation of
the relative back and forth motion of the boundary that was guessed at the beginning of
the paper. It seems to also confirm the hypothesis that the flow across the structure is neg-
ligible. If true, this may justify Eq. (7), the propagation velocity simply being the normal
flow velocity.

As soon as the property of Eq. (7) is valid, it can easily be shown that the two vec-
tors ∂t (B) and j are perpendicular to each other when the local variation is 1D, since
j = n × ∂N (B) and ∂t (B) = −VN∂N (B). Checking where the two vectors are perpendic-
ular may provide a test of planarity. This is left for further studies.

As discussed before, the MDD method gives the normal to a one-dimensional bound-
ary, but it can also give information when the problem is 2D. In this case, the eigenvector
associated with the largest eigenvalue α1 does not give much information, but the eigen-
vector associated with the smallest eigenvalue, α3, indicates the direction in which the
problem is quasi-invariant. This direction will have to be compared with the direction ob-
tained by other methods such as [De Keyser et al., 2005]. Knowing experimentally the
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invariant direction may be important for comparing the data with 2D numerical simula-
tions. Of course, α3 is approximately in the plane perpendicular to NShue, since the ef-
fective normal, given by α1 is not much different from NShue. In this plane, investigating
the actual direction of α3 deserves to be explored further. It may provide information, for
instance, on the local fluctuations at different scales, whatever their cause: reconnection
[Aunai et al., 2016], Kelvin-Helmholtz (Miura and Pritchett [1982], Belmont and Chanteur
[1989]) or any other phenomenon.

Finally, we have reported in Fig. 3 the intervals where the B variations are mainly
1D (D1 > 0.98) or 2D (D3 < 0.05D2) with a colour code. Of course these criteria leave
many intervals where the dimension of the problem is not determined, either because the
variations are too weak and the concept of dimension is meaningless, either because the
dimension of the problem is not close to 1D or 2D. The 2D intervals are concentrated
in the region where the spacecraft go back into the magnetopause layer which is reached
only in the very small interval around t = 28s. It seems that this incursion is made in a re-
gion which is much more complex than the "clean" magnetopause crossing observed at the
beginning of the period. The "oscillations" that are seen in the dimension may correspond
to the oscillations that are observed on the density. The reason remains to be investigated.
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